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Dynamic windows based on reversible metal electrodeposition are an attractive

way to enhance the energy efficiency of buildings and show great commercial

potential. Dynamic windows that rely on liquid electrolytes are at risk of short

circuiting when two electrodes contact, especially at larger-scale. Here we

developed a poly (vinyl alcohol) (PVA) gel polymer electrolyte (GPE) with 85%

transmittance, that is, sufficiently stiff to act as a separator. The GPE is

implemented into windows that exhibit comparable electrochemical and

optical properties to windows using a liquid electrolyte. Furthermore, the

GPE enables the fabrication of windows with dual-working electrodes (WE)

and a metal mesh counter electrode in the center without short-circuiting. Our

dual-WE PVA GPE window reaches the 0.1% transmittance state in 101 s, more

than twice the speed of liquid windows with one working electrode (207 s).

Additionally, each side of the dual-WE GPE window can be tinted individually to

demonstrate varied optical effects (i.e., more reflective, or more absorptive),

providing users and intelligent building systems with greater control over the

appearance and performance of the windows in a single device architecture.
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1 Introduction

Dynamic windows tune visible light and heat flow while

maintaining views, thereby saving 10%–20% of energy for

buildings and vehicles over static low emissivity coatings

(Eleanor et al., 2004; Sbar et al., 2012). In addition to energy

savings, a study has shown that occupants in office buildings with

dynamic windows will be healthier, happier and more productive

(Hedge andNou, 2018). By reducing glare and optimizing both the

temperature and light flow in an indoor work environment,

employee productivity can increase by up to 2% (Prnewswire,

2018). Currently there aremany technologies using electrochromic

oxides and organic molecules to tune the color and transmission of

the window (Barile et al., 2017). Compared with these

technologies, dynamic windows based on reversible metal

deposition (RME) have the advantage of potential low cost,

neutral color, and great contrast ratio (Barile et al., 2017; Jeong

et al., 2017; Hernandez et al., 2018; Strand et al., 2018; Hernandez

et al., 2020; Eh et al., 2020; Kimura et al., 2020; Poh et al., 2021; Guo

et al., 2022; Kimura et al., 2022; Song et al., 2022; Tao et al., 2022).

These windows operate by the reversible electrodeposition of

metals ions, e.g., Bi3+ and Cu2+, to their metallic form on a Pt-

coated indium tin oxide (ITO) transparent electrode. A copper

mesh works as a counter electrode to balance the metal ions in the

electrolyte (Hernandez et al., 2018; Strand et al., 2018). Recently,

we reported poly (vinyl) alcohol as a growth inhibitor to reversibly

deposit metal films with more uniform morphology (Hernandez

et al., 2020). Previously, the electrolyte implemented in these

windows consisted of Bi3+ and Cu2+ ions in an liquid, aqueous

ClO4
− based electrolyte (Hernandez et al., 2020).

Though aqueous liquid electrolytes often have higher ionic

conductivities than ones with high polymer content (Alesanco

et al., 2018), dynamic windows with liquid electrolytes face

problems including leakage and short circuiting, especially for

large-scale windows in fenestration applications. Polymer gel

electrolytes are attractive due to their ability to act as a physical

separator between the two electrodes to avoid short-circuiting (Luo

et al., 2015; Alipoori et al., 2020). For this study, a crosslinked porous

polyvinyl alcohol (PVA) gel polymer electrolyte (GPE) is synthesized

as a physical separator where the polymer backbone provides

mechanical structure. The pores are filled with BiCu ClO4 liquid

electrolyte which dictates ionic conductivity based on concentration.

To build strong three-dimensional porous PVA frameworks to infill

with aqueous electrolyte, physical crosslinking is induced by “freeze”

(5°C) -thaw (25°C) phase separation cycles to formPVAgel crystallites

(Hassan and Peppas, 2000; Lozinsky, 1998), (Hyon et al., 1989). As

previously demonstrated, dimethyl sulfoxide (DMSO) is an attractive

choice as a cosolvent with H2O to synthesize highly-transparent PVA

gels due to its miscibility with water and distinct hydrogen bonding

properties (Hassan and Peppas, 2000; Hou et al., 2015). When the

weight ratio of DMSO: H2O is over 2:1, hydrogen bonds formed

betweenDMSOand PVA limit the growth of PVA crystalline regions,

resulting in a small volume of crystallites and thus a very high

transparency in gels (Kanaya et al., 2012). As such, the optimized

ratio used in our GPE windows was 4:1 DMSO: H2O (weight percent

ratio) which results in the highest transparency gel (98%)

(Supplementary Figure S1). This high-transparent physically cross-

linked PVA gel was implemented into RME dynamic windows (PVA

GPE window), and the PVA GPE window can be tinted below 0.1%

visible light transmittance, exhibits color-neutral transmittance, and

has a comparable coloration efficiency to that of liquid windows

(mean value: 18.4 cm2/C for PVAGPEwindow, 18.8 cm2/C for liquid

window, to 0.1% transmission).

Importantly, the use of PVA GPE in windows provides

opportunities for dual-working electrode (dual-WE) windows

without short circuiting. Dual-WE windows are made by

incorporating a second piece of ITO-glass and integrating the

Cu mesh counter electrode within the electrolytic matrix to the

center layer of the window. Compared with single-WE windows,

dual-WE windows are more susceptible to short circuits because

there is a higher potential for the middle free-standing mesh to

touch the working electrodes, as shown in Figure 1A. Substituting

the liquid electrolyte with GPE as the physical separator prevents

short-circuiting without losing significant transmittance in this

dual-WE device architecture (Figure 1B). With this new device

architecture, we can plate metal on either sheet of ITO separately

or tint both sheets of ITO simultaneously. Metal viewed through

the ITO appears mirrorlike as the light encounters a smooth

ITO-metal interface. If instead it is viewed from the other side,

the light interacts with the rough top surface of the metal film,

causing strong absorption and a matte appearance (Strand et al.,

2021). Thus, occupants can choose to tint either side of the dual-

WE PVA GPE window to the same transmittance but get an

absorptive or reflective visual effect according to their needs.

Further, by tinting both sides of ITOs at the same time, dual-WE

PVA GPE dynamic windows exhibit fast switching speed.

FIGURE 1
Schematic diagram of dual-working electrode windows with
liquid electrolyte (A) and PVA gel polymer electrolyte (B).
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2 Materials and methods

2.1 Liquid electrolyte preparation

Chemicals were bought and used without purification. The

electrolyte used for RME consisted of 10 mM Cu(ClO4)2 •
6H2O (ACROS Organics), 10 mM BiOClO4 • H2O (GFS

Chemicals), 10 mM HClO4 (Alfa Aesar), 1 M LiClO4 •
3H2O (ACROS Organics) with 0.1 w/v% PVA

(31,000–50,000 g/mol, 87% hydrolyzed, Aldrich) additive.

PVA was added last and stirred at 1200 rpm and 60–70°C

until dissolved, about 1 h.

2.2 PVA gel polymer electrolyte
preparation

10 wt% 89–98 k PVA (99% hydrolyzed) was added to wt. 80:

20 DMSO: H2O solvent, dissolved by stirring at 90°C for 2 h, and

processed under the two freeze-thaw cycles under vacuum to make

PVA gels. After the freeze-thaw cycling, PVA gels are stirred in three

separate freshDI water baths for 1h, and then soaked inDI water for

another 24 h to remove extra DMSO to form PVA hydrogels. Then

they were directly soaked in baths of BiCu ClO4 with 0.1wt% PVA

additive electrolyte for 24 h to replace the water in the hydrogel with

enough liquid electrolyte to get PVA gel polymer electrolyte (GPE).

FIGURE 2
Comparison between liquid electrolyte window and single working electrode PVA GPE window. (A), Transmission spectra of single-WE PVA
GPE window (left) and liquid window (right). (B), Specular reflection spectra single WE PVA GPE window (left) and liquid window (right). (C–E),
Coloration efficiency at various window transmittance states (C), current density vs. time curve (D) and charge density vs. time curve (E) for windows
using liquid electrolyte (black) and PVA GPE (red).
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2.3 Pt-modified ITO working electrode
preparation

Indium tin oxide (ITO) on glass substrates (Xinyan

Technology Ltd., sheet resistance of 10Ω □−1) were cleaned by

sonication in 10% Extran in DI water solution, pure DI water,

acetone, then isopropyl alcohol for 15 min each. After, the

substrates were dried with N2 then cleaned in a UV-Ozone

cleaner for 15 min. The ITO was then placed in a 10 mM 3-

mercaptopropionic acid in ethanol solution and placed on a

shaker for 24 h. The ITO substrates were then rinsed with ethanol

then water before being placed in a Pt-nanoparticle solution

(Sigma Aldrich) diluted 1:19 with DI water and placed on a

shaker for 24–72 h. The substrates were then rinsed with DI

water, dried with N2, then annealed at 250°C for 25 min

before use.

2.4 RME dynamic window fabrication

PVA Additive Liquid Window: Two-electrode devices used

Pt-modified ITO (5 cm2 × 5 cm2) on glass substrates (Pt-ITO) as

a working electrode and a Cu metal counter electrode. Butyl

rubber edge seal (Quanex: Solargain edge tape LP03, 1.5 mm

thickness) separated the two electrodes and encapsulated the

electrolyte between the Pt-ITO and the back piece of glass.

Conductive tape (Conducty Z22, ElectricMosaic) was used to

make electrical contact with the working electrode.

PVAGPEWindow (Sandwiched for Testing): First, the “free-

standing” PVA gel is made in a mold (made by rubber edge seal

on a glass substrate) and is peeled off after freeze-thaw cycling

and then soaked in DI water and PVA additive liquid electrolyte

in this order. The Cu mesh is adhered to the backside glass using

3 M tapes. Then the Cumesh-glass with “free-standing GPE” and

the ITO-glass (5 cm2 × 5 cm2) are “sandwiched” with small

clamps. The pressure provided by the clamps avoids potential

optical problems as the PVA GPE is compressed evenly in each

direction, and the contact between PVA GPE and ITO-glass

(5 cm2 × 5 cm2) will be more uniform (transmittance of the whole

device −70%). Furthermore, this method provides a convenient

way to make windows. PVA gels can be cut into any size and

shape fitting for different applications.

PVA GPE Window (Device with Sealings for Durability

Testing): First, the PVA gel is made in the half-device

architecture with Cu mesh, rubber edge seals, and the

backside glass through freeze-thaw cycling. And the half

device is soaked in DI water and PVA additive liquid

electrolyte in this order. The ITO-glass is then compressed

onto the half device to seal by rubber edge seals. Silicone seals

are used for additional secure sealing.

2.5 Electrochemical characterization

Electrochemical experiments were run using a BioLogic SP-

50 or SP-150 potentiostat. Two-electrode devices were cycled

at −0.7 V until the privacy state was reached for window tinting

and +0.7 V until transparency was restored for window

bleaching.

2.6 Optical characterization

Ocean Optics OCEAN FX Miniature and Flame

Miniature spectrometers were used in a standard

configuration with an Ocean Optics halogen light source

(HL-2000) for most transmission and specular reflection

measurements.

Total Reflection measurements were conducted using a

135 mm 819C Series Spectralon Collimated Beam integrating

sphere. The remaining transmission measurements (total

and diffuse transmission) were conducted using a Varian

CARY 500 UV-Vis-NIR Spectrophotometer (Labsphere

DRA-CA-5500) equipped with a 150 mm integrating

sphere. The haze coefficient values, quantifying the

amounts of scattered light, were calculated based on the

total and diffused transmission measurements using the

integrating sphere following the ASTM D1003 (Standard

Test Method for Haze and Luminous Transmittance),

commonly used for haze measurements in windows

applications.

2.7 Mechanical characterization

Hydrogels and GPEs were formed at a thickness of 5 mm

between glass slides and a plug was cut to a diameter of 5 mm

with a biopsy punch. The diameter and height of each hydrogel/

GPE plug were measured using calipers. Hydrogels/GPEs were

compressed to 30% strain at a rate of 10% strain/min (MTS

Synergie 100). The compressive modulus (n = 3) was measured

from the slope of the linear region of the stress-strain curve from

10% to 15% strain.

2.8 Other characterization

Scanning Electron Microscopy-Energy Dispersive

Spectroscopy (SEM-EDS) was run using a HITACHI

SU3500 scanning electron microscope operated at an

accelerating voltage of 5/15 kV and equipped with an EDS

detector.
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3 Results

3.1 Single-working electrode PVA gel
polymer electrolyte window’s
performance

To synthesize a gel polymer electrolyte with acceptable haze,

proper mechanical strength and ionic conductivity, we prepared

nine PVA gels with varied PVA precursor molecular weights

(31–50 k, 89–98 k, and 146–186 k) and varied PVA mass

fractions in the DMSO: H2O solutions (5 wt%, 10 wt%, and

20 wt%). Considering the solubility limit of PVA precursors in

DMSO: H2O solvent and gel formation, we chose three PVA gels

for the exploration: 5 wt% 146–186 k, 10 wt%, 89–98 k, 20 wt%

31–50 k PVA gels (Supplementary Table S1).

To systematically evaluate the gels in windows, we assessed

the optical and mechanical properties as well as ionic

conductivity for 5 wt% 146–186 k, 10 wt% 89–98 k, 20 wt%

31–50 k PVA GPE. Considering 10 wt% 89–98 k PVA GPE

has the largest Young’s modulus (148 kPa), low haze (2.0%),

and high ionic conductivity (liquid electrolyte filling 91%), it was

chosen as the suitable material to be implemented into our

windows. Details are noted in SI GPE choice section,

including Supplementary Figures S2–S9.

After selecting the 10 wt% 89–98 k PVA GPE as the most

suitable material, we implemented it into our RME dynamic

window in a “sandwiched” way where freestanding PVA GPE is

clamped between the two electrodes for testing.

3.1.1 Comparable optical and electrochemical
performance with liquid windows

To evaluate the selected GPE’s performance, its optical and

electrochemical behaviors were characterized and compared with

liquid windows. The transmission and specular reflection spectra

show the comparable optical behaviors of single-WE PVA GPE

window and 0.1 wt% PVA additive liquid window (Figures 2A,B,

in each left as GPE windows and right as liquid windows).

Coloration efficiency, current and charge density vs. time

curves for the single-WE PVA GPE window are plotted in

Figures 2C–E. Single-WE PVA GPE window has similar

coloration efficiency as the 0.1 wt% PVA additive liquid

window depending on the desired contrast (Figure 2C), a

further testament to the suitability of this gel in an RME

dynamic window. The charge density vs. time curve

(Figure 2E) shows that the tinting speed of single-WE PVA

GPE windows is slower than PVA-additive liquid windows,

which can be explained by the lower ionic conductivity of

GPE compared with pure liquid electrolyte.

3.1.2 Morphologies of metal deposits
We used SEM to characterize the metal film morphology

in a PVA GPE window at different tinting states. Figure 3

FIGURE 3
SEM images of Bi-Cu depositions on Pt-ITO at 10% (A), 1% (B), 0.1% (C) transmittance states for PVA GPE windows.
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shows SEM images of Bi-Cu metal deposition on ITO at the

state of 10%, 1%, 0.1% transmittance of a single-WE PVA

GPE window. The images show that the diameter of metal

deposit particles gradually increases with increasing tinting

time. The morphology of the metal films is similar with and

without the polymer gel (Supplementary Figure S10).

Therefore, we infer that there is probably a thin layer of

electrolyte between the GPE and the ITO-glass electrode,

which may be caused by the strong hydrophilicity of the PVA

gel framework. If the metal only grows where the aperture of

the GPE is in contact with the ITO-glass, the metal

deposition layer would not be as shown in the SEM image

in Figure 3.

3.2 Dual-working electrode PVA gel
polymer electrolyte window’s
performance

3.2.1 Different optical performance by tinting
one side of the GPE window

As stated above, substituting liquid electrolytes with GPE as

the physical separator prevents short-circuiting in the dual-WE

device architecture. Figure 4A shows a fully assembled dual-WE

PVA GPE window with two pieces of ITO-glass working

electrodes and one Cu mesh counter electrode in the middle.

With this new device architecture, we can tint either side of ITO

separately or tint both sides of ITO at the same time. In fact, the

FIGURE 4
(A) Photo of a real dual-WE PVA GPE window. (B,C) If only one side is tinted, the tinted side is more reflective and the untinted side is more
absorptive. Photograph of the window when it has 1% transmittance at 550 nm from the tinted (B) and untinted side (C). Specular and diffuse
reflectance from the tinted (D) and untinted side (E) at initial, 10%, 1%, 0.1% transmission states.
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side of ITO tinted has a strong impact on the resulting visual

effect. If the front side ITO is tinted, the front side of our window

will appear more reflective (Figure 4B) (looking directly at the

plated film), while the back side of the device is more absorptive

(Figure 4C). If only the back side ITO is tinted, these visual effects

will be switched. Figures 4D,E show the specular and diffuse

reflectance of a dual-WE PVA GPE window from the front and

the back side, respectively, with the front side ITO-glass tinted.

The higher proportion of diffuse reflectance in the total

reflectance implies a more absorptive film.

3.2.2 Faster switching speed by tinting both sides
of the GPE window and durability test

PVA additive liquid windows, single-WE PVA GPE

windows, and dual-WE PVA GPE windows (both sides

tinted) were tinted to privacy state (0.1% transmittance at

550 nm) to compare their switching speeds. Figure 5A shows

the transmittance of these three windows at 550 nm vs. time

curves of a privacy cycle, where it is clear the dual-WE GPE

window switch the fastest. On average it takes liquid and single-

WE PVA GPE windows 205 and 355 s, respectively, to reach

privacy states. The single-WE PVA GPE window is 73% slower,

due to the lower ionic conductivity in the gel polymer system.

However, for the dual-WE PVA GPE window it takes only 106 s

on average to reach the privacy state, which is double the tinting

speed of liquid windows. Detailed transmission and reflection

spectra of the dual-WE PVAGPEwindow at initial, 10%, 1%, and

0.1% transmittance states at 550 nm are illustrated in

Supplementary Figure S11.

To test the durability of PVA GPE windows, a dual-WE PVA

GPE window was sealed with rubber and silicone and cycled to

10% transmittance at 550 nm. Transmission spectra and

coloration efficiency are plotted over cycling, as shown in

Figures 5B,C, exhibiting the consistent electrochemical

behaviors of these windows over 1000 cycles.

4 Discussion

In this manuscript we have shown that a physically cross-

linked poly (vinyl alcohol) polymer gel can be used to improve

dynamic windows based on reversible metal electrodeposition.

Using the gel polymer instead of an aqueous electrolyte causes a

minimal increase in haze and only slows down the window by a

FIGURE 5
(A) Transmittance at 550 nm versus time curves for PVA additive liquid window, single-WE PVA GPE window, and dual-WE PVA GPE window
with symmetric logarithmic scales. (B,C) Performance of a sealed dual-WE PVAGPEwindow over 1000 cycles. Transmission spectra of clear and 10%
transmission states (B) and coloration efficiency (C).
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factor of approximately 1.7 due to the reduced conductivity of the

metal ions in the polymer gel matrix compared to its fully liquid

counterpart. In addition, the gel circumvents failure due to

hydrostatic pressure and leakage. We also showed that gels

can be used as a separator to prevent short-circuiting for

dual-working electrode windows with a copper mesh counter

electrode in the middle. The dual working electrode windows

switch approximately twice as fast. Furthermore, having two

working electrodes enable a tinted window to achieve different

optical properties: one with higher specular reflection or one with

higher absorption and some diffuse reflection. Finally, we

observed 1000 transmission cycles with a dual working

electrode PVA gel polymer electrolyte window.
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