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Brain-inspired computing is an emerging field that aims at building a compact and
massively parallel architecture, to reduce power consumption in conventional Von
Neumann Architecture. Recently, memristive devices have gained great attention due
to their immense potential in implementing brain-inspired computing and perception.
The conductance of a memristor can be modulated by a voltage pulse, enabling
emulations of both essential synaptic and neuronal functions, which are considered as
the important building blocks for artificial neural networks. As a result, it is critical to
review recent developments of memristive devices in terms of neuromorphic
computing and perception applications, waiting for new thoughts and
breakthroughs. The device structures, operation mechanisms, and materials are
introduced sequentially in this review; additionally, late advances in emergent
neuromorphic computing and perception based on memristive devices are
summed up. Finally, the challenges that memristive devices toward high-
performance brain-inspired computing and perception are also briefly discussed.
We believe that the advances and challenges will lead to significant advancements
in artificial neural networks and intelligent humanoid robots.
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INTRODUCTION

Von Neumann Architecture and Brain-Inspired Computing
In recent decades, traditional computing architecture, aided by Moore’s law, has fueled the
technological revolution and ushered us into the information age. However, because computing
and storage units are separated, the von Neumann bottleneck appeared (Backus, 1978),
including low work efficiency, memory walls, high energy consumption, and power
consumption walls (Theis and Wong, 2017; He et al., 2018; Huang et al., 2021). To address
these issues, scientists turned their attention to the human brain and proposed brain-inspired
computing (neuromorphic computing). The human brain is made up of approximately 1011

neurons and 1015 synapses (Neves et al., 2008). These neurons and synapses are organized in
three dimensions to form a complex information processing neural network. In comparison to
traditional computers, the human brain is a wholly parallel computing structure on a large
scale, it relies on neurons and synapses to transmit and process received information for
perception, learning, memory, thinking judgment, emotional expression, and problem-solving
while consuming little energy and working efficiently. (Silver et al., 2016). Until now,
researchers have developed a wide range of artificial neural networks (ANNs) based on
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software and hardware with the goal of mimicking the
computing power of the human brain (LeCun et al., 2015).
Software-based artificial neural networks have performed well
in image recognition natural language processing (Collobert
and Weston, 2008; Hinton et al., 2012) and other tasks
(Vinyals et al., 2019). However, software-based artificial
neural networks consume considerable energy and space,
and they cannot efficiently simulate the neural network’s
parallel processing mechanism (Markram, 2006). Recently,
various electronic devices, including two-terminal and three-
terminal artificial synapses, have been constructed to simulate
synaptic behavior (Chang et al., 2011; Kuzum et al., 2012a;
Wang et al., 2012b; Kim et al., 2013; Shi et al., 2013; Wan et al.,
2014; Zhu et al., 2014; Mao et al., 2021). Two-terminal devices
include memristors, phase change memory, atomic switch and
so on. They have been widely used to mimic synaptic plasticity
due to their simple structure, low power consumption, small
physical volume, and ease of large-scale integration. However,
it is difficult for them to perform signal transmission and self-
learning functions at the same time. Ferroelectric synaptic
transistors, double-layer synaptic transistors, electrochemical
synaptic transistors, and photoelectric synaptic transistors are
examples of three-terminal synaptic transistors. They have
good stability, relatively controllable test parameters, and can
perform signal transmission and self-learning simultaneously.
However, the structure and mechanism are complex and

difficult to use on a large scale in the short term. By
integrating these artificial synapses with other devices and
peripheral circuits, hardware-based artificial neural networks
can be built, they are envisioned as powerful alternative
computing systems currently (Cooper and Bear, 2012;
Wang Q. et al., 2021).Memristors and memristive-related
devices, as a kind of two-terminal device, have been widely
used because of their simple structure, low power
consumption, small physical volume and ease of large-scale
integration, (Torrezan et al., 2011; Wang et al., 2012a; Pickett
and Williams, 2012; Prezioso et al., 2015; Xu et al., 2016). In
this review, we will concentrate on synaptic plasticity,
memristive-related devices’ structure and operation
mechanisms and their applications in brain-inspired
computing and perception Figure 1.

Synapses and Synaptic Plasticity
The entire behavior of the human brain is based on an extremely
complex network consisted of neurons and synapses. Neurons are
the most fundamental structural and functional units in the
human brain for perception, information processing, and
learning, artificial synapses and artificial neurons can
memorize and integrate signals respectively, which are
functional units in the human brain for perception,
information processing, and learning. Learning and memory
require the joint action of synapses and neurons. Neurons

FIGURE 1 | An overview ofmemristive devices used for brain-inspired computing and perception systems [adapted fromWan et al. (2018), Xue et al. (2018), Guo L.
et al. (2020), Wu et al. (2021)].
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collect, integrate and refine a large amount of sensory
information, and dynamically modify the synaptic weight, so
as to realize learning and memory. A neuron is made up of a cell
body, axons,/dendrites. Two adjacent neurons are connected by
synapses, by varying the connection strength (synaptic weight)
between two neurons, the integration effect of biological synapses
on signals can be altered. This is known as synaptic plasticity, all
memory and learning are thought to be underpinned by it (Lynch
et al., 1976; Malenka et al., 1999).The schematic diagram of
neurons and synapse are shown in Figure 2A, synapse
converts electrical signals into chemical signals, and then
converted into electrical signals to transmit information
between presynaptic neurons and postsynaptic neurons.
Postsynaptic neurons respond in two ways: excitatory
postsynaptic potential (EPSP) and inhibitory postsynaptic
potential (IPSP). EPSP refers to the depolarization of the
postsynaptic membrane potential caused by neurotransmitters,
resulting in an increase in the neuron’s excitability to other
stimuli. IPSP is the membrane potential of the postsynaptic
membrane caused by neurotransmitters, resulting in the
neuron’s reduced excitability to other stimuli. Synaptic
plasticity is classified into two types: short-term plasticity
(STP) and long-term plasticity (LTP), as shown in Figure 2A.
STP returns to baseline levels quickly after synaptic activity (Boyn
et al., 2017a), usually within tens of milliseconds to several
minutes. Paired-pulse facilitation (PPF) is a type of STP in
which the postsynaptic signal is amplified when the second
input signal is the same as the first input signal. PPF can
participate in some neuronal tasks, such as simple learning
and information processing. Paired-pulse depression (PPD)
refers to the inhibition of postsynaptic signals. LTP persists for

seconds, minutes, or longer, depending on its biological intention
(Guo et al., 2018), it refers to plastic changes that result in
permanent changes to neural networks, allowing the brain to
store vast amounts of information. There are currently two major
types of synaptic learning rules. Hebbian learning is one of the
most important theories, it compares a neuron’s input and output
information and updates the neuron’s input weight parameters.
The concept of spike-timing dependent plasticity (STDP) extends
Hebb’s theory, proving that synaptic weights can be influenced by
the temporal relationship between presynaptic spikes and
postsynaptic spikes. Furthermore, Bienenstock–Cooper–Munro
(BCM) is another learning rule that takes into account frequency-
dependent plasticity and sliding correction thresholds. The
postsynaptic neuron outputs an integrated postsynaptic spike
rate to each neuron according to the BCM learning rule (Caporale
and Dan, 2008; Cooper and Bear, 2012; Wang Q. et al., 2021).
Spike-rate-dependent plasticity (SRDP) indicate that high-
frequency presynaptic pulses above a certain frequency
threshold will induce synaptic plasticity and synaptic weights
can be altered by varying the frequency of presynaptic pulses. Low
frequency presynaptic pulses below a certain frequency threshold
inhibit the response.

ARTIFICIAL MEMRISTIVE SYNAPSES AND
OPERATION MECHANISMS

Memristor’s appearance provides a new physical basis for the
development of a new type of computing system with high energy
efficiency and integration of storage and computing. It was first
predicted by Leon O. Chua (Chua, 1971) and it is the fourth basic

FIGURE 2 | (A) Schematic diagram of neurons and synapses [adapted from Hu et al. (2017)]. (B) Unipolar resistive switching mode. (C) Bipolar resistive switching
mode. Device structure and working principle of (D)metallic filament device, (E) phase change device, (F)magnetic memristive device, and (G) ferroelectric memristive
device.
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circuit element after resistance, capacitance, and inductance. Its
conductance can be changed by controlling the change of the
voltage or current, similar to changes in synaptic weights. It can
be used to simulate STP, LTP, STDP and SRDP, and is widely
used in artificial neural networks (Kim et al., 2015; Tan et al.,
2016; Hu et al., 2017; Wang H. et al., 2018; Choi et al., 2018b; Kim
and Lee, 2018; Zhang S.-R. et al., 2019; Chen et al., 2019; Mikheev
et al., 2019; Liang et al., 2020; Pereira et al., 2020; Wright et al.,
2022). Its size can be reduced to less than 2 nm, the switching
speed can be controlled within 1 ns, and it has lower operating
power consumption (Wang M. et al., 2018; Xia and Yang, 2019;
Marković et al., 2020). Besides, there is a wide range of materials
available for the construction of memristors, which allows for the
simulation of synaptic performance for various needs and the
construction of crossbar array and artificial neuromorphic
systems. The intermediate layer and electrode materials are
crucial in the selection of memristors. In recent years, an
increasing number of new materials have been discovered to
be suitable for memristors, primarily electrode materials with
varying activities (Cu, Ag, Ru, Pt, Pd, etc.) (Nayak et al., 2012;
Tsuruoka et al., 2012; Chen et al., 2016; Zhang et al., 2017; Jang
et al., 2019; Li et al., 2020), organic materials (egg protein, TTP,
PMMA, PVA, etc.) (Liu et al., 2016), oxide materials (HfOx,
TaOx, TiOx and some multi-component oxides, etc.) (Choi et al.,
2018a), sulfide materials (MoS2, Cu2S, and so on). More new
materials have recently been demonstrated to be applicable to
memristors (Ohno et al., 2011; Kuzum et al., 2012a; Yang et al.,
2013; Tuma et al., 2016; Kim et al., 2017; Stoliar et al., 2017; Choi
et al., 2018a; Wang Z. et al., 2018; Chen et al., 2021). At present,
memristive-related devices can be roughly divided into metallic
filament device, phase change device, magnetic memristive
device, ferroelectric memristive device, the structure and
operation mechanisms of them will be introduced in detail.

Metallic Filament Synapse
The structure of metallic filament synapse is typically “sandwich.”
This structure, as shown in Figure 2D, consists of a top electrode,
a bottom electrode, and a middle resistive insulator layer. They
are classified as abrupt memristors (only high- and low-resistance
states) or gradient memristors (there are multiple resistance
states, and even the resistance can change continuously).
There are numerous theories about the resistive switching
mechanism, with the metal conductive filament mechanism,
the vacancy mechanism of other materials, or electrochemical
metallization mechanism being the most widely accepted (Sawa,
2008; Waser, 2009; Wong et al., 2012).The electrode material of a
resistive memristor is typically made of an active metal, such as
silver or copper. When the top electrode metal loses electrons and
becomes ionic, the bottom electrode gains electrons, and the
intermediate dielectric layer forms a soft dielectric breakdown.
Conductive filaments and synapses are converted from a low- to a
high-resistance state. This is the SET process. When a reverse
voltage is applied, the conductive filaments are disconnected, and
the synapses transitions from a high-resistance to a low-resistance
state, which is a RESET process. It is similar to the traditional
electrochemical redox reaction. The resistance change in non-
conductive filament resistive device is caused by defect migration

under the action of the electric field, which causes the Schottky
barrier or tunneling barrier to change uniformly in the device
interface. There are two types of resistive switching modes in
metallic filament synapse: single and bipolar (Choi et al., 2016), as
shown in Figures 2B–C). The resistive switching phenomenon
occurs under voltages of different polarities in the bipolar resistive
switching mode, i.e., SET/RESET occurs under opposite voltage
polarities. The resistive switching phenomenon has nothing to do
with voltage polarity in the unipolar resistive switching mode, but
only with voltage amplitude. Metallic filament synapses have a
straightforward device structure, good scalability, superior
complementary metal oxide semiconductor (CMOS)
compatibility and low power consumption. Recent research on
metallic filament synapses has received countless attention due to
the potential in large-scale integration. Hu et al. proposed a Cu/
ZnS/Pt device with an ultra-low set voltage of several millivolts
(Hu et al., 2017). In this device, filament rupture and filament
rejuvenation is restricted to a nanometer thick two layer interface
region due to differing ion transport rates in the unoxidized and
lightly oxidized layers. The device accurately simulates synaptic
plasticity, as shown in Figure 3A, by employing repeated voltage
pulses to achieve STP. In addition, as shown in Figure 3B, the
PPF was observed, when the pulse interval time is reduced, the
PPF index decreases, which is very similar to the situation in
biological synapses. STP transitions to LTP as the pulse amplitude
increases, as shown in Figure 3C, the process that may be related
to the migration and diffusion of copper ions. Based on the
device’s STP and LTP behavior, it can be used to simulate the
memory and forgetting processes of images.

Phase Change Synapse
Phase change synapses, like metallic filament synapse, typically
have a sandwich structure with a top electrode, a bottom
electrode, and a phase change material layer, as shown in
Figure 2E. Sulfur-containing compounds, such as Ge2Sb2Te5
(Wong et al., 2010; Zhang W. et al., 2019), are commonly used
phase change materials. In most cases, a phase change
mechanism means that the materials will change phase under
certain conditions, and the device’s conductance will differ
before and after the phase change. There are numerous
factors that influence phase transitions, including electro-
induced phase transition (Driscoll et al., 2009) and thermally
induced phase transition (Yang et al., 2019). During the SET
process, a small amplitude voltage pulse is applied across the
phase change synapse, which can cause the phase change
material to crystallize and transform into a polycrystalline
state, resulting in a low resistance value. The application of a
relatively large voltage pulse during the RESET process causes
the phase change material to locally melt and transform into an
amorphous state, and its resistance value is high at this time.
Multi-level resistance states of the phase change synapse can be
achieved by modulating the relative ratio of the polycrystalline
and amorphous states of the phase change material with voltage
pulses and temperature. Its advantages include high scalability,
fast operation speed, and low volatility (Lankhorst et al., 2005;
Wang Q. et al., 2021). Kuzum et al. first used GST to fabricate a
single phase change synaptic device (Kuzum et al., 2012a), they
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used voltage pulses of gradually increasing amplitude to
accomplish conductivity modulation in 100 steps, while
maintaining a good dynamic range. Wan et al. created
nanoclusters of phase transition using a memristive structure
(Wan et al., 2022). Under external stimulation, in the two AlNO
dielectric layers, phase change nanoclusters were formed
adaptively with distinct distribution patterns. After critical
stimulation, the system may respond to stimulation strength
and fire AP. Despite phase change synapse’s conductance state
can be modified by changing the programming conditions,
phase change materials’ crystallization and quenching
processes are uncontrolled and unpredictable, resulting in
nonlinear conductance changes that are incompatible with
neural network learning.

Magnetic Memristive Synapse
Figure 2F depicts the magnetic memristive synapse’s structure.
Its basic structure is made up of three layers: the free layer, the
tunnel layer, and the reference layer. When the number of
electrons in the material’s up and down spin directions is
equal, the material as a whole has no magnetism. The material
will exhibit magnetic properties when the number of electrons
spinning up and down is unequal. In the magnetic memristive
synapse, the reference layer’s magnetization direction remains
constant, while the magnetization direction of the free layer can
be programmed to change, and the intermediate layer is referred
to as the tunnel layer. The resistance of the magnetic memristive
synapse is determined by the relative magnetization directions of
the reference layer and the free layer. When the magnetization
directions of the reference layer and the free layer are the same (P

state), the resistance value of the magnetic memristive synapse is
the lowest; when the magnetization directions are inconsistent
(AP state), the resistance value of the magnetic memristive
synapse is the highest. By directly passing a current through
the magnetic memristive synapse, the free layer’s electron spin
direction can be modified, thereby changing the resistance state of
the device. Luo’s proposed a VCSK device with a FE/HM/MTJ
structure (Luo et al., 2019). According to physical simulations, the
resistance values can be modulated efficiently using voltage and
STT’s assistance.

Ferroelectric Memristive Synapse
The ferroelectric memristive synapse is a relatively new type of
memristive synapse that has emerged in recent years, Figure 2G
depicts its structure. It consists of a ferroelectric material layer
and two electrode layers (Scott and Paz de Araujo, 1989). The
resistance of the device can be gradually adjusted by inverting the
ferroelectric domain by regulating the ferroelectric polarization
(Garcia and Bibes, 2014; Guo R. et al., 2020). Multiple resistance
states with bidirectional continuous reversibility can be acquired
at the same time, similar to the change of synaptic weights. The
ferroelectric memristive synapse has the advantages of fast read
and write speed, low driving voltage, and high storage density,
and it can overcome the shortcomings of the traditional resistive
memristor’s conductive filament instability and fracture, it has
demonstrated outstanding characteristics such as high ON/OFF
current ratios, high data storage density, fast switching speeds,
and ultra-low power (Zucker and Regehr, 2002; Kullmann and
Lamsa, 2007; Luo et al., 2022). Sayani Majumdar et al. proposed a
ferroelectric tunnel junction based on a spin-coated 3 nm thick

FIGURE 3 | (A) Applying voltage pulses with an amplitude of 5 Mv to achieve STP. (B) Simulation of the PPF and the change of the PPF index with the pulse interval.
(C) Applying voltage pulses with an amplitude of 6 Mv to achieve LTP [adapted from Hu et al. (2017)]. (D) STDP characteristics of the ferroelectric memristors. (E,F)
Characteristic curves of PPF [adapted from Yu et al. (2020)].
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ferroelectric poly (vinylidene fluoride-trifluoroethylene) [P(VDF-
TrFE)] and realized the simulation of synaptic function
(Majumdar et al., 2019), exhibiting analog switching behavior
in the range of five orders of magnitude, reproducibly simulate
LTP/STP, LTD/STD and STDP, in addition, the device has good
stability and a large range of conductance variation. Yu et al.
proposed an Au/Hf0.5Zr0.5O2/p

+ -Si memristor structure (Yu
et al., 2020). According to STDP learning rules, the
stimulation sequence of the presynaptic membrane and the
stimulation sequence of the postsynaptic membrane differs,
resulting in an increase and decrease of synaptic connection
between two neurons. STDP simulation is depicted in
Figure 3D, by varying the pulse interval applied to the device,
the change in synaptic weight can be successfully simulated.
Furthermore, the device can simulate PPF. As shown in
Figure 3(E-F), when the time interval between two pulses is
long, the device’s conductivity is low, and when the pulse interval
is short, the conductivity is high, simulating the process of
biological learning and forgetting.

ARTIFICIAL NEURAL NETWORKS

Neural networks are currently classified into many species. The
most fundamental neural network structures are single layer
perceptron (SLP) and multilayer perceptron (MLP).
Convolutional neural network (CNN) is a feedforward neural
network made up of artificial neurons and synapses that can
respond to other units. CNN has a higher generalization ability
than the MLP and has been used more widely. Spiking neural
network (SNN) is a type of neural network developed in the field
of neuroscience, it encodes information as time and frequency of
pulses. It is commonly used to create neural system simulations
that are similar to brains. The advent of memristors opens up a
new avenue for the development of artificial neural networks. The
synaptic properties and advantages of memristors allow the
artificial neural network to perform more diverse functions in
addition to learning and memory. Next, we will focus on the
advances of the above artificial neural networks based on
memristors.

Single Layer Perceptron and Multilayer
Perceptron
The SLP contains an input layer and an output layer, and they are
directly connected. The most common MLP also includes a
hidden layer, all neurons in the previous layer are connected
to all of the next layer’s neurons. The structure of MLP is basically
similar to a cascade perceptron, in which each lattice processing
unit has a relatively complex output function, thus enhancing the
performance of the network. Prezioso et al. constructed a cossbar
structure network using a 12*12 memristor array (Prezioso et al.,
2015). In this network, the simplest recognition of the letters Z, V,
and N was achieved, and the tolerance of the network was proved
by adding an error input picture of pixel gray value inversion to
three letters. This structure allows running a single layer
perceptron network, Figure 4A shows the single layer

perceptron for classification of 3 × 3 binary images. Burr et al.
realized a 3-layer perceptron based on Pr1-xCaxMnO3 (PCMO)
PCM device (Burr et al., 2015). This perceptron contains 164,885
synapses and is able to learn handwritten digit classification from
the MNIST dataset with 82.2% accuracy. Yao et al. used 1T1R
device units to simulate synaptic properties (Yao et al., 2017),
realized bidirectional device conductance modulation, and
realized a 3-layer fully connected multilayer perceptron
through a 128*8 1T1R memristor array. Figure 4B is the
structure of a 1T1R array, in a row, cells are organized by
connecting the transistor sources and the source line (SL) as
well as connecting the transistor gates and the same word line
(WL), whereas cells are organized by connecting the resistive
memory’s top electrode to the bit line (BL) in a column. The
functional material of the memristor in the array is TaO/HfAlyOx,
the device can achieve good gradation during both SET and
RESET processes. Figure 4B also depicts the network’s mapping
to the 1T1R structure. Figure 5 is a flow chart of the perceptron
model. This model has been trained to tell the difference between
one person’s face and the faces of others. There are two steps to
the process: training process and testing process. The training
process consists of two sub-processes: inference and weight
update. During training, conductance values are normalized to
integers between 0 and 255. Therefore, the Yale database’s gray-
scale face image identification has been realized, and the 9,000
images’ recognition rate with noise effect can reach 88.08%.
Compared with the conventional neural network computing,
the neural network based on 1T1R array has 1,000 times
lower energy consumption in on-chip computing and 20 times
lower energy consumption in off-chip computing, achieving a
significant energy saving effect. Bayat et al. designed and
fabricated a 20 × 20 cross-array (Bayat et al., 2018). In terms
of devices, the intermediate functional layer of the memristor uses
TiO2-x and Al2O3 stacks, and the Al2O3 stack as the barrier layer
makes the basic I-V characteristics of the device more nonlinear,
and this nonlinear helps to suppress the leakage current problem
in the 0T1R array of memristors. At the same time, the bottom
electrode is deposited into a triangular shape during the
fabrication of the device, this design can allow the functional
layer to better cover the bottom electrode and it can also reduce
the contact resistance of the top electrode. On the basis of this
research result, the team further interconnected the memristor
crossbar array with traditional CMOS peripheral circuits, and
designed and implemented a single-hidden-layer multilayer
perceptron for classification functions, increasing the hardware
design complexity by more than 10 times, the classification
accuracy of offline learning is as high as 97% or more.

Convolutional Neural Network
The CNN’s essential components are the input layer, convolution
layer, activation layer, pooling layer, fully connected layer, and
output layer. Local connection and parameter sharing are two
properties of CNNs. Each output is connected to all inputs by
weights in a local connection. Each output neuron in a
convolutional layer is fully connected in the channel direction
but only has a few input neurons in the spatial direction. The use
of the same parameters in numerous functions of a model is
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FIGURE 4 | (A) The single-layer perceptron for classification of 3 × 3 binary images [adapted from Prezioso et al. (2015)]. (B) The 1T1R architecture and the 1024-
cell-1T1R array [adapted from Yao et al. (2017)].

FIGURE 5 | Flowchart of the perceptron model [adapted from Yao et al. (2017)].
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referred to as parameter sharing. As a result, the convolutional
neural network is more extensively utilized than the multi-layer
perceptron and has a higher generalization capacity. Garbin et al.
first used multiple HfO2 based memristors to simulate some
synaptic functions and realized the construction of CNN (Garbin
et al., 2015). Figure 6A shows the structural schematic diagram
and typical current-voltage characteristics of the 1T1R device.
Based on experimental and theoretical research into the effects of
device conditions, it has been discovered that recognition of high-
fidelity visual patterns can be achieved even with large device
variations, and the pattern recognition rate >94%. Gokmen et al.
proposed a method of mapping convolution layer to memristor
array by using the parallelism of hardware (Gokmen et al., 2017),
and investigated how to train CNNs using memristors in detail, as
illustrated in Figure 6B, proposing techniques for boundary and
noise management to address the problem that noise and
boundary constraints imposed by computations performed on
the array affect the training accuracy of CNNs, and discuss the
effects of random device variability on the network and how to
resolve it, further exploring memristor-based Convolutional
Neural Network Feasibility. Yao et al. successfully developed a
multi-array memristor-based memory-computing integrated
system (Yao et al., 2020), which is two orders of magnitude
more energy efficient than the cutting-edge graphics processing
unit (GPU) when processing convolutional neural networks
(CNNs). Figure 6C shows the memristor-based hardware
system. The network integrates a total of 8 memristor-based

processing units, each PE unit contains a memristor array of 2048
units. Each memristor is connected to the transistor using the
drain terminal, that is, a 1T1R structure. Each memristor array
has 128 × 16 1T1R cells. The array has a highly repeatable
multi-level conductivity state, which successfully proves the
feasibility of full hardware implementation of the memory-
computing integrated architecture. The researchers also
constructed a five-layer convolutional neural network based
on the above research. The array chip replaces the transistors
at the bottom of classical computers with memristors, which
greatly improves the computing power of computing devices
with smaller power consumption and lower hardware costs,
breaking through the limitations of the Von Neumann
bottleneck of traditional computing frameworks to a
certain extent. While greatly improving computing power,
it achieves smaller power consumption and lower
hardware cost.

Spiking Neural Network
In SNNs, the neuron model is accomplished through
mathematical modeling of biological neurons or by describing
the dynamics of neurons. SNNs are thought to offer more
potential in terms of integration and energy consumption than
ANNs due to the use of pulsed signals as the information
transmission medium. Oh et al. explored the law of phase-
change memristor resistance drift and resistance drift
characteristics and applied it to the spiking neural network to

FIGURE 6 | (A) 1T-1R OxRAM device schematic and typical current–voltage OxRAM characteristics [adapted from Garbin et al. (2015)]. (B) Schematics of a
convolutional layer showing the input volume, kernels, and the output volume [adapted from Gokmen et al. (2017)]. (C) Structure of the five-layer mCNN used for MNIST
image recognition [adapted from Yao et al. (2020)].
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recognize and classify MNIST handwritten digits (Oh et al.,
2018), which improved the recognition accuracy. This
property of variable memristors turns waste into treasure.
Figures 7A–B briefly shows the resistance of the PCM drifts
and the drift coefficients for different initial resistances. The
initial resistance of the device is 2 megohms. As time goes by,
the resistance of the device becomes larger. The curve’s slope is
0.1, which represents the drift coefficient. Figure 7C depicts the
designed spiking neural network structure diagram, mapping the
synaptic weights to memristors’ conductance values and online
training after linear transformation, the results show that the
SNN’s accuracy can achieve 94.05% and 92.02% with 64-bit and
8-bit precision weights respectively, demonstrating that PCM
resistance drift can be used to improve classification accuracy.
Wang et al. proposed a brain-like computing method using
memristors (Wang W. et al., 2018), they use the 1T1R
structure combined with a spiking neural network for learning
and recognition, the time difference between the spikes of
different neurons constitutes the spatiotemporal encoding.
Spatiotemporal patterns are learned via STDP, which are then
recognized by appropriately potentiated/inhibited synapses. Wu
et al. proposed an implementation scheme of constructing an
artificial sensory neural system with habituation characteristics
based on memristors (Wu Z. et al., 2020), and used habituation as
a biological learning rule to construct a habit-spiking neural
network that can be applied to autonomous cruise and
obstacle avoidance of robots. First, the research team
constructed sensory neurons based on memristors (TiN/
LixSiOy/Pt) and sensors. The neuron can sense external analog

signals and convert them into real-time dynamic pulse signals, so
as to realize the basic function of sensing and transmitting
external signals. Subsequently, sensory neurons are further
connected with relay neurons through synaptic devices (TiN/
LixSiOy/Pt), as shown in Figure 7D, to construct a habit
perception system. The results show that the synaptic device
has a habituation evolution trend of weights under continuous
stimulation, which in turn affects the transmission efficiency of
sensory neuron signals to relay neurons, so that the output of
relay neurons presents a characteristic of decreasing frequency
(i.e., habituation). Based on this habit feature, a habit spiking
neural network is further constructed to realize the obstacle
avoidance function of the robot. Figure 7E depicts the HSNN
architecture for artificial intelligence navigation. It receives input
from 9 sensory neurons, and 1 relay neuron is linked to sensory
neurons via habitual synapses to process and deliver information.
The results show that the artificial sensory nervous system based on
memristor can effectively improve the robot’s obstacle avoidance
efficiency based on the habit learning rules. In addition, Boyn et al.
demonstrate that ferroelectric nanosynaptic arrays can
autonomously learn to recognize patterns in a predictable
manner (Boyn et al., 2017b), demonstrating that organic FTJ
memristors are feasible for spiking neural networks. Using
memristor cross-arrays with symmetry and asymmetry, Kuzum
et al. successfully implemented two main hippocampal learning
mechanisms (Kuzum et al., 2012b), associative learning and
sequential learning, in the presence of 30% noise in the input
data. Associative learning successfully recalls 85% of the original
patterns.

FIGURE 7 | (A) Resistance drift characteristics of GST PCM. (B) The drift coefficients for different initial resistances. (C)NN architecture with 398 input neurons and
500 output neurons with fully connected structure [adapted from Oh et al. (2018)]. (D) Memristor based artificial SNS circuit. (E) Schematic diagram of HSNN and flow
chart of robot obstacle avoidance based on habitual learning rules [adapted from Wu Q. et al. (2020)].
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SENSORY NERVOUS SYSTEM

The sensory nervous system (SNS) in animals is the basic
information perception mechanism that creates the interaction
between organisms and their surroundings. External information
is first sensed by numerous sensors (touch, vision, smell, etc.),
then transported to the brain and processed, and finally a
response to the external information is made. The sensory
system serves as a link between the physical environment and
inner experiences, allowing people and animals to perceive the
outside world. Building an effective intelligent information
perception system based on the functional properties of the
biological sensory nerve system will considerably increase the
system’s information processing capability. Traditional sensing
systems make use of electronic devices to sense and process
information. Recently, because of the fast process speed and low
power consumption, using new synaptic devices, particularly two
terminal memristive devices, to imitate human perception has
piqued the interest of researchers and has been regarded as a
promising solution to build efficient artificial system (Wang
J. et al., 2021; Wang M. et al., 2021; Li et al., 2021; Liang
et al., 2022). In this section, we will introduce some recent
advances in the research of tactile, auditory, visual and
olfactory artificial systems.

Tactile Perception System
The skin is the largest sense organ in the human body, covering
the entire body, which is an important organ for human to
produce tactile. Every area of the skin is densely packed with
sensors that detect external stimuli and actively measure their
intensity. External pressure stimuli can be received by the sensors,
and the resulting response signals are transmitted to the brain via

the nervous system. Tactile signals are stored by the nervous
system and become tactile memories, which help us interact with
our surroundings more effectively. As a result, providing this
perceptual learning capability to robots and prosthetics may
expand their cognitive and adaptive capabilities. To
accomplish this, artificial sensory neurons with perceptual
learning must be created. Tee et al. first modeled
mechanoreceptors by combining pressure sensors and ring
oscillators to convert mechanical signals into action potentials
in the form of digital frequency outputs (Tee et al., 2015). Zang
et al. connected the pressure sensor to a multi-gate transistor
through a polyvinyl alcohol ion cable (Zang et al., 2017), realizing
the identification of convex and planar patterns, and realizing the
perceptual learning of electronic skin. Subsequently, memristor-
based pressure sensing systems also slowly appeared. Zhang et al.
integrated a pressure sensor and a Nafion-based memristor to
design an artificial tactile neuron system (Zhang C. et al., 2019).
As shown in Figures 8A–B, the system consists of pressure
sensors, Nafion-based memristors and corresponding circuits,
which can imitate synaptic behaviors such as PPF, PPD, and
STDP. The supervised learningmethod implemented in character
recognition can achieve an accuracy of 91.7%, and it has
advantages including low energy consumption, durability,
biocompatibility, high sensitivity, and feasibility of large-scale
integration. He et al. proposed an artificial system consisting of a
pressure sensor, a threshold control unit, and an electrochemical
actuator (He et al., 2020). As shown in Figure 8C, the system can
mimic the human tactile function. The pressure sensor detects the
pressure signal and converts it to an electrical signal, then
transmitted the signal to the threshold control unit, which
causes the electrochemical actuator to be activated, and
completes the movement. Figure 8D shows the different

FIGURE 8 | (A) Illustration of the biological haptic perception system: (i) the sensory receptor, (ii) the synapse and (iii) the brain. (B) The artifical haptic perception
system [adapted from Zhang C. et al. (2019)]. (C) Illustration of the complete artificial somatic reflex arc consisting of a pressure sensor, a TCU, and an electrochemical
actuator. (D) Illustration of the complete artificial somatic reflex arc consisting of a pressure sensor, a TCU, and an electrochemical actuator [adapted from He et al.
(2020)]. (E) Diagram illustrating the details of the Neu Tap [adapted from Wan et al. (2018)].
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responses of the 3D printed manipulator prepared based on the
principle of this system to soft and hard finger taps. For gentle
taps, the fingers did not complete the gripping action. When
tapped hard and the pressure levels above the threshold, the
fingers bend and form a grasping position.Wan et al. proposed an
artificial sensory neuron composed of resistive pressure sensors,
ionic cables (Wan et al., 2018), and synaptic transistors. The
structure is shown in Figure 8E. It can integrate andmodulate the
late spatiotemporal related tactile stimuli, and has a certain
recognition ability. The recognition ability can be enhanced
through repeated training, which is similar to the process of
perceptual learning. Sun et al. proposed a self-powered artifical
skin that incorporates RRAM and TENG (Sun et al., 2017).
TENG converts mechanical touch signals into electrical
signals, which are then store in RRAM, which can successfully
memorize mechanical stimuli. Rahman et al. used a combination
of stretchable pressure sensors (Rahman et al., 2020), phase-
change oxide films, and STO memristor-based storage elements
to realize fully functional Pacinian cells, thermoreceptors, and
nociceptors. They are related to pressure, temperature, and pain,
respectively, and will generate large responsive currents that can
simulate real skin properties on artificial electronic skins, and
even more complex functions such as threshold, relaxation,
allodynia, and pain perception. allergies etc. Wang et al.
proposed a memristive circuit based on a skin-like sensory
processor (Wang et al., 2019). Its primary function is to
process the external perceived feeling and convert it into the
corresponding emotion. According to area overhead and power

analysis, the proposed circuit has a simple structure and is simple
to integrate.

Visual Perception System
The human visual perception system preprocesses the collected
data before sending it to the cerebral cortex for deep
recognition. The image information that has been processed
is either short-term or long-term stored, depending on its
importance. Traditional visual perception separates image
perception, processing, and storage, resulting in redundant
data that slows perception significantly. Inspired by the
human visual system and the synaptic function of
memristors, the researchers integrated optical perceptrons
and memristors to provide new ideas for the fusion of optical
learning, storage, computing and recognition. Wu et al.
proposed an artificial sensory neuron that simultaneously
senses and encodes optical information as electrical impulses
(Wu Q. et al., 2020). Figure 9A shows a rough representation of
the human visual system and the artificial visual sensory system
magnetization direction. The researchers tested the device to
show stable oscillatory behavior and UV sensing properties. The
series combination of Pt/NbOx/Ta oscillatory neurons and Ta/
IGZO4/Pt ultraviolet sensors constitutes artificial sensory
neurons, which can be used to simulate the function of the
human visual system. Similar to the biological visual system, an
artificial sensory neuron can encode various UV inputs as spikes
and display four different stable peak frequencies, this different
oscillation frequency under different UV input signals, and then

FIGURE 9 | (A) Schematic diagram showing the optical sensory neuron in the human vision system, schematic images of the artificial visual sensory neuron. (B)
Schematic illustration of UV image segmentation in a pulse coupled neural network (PCNN) with UV artificial sensory neurons [adapted from Wu Z. et al. (2020)]. (C)
Schematic diagram of artificial flexible visual memory system. (D) Schematic diagram to detect and memorize the information of light distribution which generated from a
patterned DOE. (E) Information storage behaviors and effective reusability of the flexible visual memory device arrays for the applied patterned light [adapted from
Chen et al. (2018)].
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segmented by PCNN, as shown in Figure 9B, which means that
the artificial sensory neuron can be used as an artificial vision
system with output spikes, which can transfer information to a
neuromorphic computing system for further information
processing. The system is simple in structure and stable in
performance, coupled with a CMOS-compatible manufacturing
process, it is expected to become the development direction of
neural robotic systems. Using UV-driven memristors, Chen. S
et al. (Chen et al., 2018) built a basic framework to build an
artificial flexible visual memory system, as illustrated in
Figure 9C, Figure 9D depicts a typical memory array of
10 × 10 pixels used to demonstrate the imaging and memory
of butterfly patterns. After a week of storage at room
temperature, the visual memory array can retain the butterfly
pattern in the mapping with almost no attenuation, as shown in
Figure 9E. Wang et al. integrated photoelectric sensing, storage,
and in-situ computing functions in a photomemristor array
(Wang T.-Y. et al., 2021), it can greatly reduce the space
occupied by multifunctional devices and improve the
working efficiency of the chip. The neuromorphic computing
power of the photonic memristor was validated with 86.7%
accuracy using facial images of different people. Mu et al.
connected discrete photodetectors in series with artificial
neurons (Mu et al., 2021), increasing the complexity of signal
recognition, transformation, and storage. IR-780 iodide, a small
organic molecule, is used in memory devices as a charge
trapping layer and a near infrared light-responsive film.
Through optical and electrical modulation, artificial synaptic
functions including STP, LTP and SRDP are achieved. In

artificial sensory neuron systems, near-infrared light pulses
can significantly increase the spike rate. Shan et al. proposed
a novel plasmonic photomemristor that combines the LSPR
effect with optical excitation, which can effectively improve the
learning efficiency and accuracy of image recognition (Shan
et al., 2022).

Auditory Perception System
The sensation created by sound waves acting on the auditory
organs and processed by auditory centers at all levels is referred to
as auditory. Interaural time difference (ITD) and interaural level
difference (ILD) are the two main working mechanisms of the
human brain for sound localization. When a sound source is
closer to one ear than the other, there is a delay between the signal
reaching the two ears. ILD is caused by the “shadow” effect, in
which the listener’s head is large in comparison to certain
wavelengths of sound, acting as a barrier and casting shadows,
the unique shape of the head, pinna, and torso can also act as a
filter based on the location of the sound source (distance,
azimuth, and elevation). Wang et al. presented a 1T1R-based
SNN (Wang W. et al., 2018), two presynaptic neurons
(representing the left and right ears, respectively) were used as
input ports, and two postsynaptic neurons (representing the left
and right ears, respectively) were developed to generate output
internal voltage signals, as illustrated in Figures 10A–C. The
position of the sound is estimated using ITD by measuring the
internal potential difference of two postsynaptic neurons,
accurately determining the location of the sound source. Sun
et al. were the first to harness memristors’ short-term plasticity to

FIGURE 10 | (A) Schematic illustration of binaural effect, where the ITD provides an estimate of the direction of the sound. (B) Schematic SNNwith three PREs and
one POST. (C) Schematic structure of a 2 × 2 SNN to detect the sound direction from the ITD [adapted from Wang T. et al., 2021]. (D) Schematic diagrams of two-
terminal devices based on monolayer MoS2 with Joule heating. (E) Schematic picture of the working mechanism of synaptic computation for ITD-based sound
localization [adapted from Sun et al. (2018)].
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enable precise temporal computation and to use the
suppression of sound intensity and frequency-dependent
synaptic connections for low-power temporal difference
detection (Sun et al., 2018). The device diagram and
working mechanism of ITD-based sound synaptic
computing is shown in Figures 10D–E.

Olfactory Perception System
The biological olfactory perception system has important
implications for organisms in food intake, emotional response,
species identification, and predation or avoidance. Researchers
have created artificial olfactory systems based on the olfactory
system (Wang T. et al., 2021). Figure 11A depicts a detailed
comparison of biological and synthetic olfactory systems. The
olfactory system of humans is divided into three parts: olfactory
receptors, brain centers, and muscles. Olfactory receptors
respond to specific gas molecules by generating
electrochemical potentials that are transmitted to the brain
center via olfactory nerve fibers. Brain centers memorize
smells and give specific smell-related instructions, such as
controlling muscle contractions and raising arms. Shulaker
et al. developed a system for sensing and classifying ambient
gases that uses resistive memristors and carbon nanotube field
effect transistors (Shulaker et al., 2017). The 3D nanosystem is
depicted schematically in Figure 11B, it is made up of four
integrated vertical layers linked by vertical interconnects: CNFET
logic and sensors, RRAM, CNFET logic and silicon FET logic.
The system classifies seven common gases, such as lemon juice
and steam from white vinegar, as shown in Figure 11C, it
identifies gases by comparing raw sensor data with previously
learned expected responses. Gao et al. proposed a synthetic odor
using Sr-ZnO based gas sensors (Gao et al., 2021), HfOx based

memristors, and electrochemical actuators. In addition to gas
identification, the Sr-ZnO gas sensor can take some measures to
protect the system from toxic gases. For example, the Sr-ZnO gas
sensor can sense and identify NH3 through resistance change and
transmit the signal to the memristor, information is preserved by
changing the resistance state of the memristor. Simultaneously,
the action potential is transmitted to the arm’s skeletal muscle
fibers, which eventually move the hand to cover the hand, similar
to the self-protection effect of covering one’s hand with one’s
hand when inhaling noxious NH3. Figure 11D depicts a
schematic diagram of the fabricated bionic nose. Furthermore,
Iwata proposed using metal oxide-based memristors as gas sensor
outputs to differentiate different gaseous acetone and EtOH based
on the extracted transient responses (Iwata et al., 2019). The
device is simple and miniaturized, with the benefit of system
miniaturization. Vidiš proposed a Pt/TiO2/Pt capacitor-like
structure that can combine gas sensing and resistive switching
capabilities to form a simple device (Vidiš et al., 2019). It
functions as a gas-triggered switch and a gas sensor with
memory. Wen proposed a new type of gas accumulation flow
sensor based on memristor (Wen et al., 2019), which can measure
the accumulated gas flow by combining the resistance of the
memristor and the interception of the pipeline area, the
measurement range is about 0–20 m3, and the sensitivity in
the effective range is about 28.44Ω/m3. To reduce
measurement errors, Adeyemo proposed a TiO2-based m (1 ×
n) for gas detection memristor arrays (Adeyemo et al., 2017).
Khandelwal proposed a new memristor spice model that
combines the development of a fault model capable of
simulating gas sensing behavior with/without fault for
simulation and integration with design automation tools
(Khandelwal et al., 2019).

FIGURE 11 | (A) Overall comparison of the biological and artificial olfactory system [adapted from Gao et al. (2021)]. (B) Schematic diagram of a 3D nanosystem.
(C) Test results for nanosystems [adapted from Shulaker et al. (2017)]. (D) Schematic illustration of bionic nose [adapted from Gao et al. (2021)].
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SUMMARY AND PERSPECTIVES

In this review, we primarily introduced new types of memristive-
related devices, such as metallic filament synapse, phase change
synapse, magnetic memristive synapse, ferroelectric memristive
synapse. Simultaneously, we introduced the fundamental
properties of memristive-related devices that are conducive to
mimick the behavior of biological synapses and construct an
artificial neural morphological system. Then, the application of
memristors memristive-related devices in neuromorphic
computing systems and perception were introduced. In
conclusion, emerging neuromorphic computing and
perception devices hold great promise as building blocks for
next-generation computing and robotic systems. However, many
issues remain to be resolved in the hardware implementation of
neural networks. To begin with, the stability of the memristor is
difficult to guarantee, which is one of the major issues impeding
memristor research. The SET/RESET current fluctuates a lot,
which affects the calculation results. As a result, improving the
uniformity and reliability of device parameters will remain the
primary research focus in the future. In addition, the synaptic
properties of memristor devices still need to be improved. For
example, the multivalued conductance tuning properties of
memristors are currently studied only in terms of continuous
changes in conductance under continuous pulse applications,
whereas for practical applications, stable and nonvolatile
individual conductance states are required. As a result, how to
define the multi-value of memristor’s changing conductivity from
the standpoint of device engineering and how to improve the
stable multi-value characteristics of memristor’s synaptic device
are major issues in the actual hardware implementation of
memristor’s synaptic device. According to the current research
findings, memristor arrays outperform traditional CMOS logic
circuits in parallel computing. However, memristor synaptic

devices’ analog computing characteristics are not fully
compatible with peripheral CMOS digital circuits.
Furthermore, the noble metal electrodes commonly used in
memristors are incompatible with mature CMOS processes,
which is a pressing issue that must be addressed. Furthermore,
the majority of research on memristor-based sensing applications
is based on simulating a specific sense and simple processing,
such as touch, vision, smell, and so on, and the processing
capacity is extremely limited. The external environment in
which the human perceptual memory system is located is
more complex. It can sense touch, pain, and temperature at
the same time on a very small sensory unit, and it can sense
external pressure and different temperatures at the same
time and process information. As a result, developing a
device system with multi-sensing and diverse functions to
close the gap with application requirements, developing
reliable three-dimensional integration technology and
flexible memristive materials, new nanotechnology and
multi-sensing devices will be the main focus in the
future. Finally, the study of the brain, neural computing,
and sensing systems is still in its initial stages. Making
fundamental advances and fully exploiting the application
potential of memristive devices in neural computing and
sensing simulation need the joint efforts of various
disciplines, including material science, biology, chemistry,
electronics, computer science and so on.
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