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As-prepared nanostructured semiconductor materials are usually found in an
amorphous form, which needs to be converted into a crystalline one for improving
electronic properties and achieving enhanced application functionalities. The
most utilized method is thermal annealing in a furnace, which however is
time- and energy-consuming and not applicable for low-temperature melting
substrates. An alternative is laser annealing, which can be carried out in a relatively
short time and, additionally, offers the possibility of annealing localized areas.
However, laser-annealed nanostructures are often distorted by melting, while
preserving the as-prepared morphology is essential for practical applications. In
this work, we analyze conditions of non-thermal ultrafast laser annealing of two
kinds of nanostructures: anodic TiO2 nanotube layers and Ge/Si multilayer stacks.
For both cases, regimes of crystallization have been found, which yield in
preserving the initial nanomaterial morphologies without any melting signs. On
these examples, ultrafast non-thermal mechanisms of structural material
transformation are discussed, which can provide new opportunities for
conversion of amorphous semiconductor nanomaterials into a desired
crystalline form that is of high demand for existing and emerging technologies.
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1 Introduction

Nowadays semiconductor nanomaterials (SNM) such as thin films, nanowires,
nanotubular structures and their layers have become building blocks in many industrial
applications that also stimulates extensive research of novel SNMs, their properties and the
ways to enhance functionalities of such materials (Wang et al., 2014; Benelmekki and Erbe,
2019; Mullen and Morris, 2021; Xu et al., 2021). The application areas for the SNMs are very
wide and range from micro-/nanoelectronics (Mullen and Morris, 2021), photonics (David
et al., 2021), solar energy harvesting (Zhang et al., 2022; Toolan et al., 2023), sensing (Feng
et al., 2023), catalysis (Feliczak-Guzik, 2023; Güell et al., 2023), and biomedical applications
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including drug delivery and diagnostics of therapy of diseases such
as cardiovascular problems and malignant tumors (Walkey et al.,
2009; Oleshchenko et al., 2020; Yuan et al., 2022; Flimelova et al.,
2023). Many of such materials in the as-prepared form are
amorphous. Although amorphous SNMs are also widely used in
various fields (Ng et al., 2019; Motola et al., 2020; Wang et al., 2021),
their crystalline forms often exhibit physical and chemical properties
much more suitable for many specific applications (Yu et al., 2017;
Kryshtal et al., 2022). Thus, there are needs in the techniques which
enable reliable and reproducible crystallization of semiconductor
nanomaterials, often locally and selectively, to fabricate high-quality
products. There are manymeans to convert amorphous SNMs into a
crystalline phase such as thermal annealing, chemical methods
including metal-assisted crystallization (Zamchiy et al., 2021;
Kryshtal et al., 2022), laser and electron beam irradiation (Jenčič
et al., 1995; Egan et al., 2019), plasma (Benčina et al., 2019) or
microwave (Aquino et al., 2016) annealing. All these methods have
specifics in applications to different types of nanomaterials and often
are not suitable for particular materials.

Among the listed methods, laser annealing has great potential
(Vainos, 2012; Aktas and Peacock, 2021), given a wide variety of laser
sources with different parameters in terms of power, laser wavelength,
pulse duration, and peak intensity. Important features of laser
annealing are that it can allow a localized conversion of
amorphous to a crystalline form without affecting the underlying
substrates (Sopha et al., 2020) and/or highly selective crystallization of
components in multimaterial nanostructures (Volodin et al., 2023) at
properly chosen irradiation parameters. In both these examples,
ultrashort-pulse lasers were employed that may look contra-
intuitive and incompatible with thermal annealing mechanisms.
Indeed, the majority of annealing techniques are based on a
prolonged exposure of the material to an energy source for
inducing structural transformation. Here we investigate and discuss
the ultrashort-laser-pulse crystallization of amorphous TiO2

nanotubes to the anatase phase without any melting signs and the
absence of intermixture of silicon and germanium upon ultrashort-
pulse laser annealing of amorphousGe/Si multilayer stacks. These two
structured materials in a crystalline form have a very large potential
for many applications. Highly ordered, anodic TiO2 nanotube layers
attract considerable attention in the fields of solar energy harvesting,
photocatalysis, and sensing (Sopha et al., 2020) while Ge/Si multilayer
stacks are of high demand in photovoltaics and micro/nano
electronics and are suitable for flexible electronic devices (Ding
et al., 2021; Volodin et al., 2023). To understand the mechanisms
of laser-induced transformations achieved in this work, we involve
concepts of non-equilibrium ultrafast processes such as explosive
crystallization induced by laser generated stress waves and ultrafast
laser melting. The requirements for the laser parameters to induce
crystallization without damaging material morphology are analyzed.

2 Laser annealing of amorphous TiO2
nanotube layers into anatase

Nanostructured TiO2 materials are widely used in various
applications, such as nanocrystalline solar cell technologies,
photocatalysis, purification of water from hazardous industrial
byproducts, in nanomedicine as components for imaging and

therapeutics, and as antibacterial agents (Waghmode et al., 2019).
This is due to their excellent photocatalytic properties, enhanced
absorption in the UV spectral range, high thermal and chemical
stability, and biocompatibility. Among crystalline polymorphs of
TiO2 (rutile, anatase, and brookite), anatase has the best
photocatalytic activity (Hoffmann et al., 1995; Rajeshwar, 1995;
Luttrell et al., 2014; Zhang et al., 2014). In the past, different
chemical and physical techniques have been applied to synthesize
and crystallize TiO2 nanomaterial (nanopowder, deposited
nanostructured films, nanotubular layers) to explore their
photocatalytic properties. The TiO2 nanotube (TNT) layers are
one of the most promising structures for catalytic applications
(Macak et al., 2007; Lamberti et al., 2015; Sopha et al., 2018) due
to their large surface area and a relatively simple technique for their
fabrication through the controlled and optimized anodization
process allowing preparation of the layers up to several hundreds
of micrometers in thickness (Macák et al., 2005; Sopha et al., 2018).
Additionally, such TNT layers possess excellent sensing properties
(Varghese et al., 2003). They demonstrate the best catalytic and
sensing activities, when their initial amorphous form is transformed
into the anatase phase (Macak et al., 2007). As mentioned above,
different methods are known tomodify as-prepared amorphous TNT
layers to a crystalline phase (see an overview by Sopha et al., 2020).
Here we focus on laser-induced annealing, which can enable highly
localized and selective annealing without affecting the underlying
substrate (Sopha et al., 2020). However, laser annealing is not a
straightforward process, and the laser parameters require to be
carefully optimized for obtaining a desired phase with the best
functional characteristics (Wawrzyniak et al., 2020a; Wawrzyniak
et al., 2020b; Sopha et al., 2020; Siuzdak et al., 2023). In our study,
several lasers with different irradiation parameters have been used in
order to learn the modification mechanisms. Among them, only one
laser type enabled to modify the amorphous TNT layers into the
anatase phase while preserving the initial nanotube morphology. We
analyze the parameters of the applied lasers and discuss the
underlying physics of phase transformation.

2.1 TNT layer preparation

The TNT layers of thicknesses of ~1 μm and ~20 µm with the
nanotube diameter of ~80 nm and ~110 nm respectively were
prepared by electrochemical anodization of Ti foils as described in
the previous papers (Das et al., 2016; Zazpe et al., 2016). In brief, Ti
foils (0.127-mm thick, Sigma-Aldrich, 99.7% purity) were degreased
by sonication in isopropanol and acetone and dried in air. Afterwards,
the Ti foils were anodized at room temperature in an electrochemical
cell using a 2-electrode configuration with the Ti foil serving as anode
and a Pt foil as a cathode. A high-voltage potentiostat (PGU-200,
Elektroniklabor GmbH) was employed as a voltage source. ~1 µm
thick TNT layers were produced in a glycerol-based electrolyte
containing 50 vol% H2O and 270 mM NH4F (Sigma-Aldrich,
reagent grade) at 20 V for 100 min (Das et al., 2016). ~20 µm
thick TNT layers were produced in an ethylene glycol-based
electrolyte containing 1.5 vol% H2O and 170 mM NH4F at 60 V
for 4 h (Zazpe et al., 2016). The anodized area of each foil was 1 cm2.
After anodization, the TNT layers were rinsed, sonicated in
isopropanol, and dried in air.
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The morphology of the TNT layers was characterized by a field-
emission Scanning ElectronMicroscope (FE-SEM JEOL JSM 7500F) and
by a High-Resolution Transmission Electron Microscope (FEI Titan
Themis 60–300) operated at 300 keV and equipped with a Cs (spherical
aberration) image corrector. Raman spectra were recorded by LabRAM
HR (Horiba Jobin Yvon) and acquired in a continuous scanning mode
under a laser excitation wavelength of 532 nm. The composition of the
TNT layers was monitored by X-ray Photoelectron Spectroscopy (XPS)
(ESCA2SR, Scienta-Omicron) using a monochromatic Al Ka
(1,486.7 eV) X-ray source. A typical image of an as-prepared ~20 µm
thick TNT layer used in the laser annealing experiments, a magnified
view of the nanotubes from the top of the layer, and its cross-sectional
view are shown in Figure 1.

2.2 Lasers for annealing

The band gap of the main crystalline phases of TiO2 is somewhat
larger than 3 eV (Scanlon et al., 2013). Hence, for efficient absorption of
laser light with a nanosecond pulse duration, a UV spectral range is
appropriate (Wawrzyniak et al., 2020a;Wawrzyniak et al., 2020b; Siuzdak
et al., 2023). However, the absorption depth for UV light is rather short, of
the order of few dozens of nanometers. To evaluate the absorption depth,
we have applied the Maxwell-Garnett effective medium framework
(Heavens, 1960). The effective medium theory allows evaluating the
optical properties of composite and porous materials via taking into
account the dielectric function of each component. The Maxwell-Garnet
expression for theTiO2nanotubes under air surrounding canbewritten as

εeff−εm
εeff−2εm( ) � f

εTiO2−εm
εTiO2−2εm( )

where εeff , εm, and εTiO2 are the effective dielectric function of the
TNT layer and the dialectic functions of the external medium (air)
and TiO2 respectively; f is the volume fraction of TiO2 in the layer.
The above expression yields the following formula

εeff � εm 1 + 3f β
1 − f β

( )with β � εTiO2−εm
εTiO2−2εm( ).

The results of calculations of the absorption depth and the
reflection coefficient based on the above formulas are shown in

Figure 2 for a 260 nm wavelength and similar results are obtained
for wavelengths of 193 nm (ArF laser) and 355 nm (Siuzdak et al.,
2023). For ~40% volume fraction of TiO2 in TNT layers, absorption is
mostly localized in a ~100-nm top layer. Hence, in the UV spectral

FIGURE 1
(A) An optical image of the as deposited sample 1 cm in diameter with the TiO2 NT layer of ~20 μm thickness. (B) A scanning electronmicrograph of
the as-deposited TNT layer with the nanotube diameter of ~110 nm. (C) A cross-sectional image of an as-deposited ~20-µm-thick TNT layer.

FIGURE 2
The TNT layer absorption depth (A) and the reflectivity of the
array layers (B) evaluated using the Maxwell-Garnett effective medium
theory as a function of TiO2 volume fraction.

Frontiers in Nanotechnology frontiersin.org03

Mirza et al. 10.3389/fnano.2023.1271832

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1271832


range, light absorption takes place on the tops of TNT layers, leading
to local heating and melting, while the heat extraction along
nanotubes is relatively slow. Indeed, from the heat flux equation,
one can easily extract an evaluating expression Δx ~√(λhΔt/cpρ)
where λh, cp and ρ are the thermal conductivity, heat capacity, and
density respectively. This expression gives that, in titania during time
interval Δt ~ 1 µs, the heat front propagates only to approx. 1.3 µm.
This is the origin of strongly distorted nanotube tops reported in the
literature which however can lead to the conversion of amorphous
TNTs into the anatase phase (Siuzdak et al., 2023).

To explore the possibilities of laser annealing of the TNT layers
with minimal damage to their morphology, we have used different
lasers, which are outlined in Table 1 and their applications are
analyzed in the next sections.

2.2.1 IR diode ns laser
As the absorption in the UV spectral range takes place on the

very top of the TNT layers, a part of the experiments was performed
with IR pulses using a hand-made diode-pumped nanosecond laser
(1,064 nm wavelength; 3 ns pulse duration; 150 kHz repetition rate).
The spot size on the surface was ~200 µm and the fluence was varied
in the range of 50–200 mJ/cm2. The samples were scanned at the

velocity of 0.7 m/sec. It was evaluated that app. 40 shots were
coupling each point upon scanning.

After irradiation, the color of the layers became slightly darker as
compared to the original color shown in Figure 1A but still yellowish.
The samples remain essentially amorphous (Figure 3). However, some
signs of an anatase peak of (101) direction between 2θ of 25° and 30°

can be seen. This may indicate a partial, yet veryminor crystallization.
With increasing laser fluence, the TNT layer becomes darker while
delamination from the Ti underlying substrate is found. Thus, as the
TiO2 is transparent for IR irradiation, the titanium substrate absorbs
the laser light efficiently [absorption depth ~21 nm (Palik, 1998)]. As a
result, the TNT layers are heated from the bottom and can be
detached from the substrate due to thermal stress (Meshcheryakov
and Bulgakova, 2006). Hence, the IR laser annealing of TiO2 into its
crystalline forms is not appropriate.

2.2.2 ArF nanosecond laser
In the next set of experiments, the TNT layers were irradiated by

an ArF excimer laser beam (193 nm wavelength, 5 ns pulse
duration). Two TNT layers were irradiated, with 20 μm and 1 µm

TABLE 1 Specifications of the applied lasers and a short summary of TNT annealing results.

Laser parameters Results in short

Diode-pumped nanosecond laser (1,064 nm wavelength; 3 ns pulse
duration)

Some signs of anatase [101] phase in x-ray diffraction patterns

At fluences >150 mJ/cm2 after ~40 laser shots, detachment of NTs from Ti surface

ArF laser (PSX-100, Neweks Ltd., 193 nm wavelength, 5 ns pulse
duration)

A mixture of two crystalline phases (anatase and rutile) in the fluence range 10–100 mJ/cm2 for
10–100 thousand shots. TNT melting. At fluences >200 mJ/cm2, ablation starts

HiLASE ps laser PERLA-C (4th harmonic: 257.5 nm wavelength, 2 ps
pulse duration)

Crystallization to single anatase phase at fluences about 300–400 μJ/cm2 for ~2 min irradiation at
100 kHz (~several millions of shots). Preserved morphology, crystallite size ~60 nm

FIGURE 3
X-ray diffraction pattern of a TNT layer annealed by the
nanosecond laser (1,064 nm wavelength; 3 ns pulse duration). The
TiO2 remains substantially amorphous. Some signs of the anatase peak
at 2θ between 25° and 30° (outlined by the red circle) may
indicate a partial, yet very minor crystallization.

FIGURE 4
The TNT layer irradiated by spots with different irradiation
conditions specified in Table 2. The spots outlined by green circles
correspond to ArF laser irradiation. The spots outlined by red circles
were produced by irradiation with the PERLA-C laser.
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thicknesses. For both layers, several spots at different irradiation
conditions have been produced. The results are shown in Figure 4
for the 20-µm thick layer (results for the 1-µm layer are similar and
not shown here). The spots outlined by green circles refer to the ArF
laser irradiation while the spots in red circles were produced by the
PERLA-C laser (see discussion below). The irradiation conditions
for the spots in Figure 4 are summarized in Table 2.

The Raman spectra show that all laser-modified areas represent
various combinations of rutile and anatase phases depending on the
laser fluence and pulse number. In Figure 5A, typical spectra are
shown for spots N14-N16. The reference spectra for rutile and
anatase are given in Figure 5B. The higher the laser fluence, the
higher is the quality of the spectrum (with low noise). However, as
expected, the tops of nanotubes are considerably distorted by
melting (inset in Figure 5A for the spot N14), similar to that
demonstrated for 266-nm wavelength irradiation (Wawrzyniak
et al., 2020a). Furthermore, the TNT layer experiences
considerable ablation at enhanced laser fluences (N5–N7).

Based on the results with nanosecond lasers, attempts were
made to anneal the TNT arrays with ultrashort laser pulses at a UV
wavelength, where the physics of material transformation changes
significantly toward the creation of high stresses (stress confinement
regimes) (Karim et al., 2016). It could be expected that, under high
stresses, a metastable amorphous semiconductor can be converted
into a more stable crystalline phase (Volodin et al., 2023).

2.2.3 Fourth harmonic of the HiLASE PERLA-C laser
The picosecond diode-pumped thin-disk laser source PERLA-C

has been developed at the HiLASE centre (fundamental laser
wavelength of 1,030 nm, 2 ps pulse duration) (Novák et al., 2016;
Smrz et al., 2019; Turcicova et al., 2019). For annealing, the fourth
harmonics of the laser (257.5 nm) was used to ensure single photon
absorption of laser light by the TNT layers. The irradiation was
performed at a 89 kHz repetition rate with 5 W maximum average

power and ~56 µJ maximum pulse energy. The laser pulse energy
was controlled by a combination of a half-wave plate and a thin film
polarizer. The high available pulse energy of the HiLASE laser source
enabled to use the direct laser output beam without focusing optics
to irradiate the samples.

The measured fluence distribution on the sample surface can be
approximated by an elliptical Gaussian beam with 1/e2 diameters of
2.9 mm and 2.5 mm along the x and y directions respectively. In the
present experiments, the peak laser fluence was varied in the range
from 0.25 to 1.5 mJ/cm2. Scanning of the TNT layers to anneal them
over the whole area was performed in a bidirectional fashion (right-
left-right). Figures 6A–D present SEM images of a TNT layer at
different magnifications, which was scanned at a speed of 0.25 mm/s
along x direction with a 0.5 mm step along y direction at an optimal
laser fluence of 1 mJ/cm2 while the TNT layer was converted from
the amorphous form to anatase without signs of melting. No rutile
signatures were observed in the Raman spectra (Figure 7). The time
to anneal the whole sample with a surface area of 1 cm2 is ~14 min.
The number of laser shots per site along the scanline can be
evaluated as 106. A video of laser annealing is presented in
Supplementary Material.

The optimal irradiation conditions were found by irradiation of
fixed spots on the sample (without scanning) with different laser
fluences and different numbers of laser shots per spot (irradiation
time). Some of such spots outlined by red circles are shown in
Figure 4. The color of such spots is dark brown, almost black, which
is very different from the ArF laser annealed spots. This dark color
can be a sign of a high concentration of Ti3+ species.

At low laser fluences or low number of shots per site, the
amorphous phase was largely preserved. By exceeding the
irradiation dose per spot above the revealed optimal conditions
(about 106 laser shots at ~1 mJ/cm2), melting and ablation were
found on the top of the TNT layers, although with efficient
converting the amorphous phase into anatase. SEM images (E)

TABLE 2 The irradiation conditions for each spot in Figure 4 produced by ArF laser.

Spot no. Number of pulses Pulse energy, µJ Spot area, mm2 Fluence, mJ/cm2

N1-N2 45,000 385 2.5 15

N3-N4 90,000 470 2.5 20

N5 45,000 820 0.3 270

N6 2000 820 ~0.15 ~540

N7 5,000 820 0.3 270

N8 5,000 800 1.3 62

N9 30,000 800 1.3 62

N10 180,000 800 1.3 62

N11 30,000 400 1.3 30

N12 180,000 400 1.3 30

N13 5,000 400 1.3 30

N14 5,000 1,030 1.3 79

N15 30,000 1,080 1.3 82

N16 180,000 1,000 1.3 77
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and (F) in Figure 6 correspond to higher doses than the optimal one
at the same laser fluence (107 and 2×107 shots respectively). It is
evident that the TNTs in both spots were ablated on the
top. However, while the TNTs in (E) exhibit slightly molten and
disintegrated nanotube walls, the nanotube walls in (F) do not seem
to be molten although the irradiation dose obtained is almost twice
higher. Instead, some deposits can be found on top of the TNTs in
(F). We anticipate that, in the case of (F) due to heat accumulation
on the top of nanotubes upon irradiation, the heat affected area is
massively ablated with uncovering unmolten nanotubes. Indeed,
some solidified droplets are seen in (F) which could probably
redeposit upon ablation in open air. At a lower irradiation dose
(E), the edgings of the nanotubes experienced melting. However, as
compared to nanosecond UV laser annealing, the ultrashort-laser-
annealed nanotube layers remain open on the top with the large
surface area (compare with the SEM image in Figure 5) and for some
applications such as catalysis can still be useful, provided that the
TNTs represent pure anatase structures. In the next section, we

discuss mechanisms that can be responsible for the amorphous-to-
anatase phase transition.

2.3 Pressure-induced solid phase
crystallization of TNT layers induced by ps
UV laser

We anticipate that, at optimal conditions of ultrashort laser
annealing, we observe an effect of the pressure-induced solid-phase
crystallization, often called explosive crystallization. The pressure-
induced crystallization represents a transition from the low density
amorphous to a higher density (pressurized) amorphous phase,
followed by crystallization (Pandey et al., 2011). Ultrashort laser
heating of a top layer of a sample may yield a strong unloading
stress/shock wave propagating toward the sample depth (Zhigilei
et al., 2009; Karim et al., 2016), which can trigger such phase
transformation. Let us evaluate the possibility of a shock/
compression wave under our irradiation condition in the stress-
confinement regime.

The absorbed laser energy at the top of the nanotube can be
evaluated as Eab � (1 − R)F/d where R is the reflection coefficient, F
is the incident laser fluence, and d is the absorption depth. Using the
thermodynamic relation cpΔT � Eab and the data from Figure 2, one
can estimate that, at the optimal laser fluence of 1 mJ/cm2, the
temperature increase is confined within the absorption depth of
~100 nm and it is only of ΔT ~ 125 K, well below the melting point.
For a hollow cylinder, the stress corresponding to such heating can
be estimated as σz � Eα(T0 − T max)/(1 − μ) with E, α, and µ to be
Young’s modulus, the coefficient of linear expansion, and the
Poisson ratio respectively (Kingery, 1955). This yield for a single
shot σz ~ −560 MPa. This is a noticeable stress formed in only 2-ps
time that should generate a stress (or shock) wave propagating along
each nanotube as shown in Figure 8A. Note that the initial stress is
lower than the compressive strength of TiO2 (680 MPa) and hence
the nanotubes are not damaged mechanically. Important is that the
stress wave propagates in a one-dimensional manner and hence its
dissipation is rather small. If such a wave ignites crystallization in
some nanotube sites, the heat of ~22.6 kJ/mol is released upon
crystallization that can result in a self-propagating wave of
crystallization (Rogachev et al., 2017) along the nanotubes.

The activation energy ΔEact for amorphous-to-anatase
transformation is 69 kJ/mol, lower than that for anatase-to-rutile
transformation (129 kJ/mol), that is in favor of anatase formation at
relatively mild stresses (Figure 8B). We also note that, according to
Ostwald’s rule (Ostwald, 1897), phase transformation proceeds first
not to the most stable phase (rutile in the case of TiO2) but to a less
stable polymorph which is closest in energy to the original state
(anatase for TiO2 although it is a metastable phase). On the release
path of the shock wave, the sequence of observed phase transitions
depends on whether the pressure is reduced slowly or rapidly or, in
other words, if the new crystalline phase is frozen or can further
transform into a more stable phase.

Summarizing, the laser-induced crystallization of the amorphous
TNT layers into anatase with the HiLASE PERLA-C laser is a fast and
clean process, avoiding oxidation of underlying titanium substrate and
enabling to produce a patterned crystallization in localized areas. Such a
solid-phase crystallization can be performed by other ultrashort laser

FIGURE 5
(A) Raman spectra obtained for the spots N14–N16 in Figure 4
irradiation with ArF laser. Higher laser intensity produces a higher
quality spectrum with lower noise. Blue and red arrows point to the
peaks of anatase and rutile respectively. In the inset, an SEM
image of a fragment of the N14 spot is shown, demonstrating that the
top layer of the TNT layer experienced melting. (B) Reference spectra
of rutile and anatase phases. The labels (A) and (R) refer to anatase and
rutile respectively.
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systems, provided that the energy of their harmonics in the UV spectral
range is sufficient for triggering crystallization. As soon as the absorbed
laser energy exceeds the threshold for TiO2 melting, either in a single
pulse or upon heat accumulation atmultipulse irradiation, the TNTs are
melted and can be distorted. However, we found that, at ultrashort laser
irradiation, the distortion is considerably lower than for nanosecond
laser pulses. In the next sections we will discuss the mechanism of
another solid phase crystallization effect upon laser annealing of stacks
of amorphous Ge/Si nanolayers.

3 On the possibility and mechanisms of
solid-phase crystallization of
amorphous Ge nanofilms in a-Ge/a-Si
multilayer stacks

Multilayered semiconductors have attracted considerable attention
due to their exceptional absorption properties in a wide spectral range
from UV to mid-infrared that make them suitable for applications in
solar elements, high-performance microelectronic devices,

FIGURE 6
The TNT layers annealedwith the HiLASE PERLA-C laser. (A) An optical image of the laser-annealed TNT layer at the optimal conditions (peak fuence
of ~1 mJ/cm2, ~106 pulses per sight). (B)–(D) Magnified views (SEM images) of the sample shown in (A). No signs of melting are visible. (E) 0.83 mJ/cm2,
107 laser shots per site; (F) 0.81 mJ/cm2, 2×107 shots. At higher irradiation doses, the TNT tops experience melting (E) and ablation (F). However, the
nanotubes remain open with rather minor distortion (compare with image in the inset of Figure 5).

FIGURE 7
Raman spectra typical for the ultrashort laser annealed samples
as presented in Figure 6.

FIGURE 8
(A) Schematics of a stress/shock wave initiation upon ultrashort
laser annealing of the TiO2 nanotubes. (B) A sketch for phase
transformation from the amorphous state to anatase and rutile.
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photodetectors, sensors, and portable electronics (Paul, 2004; Wang
et al., 2005; Krivyakinet al., 2017; Lee et al., 2019; Pan et al., 2021; Yang
et al., 2021). As-deposited multilayered semiconductor films are usually
amorphous and, for improving their quality for various applications,
crystallization is needed with avoiding intermixing between layers
(Kolchin et al., 2020). Recently, we have achieved selective
crystallization of amorphous Ge nanolayers in a-Ge/a-Si multilayer
stacks (Volodin et al., 2023). The best results were achieved by using
femtosecond laser pulses at 1.5-µm wavelength when nanocrystallites
were formed in Ge layers while Si remained intact and no signs of
intermixing of Ge and Si at interfaces between the layers were observed.
We put forward a hypothesis on the possibility of ultrafast solid-solid
phase transition and here we assess this conclusion in comparison with
the TNT layer crystallization.

3.1 Toward mid-IR selective laser annealing

The samples for laser annealing represented stacks of
hydrogenated amorphous germanium (a-Ge) and amorphous
silicon (a-Si) alternating nanolayers with thicknesses 15 nm and
40 nm respectively deposited on a Si(100) substrate by Plasma-
Enhanced Chemical Vapor Deposition (PECVD) with a-Si as the
top layer (Figure 9). The substrate temperature during deposition was
225°C. The precursor was germane (GeH4) or silane (SiH4) diluted
with argon, leading to hydrogen being present in the amorphous
germanium and silicon alternating nanolayers. Growth conditions are
described in more detail in (Volodin et al., 2023).

Two laser systems were used to anneal the multilayered samples, a
picosecond laser (HiLASE PERLA-B, λ = 1,030 nm, pulse duration
1.4 ps, pulse energy up to 10 mJ) and a femtosecond laser (Astrella,
Coherent) in combination with an optical parametric amplifier
(TOPAS, Light Conversion). The latter enables tuning the laser
wavelength in the range from 1,160 nm to 15 µm. In this work, we
will focus on the results obtained at λ = 1,500 nmwith a pulse duration
of 70 fs and pulse energy up to 0.4 mJ, which provided the best results
of annealing, presumablywithoutmelting. All the results whichwill be

discussed below were obtained at single-pulse irradiation. More
experimental details can be found in (Volodin et al., 2023).

Figure 10 presents Raman spectra of the sample sites annealed
by femtosecond pulses at different peak laser fluences. The Raman
spectrum of the original sample is also presented, showing that both
Si and Ge are purely amorphous (a-Si and a-Ge). The sample
modification threshold fluence was measured to be ~50 mJ/cm2.
Starting from this fluence, a peak of crystalline Ge begins to appear
in the Raman signal. At a fluence of 64 mJ/cm2, the crystalline Ge
peak is distinct while Si does not show any modification and there
are no signs of Si-Ge intermixing (red dashed line in Figure 10). The
percentage of crystallization (fraction of Ge nanocrystals in the a-Ge
matrix) is evaluated as ~30%. The evaluation is based on the
following expression (Hao et al., 2020)

ρc �
Ic

Ic + γIa( )
where ρc is the crystalline volume fraction, Ic and Ia are the
experimentally measured integrated Raman scattering intensities for
crystalline and amorphous phases respectively, and γ � Σc/Σa is the
ratio of the integrated Raman cross sections for crystalline to amorphous
phase. It was found (Hao et al., 2020) that the parameter γ for
germanium has the following dependence on the size of nanocrystallites:

γ L( ) � 1 + 3 exp − L0

L − 1.5 nm
( )2[ ]

Here the parameter L0 is 2.8 nm and L is the average diameter of
germanium nanocrystals. The average size of nanocrystals can be

FIGURE 9
Transmission electron microscope image of as-deposited a-Si/
a-Ge multilayer stack. Ge layers are dark while Si layers are light grey.

FIGURE 10
Raman spectra of the pulse-laser annealed Si/Gemultilayer stack
shown in Figure 9. For reference, the peaks of crystalline silicon and
germanium (c-Si and c-Ge respectively) are also added. Annealingwas
performed at a wavelength of 1.5 µm and pulse duration of ~70 fs
that assumes considerable contribution of non-linear absorption in
Ge layers. At low laser fluences slightly above the modification
threshold, nano-crystallization of Ge is observed without visible
effects of melting (red dashed line). With increasing laser fluence
(spectra frombottom to top), intermixing of Ge and Si at film interfaces
starts pointing to melting effects that are followed by the appearance
of the crystalline silicon peak and strong intermixing of layers (see text
for more detail).
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estimated, using the phonon confinement model (Volodin et al.,
2014 and references therein), by the shift of the Raman peak toward
lower frequencies relative to monocrystalline Ge (the position of the
peak is 301.5 cm-1). For 64 mJ/cm2, the observed shift is ~5.5 cm-1

that corresponds to the average size of nanocrystallites of ~3 nm.We
call the regime of irradiation in the range from 50 mJ/cm2 to ca.
65 mJ/cm2 as Regime I which is the most important for applications
due to preserving the semiconductor layers from intermixing which
affects the sample properties (Lee et al., 2019). Regime I enables
annealing the multilayer films while preserving sharp interfaces
between nanolayers are of high demand for efficient low-power
devices (Ding et al., 2021).

With increasing laser fluence, signs of melting or at least an
increased mobility of atoms are observed at the interfaces between
the films, resulting in Ge-Si intermixing, that are out of the scope of
this paper. We shortly outline such regimes as follows. In Regime II,
the Si layers as a whole stay still intact but a Ge-Si intermixing peak
appears in the Raman spectra as shown for the fluence of 70 mJ/cm2

in Figure 10 by green dotted line. In this regime, the mass fraction of
crystalline Ge reaches about 75%. In Regime III, the Ge layers are
100% crystallized and the peak of crystalline Si becomes visible in the
Raman spectra (103 mJ/cm2 in Figure 10, blue dash-dotted line). In
Regime IV, the Si layers exhibit substantial crystallization and a
strong intermixing between Ge and Si layers occurs (148 mJ/cm2 in
Figure 10, light-blue dot-dot-dashed line) that culminates in the
formation of GeSi alloy across the sample. However, this regime is
not suitable for applications because of a strong material ablation
during annealing (Volodin et al., 2023). Here we will focus on
Regime I where we assume mechanisms of non-thermal solid-solid
annealing to be involved resulting in the formation of layers of
nanocrystalline Ge surrounded by amorphous Si nanolayers. We
note that other film thicknesses down to few nm of Ge demonstrate
similar results (to be published).

3.2 Non-thermal solid-solid phase
transitions

A well-known and widely used technique of solid-solid
crystallization is metal-induced crystallization (Kryshtal et al.,
2022), which proceeds through the formation of a eutectic couple
leading to a decrease of the temperature of the phase transformation
to levels below 100°C depending on a metal used. However, this
technique can result in metal contamination of crystallized
semiconductors that affects their properties. Thermal annealing
under a controllable temperature is a long process which often
assumes melting and solidification that is not suitable for
nanostructured semiconductor materials. In this work, we show
that ultrashort laser annealing using IR laser sources can be a fast
efficient technique for crystallizing amorphous semiconductors into
a desired phase as was shown above for amorphous TNT layers.

In our previous work (Volodin et al., 2023), we attributed the
crystallization of Ge layers without intermixing with Si to the
mechanism of explosive crystallization. If an external heat source
such as a laser or a particle beam acts to an amorphous
(metastable) semiconductor, it can trigger locally an appearance of
crystalline seeds. Upon their formation, the crystallization heat is
released and propagates to the adjacent amorphous regions, leading

to a chain process: crystallization leads to heat release which activates
crystallization in adjacent regions followed by heat release, etc. This
provides a “crystallization wave” propagating in the material, a process
known as explosive “crystallization” (Sharma et al., 1984; Césari et al.,
1985; Volodin et al., 2011). It is often believed that this process,
although extremely fast (with the speed of crystallization front up
to 20 m/s), proceeds via local melting in the crystallization front that is
still under debate (Nikolova et al., 2014; Deringer et al., 2021). Another
trigger of explosive crystallization is related to stress. Upon annealing, a
film of amorphous semiconductor experiences tensile stresses due to a
mismatch of the thermal expansion coefficients with the substrate or
with adjacent films inmultilayer stacks as in our case (Park et al., 2009).

Comparing the crystallization regimes of TNT layers and Ge in
a-Ge/a-Si multilayer stacks (Regime I), we conclude that in both cases
we deal with explosive solid-solid crystallization triggered by laser-
induced stress. In both cases, the estimations show that materials are
heated well below the melting point, ΔT of ~125 K for TNTs (see
above) and ~250–400 K for Ge (Volodin et al., 2023). The estimated
stresses for the two cases are not dramatically different, ~560MPa for
TNTs and a maximum 970 MPa for Ge, thus, both are at a sub-GPA
level. However, in the case of Ge films confined by two adjacent cold
layers of amorphous Si, the release of the stress is suppressed. If in each
individual TiO2 nanotube, a mild unloading stress wave propagates
toward the Ti substrate while the thermal expansion of the top layer
leads to some release of stress, Ge in nanolayers tends to expand
laterally, experiencing a strong mismatch at the interfaces with the Si
layers (note that the coefficient of linear thermal expansion of
germanium is more than 10 times larger than that of silicon,
Volodin et al., 2023). The strong confinement regime together
with the interface mismatch and a higher stress level provide
conditions for a-Ge crystallizations already at single-pulse exposure
while the crystallization of TiO2 nanotube proceeds in an
accumulative manner, pulse by pulse, seed by seed for crystal
growth. These aspects of the stress-induced crystallization still
require further studies and understanding as the described laser
annealing technique may be a powerful tool for highly selective
laser annealing of semiconductor materials into desired phases on
desired areas which can be localized on a few micrometers scale.

Finally, it is necessary to touch another fundamental effect, which
can manifest itself during the annealing of Ge films by femtosecond
laser pulses, the mechanism of ultrafast non-thermal phase transition
(in other words, non-thermal melting). When a significant fraction
(~10–15%) of the valence electrons are excited to the conduction band
of a semiconductor, the interatomic bonds experience softening and a
sharp reduction of the average bonding-antibonding splitting. It is
followed by lattice destabilization and disordering that looks like
melting although at a cold lattice yet. Such so called non-thermal
melting is observed already on a sub-ps time scale (Van Vechten et al.,
1976; Stampfli and Bennemann, 1990; Sokolowski-Tinten et al., 1995;
Rousse et al., 2001; Sundaram and Mazur, 2002; Tkachenko et al.,
2021). The evaluation of the electron number density indicates that,
already in Regime I, the density of the ionized atoms in the amorphous
Ge nanolayers approaches the criterion of non-thermal phase transition
(Volodin et al., 2023). Hence, one can anticipate that the metastable
amorphous lattice of a semiconductor material, being destabilized by
strong electronic excitation and experiencing significant stress, can
transform into a more energetically stable and denser crystalline form.
This fundamental aspect calls for further studies.
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4 Conclusion

We have performed ultrafast laser annealing of two types of
semiconductor materials, TiO2 nanotube layers produced by
anodization in an electrolyte and stacks of Ge/Si nanolayers
deposited by the PE-CVD technique. Both types of as-prepared
nanostructured materials are amorphous, and for practical
applications they need to be converted into a crystalline phase
for improving their electronic properties and achieving enhanced
application functionalities while preserving the initial morphology.
We have demonstrated that ultrashort laser pulse irradiation can be
a good alternative to traditional annealing methods, enabling highly
selective localized crystallization that can be carried out in a
relatively short time. Optimal regimes of laser-induced annealing
have been revealed when the laser-irradiated samples are converted
to crystalline forms without any signs of melting.

In both cases, we have attributed the melting-free crystallization to
the mechanism of stress-induced solid phase transformation which can
be achieved only under the action of ultrashort laser pulses providing
conditions of stress confinement. Estimations show that the
crystallization proceed at temperatures much lower than the melting
point and, contrary to traditional thermal annealing, the transformation
is a fast process. The differences in the stress-induced crystallization in
TiO2 nanotubes and Ge/Si multilayer stacks are discussed considering
the confinement conditions and stress waves with underlining the
importance of lattice mismatch at the interfaces of multilayer systems.
The attention is drawn to the possibility of ultrafast non-thermal phase
transition which can facilitate the transformation of a metastable
amorphous phase into a stable crystalline one.

The technique of gentle annealing of amorphous materials by
ultrashort-pulse laser irradiation described here is foreseen to be
universal for a wide range of nanostructured semiconductors via
controllable application of fundamental knowledge of nonequilibrium
ultrafast processes.
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