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Proteins are essential biological molecules to use as biomarkers for early disease
diagnosis. Therefore, their detection is crucial. In recent years, protein sequencing
has become one of the most promising techniques. In particular, solid-state
nanopores (SSNs) are powerful platforms for single biological molecule sensing
without any labeling and with high sensitivity. Atomically thin two-dimensional
(2D) materials with nanometer-sized pores, such as single-layer MoS2, represent
the ideal SSN because of their ultimate thinness. Despite the benefits they offer,
their use for protein sequencing applications remains very challenging since the
fast translocation speed provides a short observation time per single molecule. In
this work, we performed extensive molecular dynamics simulations of the
translocation of the 20 proteinogenic amino acids through single-layer MoS2
nanopores. From ionic current traces, we characterized peptide-induced
blockade levels of current and duration for each of the 20 natural amino acids.
Using clustering techniques, we demonstrate that positively and negatively
charged amino acids present singular fingerprints and can be visually
distinguished from neutral amino acids. Furthermore, we demonstrate that this
information would be sufficient to identify proteins using the coarse-grained
sequencing technique made of only three amino acid categories depending on
their charge. Therefore, single-layer MoS2 nanopores have great potential as
sensors for the identification of biomarkers.
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1 Introduction

Single-molecule protein sequencing has been very recently identified as one of the seven
technologies “to watch” in the coming year (Eisenstein, 2023). It is due to the fact that the
proteome, which represents the complete set of proteins made by a cell or organism, contains
information about health and disease. However, it remains extremely challenging to
characterize. Compared to DNA, single-molecule protein sequencing is crucial for early
disease diagnosis due to the fact that DNA sequencing of living cells does not fully define
human diseases (Cressiot et al., 2020). For instance, protein sequencing technologies could
be used to identify tumor biomarkers, which can help to determine the presence, absence, or
evolution of cancer (Borrebaeck, 2017). Still, the protein ensemble is by far more complex
than the DNA ensemble. First, to sequence a protein, it necessitates the recognition of
20 naturally occurring (proteinogenic) amino acids, compared with the four nucleotides
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forming the building blocks of DNA molecules, which results in a
much larger chemical diversity (charge, hydrophobicity, polarity,
etc.). Moreover, the proteome includes proteins with post-
translational modifications (Stierlen et al., 2023), e.g.,
phosphorylation, which may alter the location, the function, and
even the folded state of a protein (Bah et al., 2015). Finally, in
contrast to the negatively uniformly charged double strands of
nucleotides, which are the common shared structure of DNA
molecules, proteins occur in many different folded structures
with various heterogeneous charge states. Nowadays, single-
molecule sensors inspired by the techniques used for DNA that
could sequence proteins in an electrolyte sample could be a major
breakthrough on the horizon. Among existing technologies,
nanopore sequencing has immense potential due to the fact that
this technology presents a high sensitivity since single molecules can
be detected. Nonetheless, there are still considerable challenges to
overcome (Bandara et al., 2022; Nicolaï and Senet, 2022; Yang and
Dekker, 2022).

Solid-state nanopores (SSNs), fabricated from stimuli-responsive
materials, have been widely studied in the past decade for the
detection and characterization of single proteins (Lee et al., 2018;
Luo et al., 2020; Xue et al., 2020). The physical principle behind SSN
sensing experiments is the measurement of the ionic current
variations when charged molecules, initially immersed in an
electrolyte, translocate through a nanometer-sized channel in
response to an external voltage applied across the membrane
(Figure 1A). Therefore, as the passage of the single molecule
through the nanopore is driven by an electric field, an appropriate
control of the total charge of the molecule of interest is required

(Nicolaï and Senet, 2022). During that time, the ionic current is
monitored to detect the passage of single molecules through the pore
at a sub-microsecond temporal resolution. By analyzing the features of
the ionic current trace, one can extract crucial structural information
about the biological molecule, including its primary structure, i.e., its
sequence. In comparison with biological nanopores, such as α-
hemolysin (Song et al., 1996) or aerolysin (Strack, 2020), SSNs are
mechanically robust and durable in time, with tunable pore sizes,
geometries, and chemistry (Pérez-Mitta et al., 2019), and compatible
with various electronic or optical measurement techniques. However,
they particularly suffer from critical limitations, such as the high
translocation speed (Fragasso et al., 2020), the low spatial resolution,
and the stochastic motion of biological molecules, which remain as
challenges for accuracy and sensitivity (Meyer et al., 2021) or the non-
specific interaction between proteins and the walls of the SSN, which
can clog the pore and block the translocation of other molecules
(Eggenberger et al., 2019).

Two-dimensional (2D) SSNs, such as graphene (Garaj et al.,
2010; Merchant et al., 2010; Schneider et al., 2010), hexagonal
boron nitride (Liu et al., 2013; Zhou et al., 2013), transition-metal
dichalcogenides MoS2 and WS2 (Liu et al., 2014; Feng et al., 2015;
Danda et al., 2017), or MXenes (Mojtabavi et al., 2019) nanopores,
have been extensively studied experimentally for DNA sequencing
(Arjmandi-Tash et al., 2016; Qiu et al., 2021). Nevertheless, protein
sequencing using 2D SSNs is much less advanced, particularly
compared with silicon nitride SSNs (Kennedy et al., 2016; Dong
et al., 2017; Kolmogorov et al., 2017). To the best of our knowledge,
only few theoretical and one experimental studies about MoS2
SSNs for protein sequencing applications have been reported
(Barati Farimani et al., 2018; Chen et al., 2018; Nicolaï et al.,
2020; Wang et al., 2023). Among those, a very recently published
experimental work demonstrates the identification of amino acids
with sub-1-Dalton resolution using MoS2 nanopores (Wang et al.,
2023). The authors present the use of 41 different sub-nanometer-
engineered pores, with effective diameters ranging from sub-nm to
1.6 nm to directly identify 16 out of 20 types of natural amino
acids. Among the 20 natural amino acids, 18 were negatively
charged by controlling the pH of the electrolyte. However,
using such heterogeneous sub-nm pores and electrolyte
properties might be an obstacle for protein sequencing
applications, particularly for the threading of polypeptides
through the nanopores. In this case, the use of larger pores
( > 1 nm) and polycationic charge carriers is one solution
(Nicolaï and Senet, 2022). Moreover, one of the major
challenges for protein sequencing using 2D SSNs is that the fast
translocation speed of the biological molecule through the
nanoporous membrane of ultimate thickness provides only a
short sensing period, i.e., dwell time, per single molecule
(Nicolaï and Senet, 2022). It makes the assignment of
fingerprints to each of the 20 proteinogenic amino acids from
ionic current time series measurements very challenging. For
example, several distinct features in the recorded ionic current
time series can be detected within a blockade event, and algorithms
in pattern recognition and machine learning can be very helpful to
identify specific fingerprints associated with the single molecule
detected (Barati Farimani et al., 2018; Misiunas et al., 2018;
Farshad and Rasaiah, 2020; Meyer et al., 2020; Nicolaï et al.,
2020; Taniguchi, 2020; Arima et al., 2021; Diaz Carral et al.,

FIGURE 1
(A) Structure of the MoS2 nanopore sensor simulated in the
present work. The membrane is shown in ball and stick (Mo, blue and
S, yellow) plus surface (gray) representations. The peptide is shown in
red (cartoon), with the positions of the center of mass of each
amino acid represented by spheres. The electrolyte is represented by
transparent spheres, the water molecules being not represented for
more clarity. (B) Model peptide sequences XK7 studied in the present
work. The 20 proteinogenic amino acids are grouped by family:
positively (blue) and negatively charged (red), polar neutral (violet),
hydrophobic aromatic (cyan) and non-aromatic (green), and special
cases (orange).
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2021; Tsutsui et al., 2021; Xia et al., 2021; Mittal et al., 2022;
Taniguchi et al., 2022; Jena and Pathak, 2023). Finally, in addition
to signal analysis techniques, molecular dynamics (MD) is also a
very powerful tool to help: i) understanding the origin of these
features and ii) assigning these features to amino acid properties
(chemical, charge, hydrophobicity, etc.) since, from MD, the
positions of all the atoms of the system are known at each time
step, which is an additional crucial information for single
biological molecule sensing, compared to experiments.

In the present work, we performed extensive unbiased all-atom
MD simulations for a total duration of 250 μs for the translocation
of 20 proteinogenic amino acids through a single-layer MoS2
nanopore of an effective diameter of D = 1.3 nm (Figure 1A).
Individual amino acids were chemically linked to a short
polycationic charge carrier, lysine heptapeptide (Figure 1B),
allowing transport of the peptide through the nanopore. This
probe was designed to guide the target peptide toward MoS2
nanopores (Nicolaï et al., 2019). It allows us to control peptide
translocation through solid-state nanopores and relate protein
characteristics with nanopore readouts. Furthermore, this probe
has also been used experimentally (arginine heptapeptide) using
biological nanopores to distinguish among uniformly charged
homopeptides and to assign signature ionic currents to the
charged homopeptides. A transient current blockade is then
induced by the passage of the peptide, whereby the
characterizations of relative residual current and blockade
duration are used to reveal the identity of the linked amino
acid (Ouldali et al., 2020). Moreover, as performed in real-life
experiments, the peptide is initially placed above the membrane in
the cis compartment to simulate its complete translocation
through the nanopore to the trans compartment using a
transverse electric field (no other bias). From the ionic current
time series extracted from MD, we show that each amino acid
presents a large diversity of ionic current blockade levels and
duration. Nevertheless, by applying unsupervised machine
learning (clustering) to the segmentation of translocation
events, specific fingerprints dependent on the charge of the
amino acids were identified. Hereafter, we demonstrate that
both positively and negatively charged amino acids present
well-distinguishable distributions of blockade levels of ionic
current and duration compared to all the other amino acids.
Finally, ideal fingerprints associated with each of the
20 proteinogenic amino acids are presented, some of them
being characteristic of more than one amino acid. These
promising findings may offer a route toward protein sequencing
using MoS2 solid-state nanopores via the identification of coarse-
grained sequences of proteins, from the detection of the position of
charged amino acids in the primary structure, the average coarse-
grained sequence identity being around 10% only.

2 Materials and methods

2.1 Atomistic modeling of MoS2 SSNs

SSN sensors simulated in the present work are composed of
three distinct elements: a single-layer MoS2 membrane and a
biological peptide, both immersed in a KCl electrolyte solution

(Figure 1A). The atomic structure of the full system comprised
around 100,000 atoms in total. Initially, MoS2 membranes were
constructed using 2H-MoS2 orthorhombic unit cell lattice vectors
�a � (3.1, 0, 0) Å and �b � (0, 5.4, 0) Å, comprising six atoms, two
Mo, and four S. The Mo–S bond length was taken as dMo−S = 2.4 Å,
and the S–S distance was taken as dS−S = 3.2 Å. It corresponds to the
geometrical thickness h of the membrane, the effective thickness h*
being around 0.7 nm (Nicolaï et al., 2019; Nicolaï et al., 2020). The
pores of cylindrical shape were drilled at the center of the membrane
by removing atoms whose coordinates satisfy x2 + y2 < R2, where R is
the radius of the pore. We consider MoS2 membranes with
dimensions of 7.5 × 7.5 nm2 and pores of diameter D = 1.3 nm.
Last but not least, the membrane is considered globally neutral, with
atomic partial charges qi for Mo and S computed from the charge
equilibration algorithm (Rappe and Goddard, 1991; Nakano, 1997)
in vacuum using ReaxFF, available in the LAMMPS software
package (Ostadhossein et al., 2017). Partial charges, on average,
are around +0.42 for Mo atoms and −0.21 for S atoms, and the
distribution of partial charges relative to the center of the pore is
shown in Supplementary Figure S1. As expected, partial charges are
strongly influenced by the presence of the pore (vacancies) at the
center of the membrane, with a decrease of partial charges for S
atoms at the mouth of the pore and a decrease or increase for Mo
atoms partial charges depending on their S environment (see
Supplementary Figure S1). The modeling of partial charges is
essential for a better description of electrostatic interactions
between the peptide, the electrolyte with membrane atoms
belonging to the edge of the nanopore.

Biological peptides were built using the AmberTools software.
From the sequence of amino acids defining the peptide, the module
leap creates the all-atom structure from a database. The initial
structure of the peptide created that way does not exhibit a
particular 3D shape and is linear (Figure 1A). During MD
simulations, the structure of the peptide is fully relaxed and can
adopt any conformation. However, during the translocation process,
the peptide is elongated in the nanopore due to its small diameter. In
this work, we study the translocation of 20 distinct peptide
sequences made of a lysine heptapeptide plus one of the twenty
natural amino acids (Figure 1B). This methodology, based on the
number of charge carriers added, and its impact on the ionic current
traces measured during MD simulations has been discussed in a
previous work (Nicolaï et al., 2019). Other techniques have been
tested theoretically, such as applying a hydrostatic pressure gradient
(Chen et al., 2018) or modifying the chemical potential of the
membrane (Luan and Zhou, 2018). The total charge of the
peptide is +7 for neutral amino acids (A, G, I, L, P, V, F, W, Y,
S, T, C, M, N, and Q), +8 for positively charged amino acids (R, K,
and H), and +6 for negatively charged amino acids (E and D).
Peptides are initially placed at a distance of 2.5 nm above the
membrane to avoid a common biased threading when the
peptide is originally placed inside the pore, and it allows us to
simulate the complete translocation process (five steps) as shown in
Supplementary Figure S2, i.e., i) diffusion in bulk electrolyte, ii)
diffusion on the top surface, iii) passage through the pore, iv)
diffusion on the bottom surface, and v) diffusion in bulk
electrolyte. Finally, water molecules, potassium K+ and chloride
Cl− ions (1 M) were added to the simulation box using GROMACS
(Abraham et al., 2018).
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2.2 Molecular dynamics simulations

All-atom classical MD simulations in explicit solvent were
carried out using the GROMACS software package (Abraham
et al., 2018) (version 2018.2 in double precision). Peptide
translocation was enforced by imposing a uniform electric field
directed normally to the nanoporous membrane (z-direction) to all
atomic partial charges in the system. The corresponding applied
voltage simulated is Vbias = −ELz, where Lz = 15 nm is the length of
the simulation box in the z-direction. No other biases were applied
in the present simulations, as done in other works (Barati Farimani
et al., 2018), and we performed the simulation of the full
translocation process of the peptide through the membrane,
i.e., from the bulk solvent compartment above the membrane to
the bulk solvent compartment below the membrane (Figure 1A).
The MoS2 nanoporous membrane was modeled using the harmonic
potential for Mo–S bonds plus S–Mo–S and Mo–S–Mo angles
(Sresht et al., 2017). As mentioned earlier, atomic partial charges
qi for Mo and S were computed from charge equilibration in vacuum
using ReaxFF. Finally, LJ parameters (ϵi and σi) for Mo and S atoms
were adapted from the work of Gu et al. (2017). Peptides were
modeled using the AMBER99sb*-ILDN-q force field (Best et al.,
2012). The water model used in the present work is TIP3P
(Jorgensen et al., 1983). Potassium chloride K+ and Cl− ion non-
bonded parameters (qi, ϵi, and σi) were taken from the work of Joung
and Cheatham (2008), where specific parameters were developed for
the TIP3P water model. Neighbor searching was performed with a
pair list generated using the Verlet method (particle-based cut-offs)
as implemented in GROMACS (Abraham et al., 2018). The neighbor
list was updated every five steps (10 fs), with a cut-off distance for
the short-range neighbor list of 1.0 nm. Moreover, electrostatic
interactions were computed using a Coulomb potential and van
der Waals interactions using the Lennard–Jones (LJ) potential plus
arithmetic mixing rules. Technically, the particle–particle
particle–mesh (PPPM) method (Isele-Holder et al., 2012) was
used to describe long-range electrostatic interactions with a
Fourier spacing of 0.16 nm and a PME order of 4. A cut-off of
1.0 nm was applied to both Coulomb and LJ potential for non-
bonded interactions. Finally, a long-range analytical dispersion
correction was applied to the energy and pressure. Similar MD
parameters have been used in other works (Heiranian et al., 2015;
Barati Farimani et al., 2018; Chen et al., 2018; Thiruraman et al.,
2018; Nicolaï et al., 2019; Nicolaï et al., 2020; Barrios Pérez et al.,
2019; Shankla and Aksimentiev, 2020; Zhao et al., 2021).

For each NEMD run, the simulation box built from the
modeling procedure was first minimized using the steepest-
descent algorithm with a force criterion of 1,000 kJ/mol/nm.
Then, the minimized structure was equilibrated in the NVT
ensemble for 100 ps (δt = 1 fs) using the V-rescale thermostat
(Bussi et al., 2007) at T = 300 K (τT = 0.1 ps), and position
restraints were applied to the membrane and the peptide. The
NVT equilibrated structure was then equilibrated in the NPT
ensemble for 500 ps (δt = 1 fs) using a Parrinello–Rahman
barostat (Parrinello and Rahman, 1981; Nosé and Klein, 1983) at
P = 1 bar (τP = 1.0 ps), and position restraints were applied to the
peptide. Finally, the NPT equilibrated structure was simulated at
Vbias = 1 V for 500 ns (production run) with a time step δt = 2 fs with
constraints applied on chemical bonds involving H atoms using the

LINCS algorithm (Hess et al., 1997). During production runs, xyz-
coordinates of all the atoms of the simulation box were saved every
10 ps.

In total, 12.5 μs of MD simulations were performed for each of
the 20 proteinogenic amino acids, i.e., 250 μs simulation time in
total. It represents more than 10 million hours of CPU time,
performed on AMD EPYC 7302@3 GHz (2 processors, 16 cores/
processor) with a scaling of 150 ns per day on 256 cores.

2.3 Data analysis

2.3.1 Effective free-energy profiles and surfaces
FromMD, we probed the position of the amino acid of interest X

in peptides XK7 by computing the cylindrical coordinates (ρ, z) of the
center of mass of the amino acid side chain at each time step, as
performed in a previous work (Nicolaï et al., 2020). Effective free-
energy profiles Vz and surfaces Vρ,z were computed by using the
following formula:

Vz � −kT log
Pz

Pmax
z

; Vρ,z � −kT log
Pρ,z

Pmax
ρ,z

, (1)

where k is the Boltzmann constant, T is the temperature, Pz and Pρ,z
are the 1D and 2D probability density functions (PDFs) of the
normal z and both radial ρ and normal z-coordinates, respectively,
and Pmax

z and Pmax
ρ,z are the maximum values of Pz and Pρ,z,

respectively. PDFs were computed using the cylindrical
coordinates time series (1,250,000 points) extracted from
concatenated MD trajectories for each of the 20 proteinogenic
amino acids, as shown in Figure 1B.

2.3.2 Ionic current
Ionic current time series were computed from MD production

runs using z-coordinates of K+ and Cl− ions as a function of time:

I t( ) � 1
ΔtLz

∑
Nions

i�1
qi zi t + Δt( ) − zi t( )[ ], (2)

where Δt is the time between MD snapshots chosen for the
calculations (1 ns), Lz is the dimension of the simulation box in
the z-direction, which is the direction of the applied electric field,
Nions is the total number of ions in the electrolyte, qi is the charge of
the ion i (+1 or −1), and zi(t) is the z-coordinate of the ion i at time t.
In addition, ionic current time series were filtered in order to remove
high-frequency fluctuations by computing the moving mean of the
ionic current over T = 1,000 samples.

2.3.3 Detection of peptide-induced blockade
events

The detection of peptide-induced blockade events from ionic
current time series was performed using a two-threshold method, as
applied elsewhere (Ouldali et al., 2020). First, a threshold th1 is
applied to identify possible blockade events. The threshold th1 was
defined as th1 =< I0 > − 4σ0, where < I0 > is the mean value of open-
pore ionic current and σ0 is its standard deviation. In the case of
single-layer MoS2 nanopore of diameter D = 1.3 nm, the
corresponding values are < I0 > � 3.55 nA and σ0 = 0.25 nA
(Barrios Pérez et al., 2019). A possible blockade event always
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starts when the ionic current decreases below th1 and ends when the
ionic current first increases above th1 (see Supplementary Figure S4).
The advantage of this threshold is to eliminate the overwhelming
majority of the open-pore ionic current fluctuations monitored
during translocation experiments. Second, from ionic current
values below th1 for a given possible blockade event, we
computed the corresponding probability distribution P(I), and a
Gaussian distribution was then fitted to the data. If the mean value of
the Gaussian fit < Ib > is below th2 =< I0 > − 5σ0, the event is
considered a peptide-induced blockade event.

2.3.4 Structural break detection and clustering
analysis

Structural break detection was performed using the Chow test,
an algorithm used when a potential structural break in the time
series may be recognized a priori. The principle is to evaluate the
parameter stability, namely, to determine if the underlying
regression model parameters have remained unchanged. In this
case, peptide-induced blockade event ionic current data were split by
one point in time, getting two different datasets. The null hypothesis
of the Chow test asserts that true coefficients in two linear
regressions on these two datasets are equal. Structural changes
take place in points where the null hypothesis is rejected
(Aronov et al., 2019; Sun and Wang, 2022).

Clustering was performed using the Gaussian mixture model
(Reynolds, 2009) (GMM) for which Gaussian free parameters (πk, μk,
and Σk) representing the weight, the means, and the covariances,
respectively, were estimated from the expectation–maximization (EM)
algorithm (Dempster et al., 1977). To do so, we used scikit-learn, which is
an open-source machine learning Python library. In addition, to estimate
the number of sub-populations for each amino acid, we used the Bayesian
Information Criterion (BIC) score to estimate the proper number of
componentsK to GMM (Schwarz, 1978) (Supplementary Figure S13). In
addition, full and tied covarianceswere set as a parameter of themodel for
1D and 2D clustering, respectively. Finally, the convergence threshold
used was 0.001, which means that when the lower bound average gain
falls under this limit, EM iterations will end. From GMM clustering
outputs, i.e., cluster means <ΔIb > and < τb > , we computed 2D
probability densities P(< ΔIb >, < τb >) using 20 and 30 bins,
respectively. The convergence of GMM clustering techniques applied
to 1D (Figure 3) and 2D probability densities (Figure 4) as a function of
input data is presented in Supplementary Figure S14.

3 Results and discussion

3.1 Translocation of the 20 proteinogenic
amino acids through MoS2 nanopores

In translocation simulations, a nanoporous membrane made of
single-layer MoS2 with a pore of diameter D = 1.3 nm separates the
two compartments, cis and trans, which contain a 1M KCl
electrolyte solution (Figure 1A). In the cis compartment, a
biological peptide XK7, with X being one of the 20 proteinogenic
amino acids (Figure 1B), is initially placed above the membrane at a
vertical distance of around 2.5 nm. The translocation simulation
starts by applying an external voltage of 1 V across the membrane.
After diffusing in bulk electrolyte for a few ns, the peptide starts

diffusing on the top surface of the membrane and then translocates
through the nanopore (Supplementary Figure S2). Once the
translocation happens, the peptide diffuses on the bottom surface
of the membrane in the trans compartment and detaches at some
point to go back to the bulk electrolyte. This latter step is not
observed in all translocation simulations, and sometimes, only a
partial translocation is achieved (Supplementary Figure S2).

FromMD, we computed the sensing time TS of each amino acid
X belonging to the peptide XK7. As shown in Figure 2A, negatively
charged amino acids E and D present a TS one order of magnitude
higher than that of the neutral amino acids and two orders of
magnitude larger than that of the positively charged amino acids. It
means that the charge property of the amino acids mainly dictates
the sensing characteristics of the amino acids in MoS2 nanopores
using MD. Within a family, sensing time TS are very similar, except
for: i) K in the positively charged family, which presents a TS
3–4 times larger than H and R; ii) S and Q in the polar neutral
family, which present a TS 3–4 times larger than T and N; and iii) C
in the special cases family, which presents a TS 2–3 times larger than
G and P. In addition, from the position of the center of mass of each
amino acid side chain, we computed the effective free-energy
profiles Vz along the normal coordinate z in order to estimate
the barrier for the passage of each amino acid through the
nanoporous membrane. Figure 2B shows the effective free-energy
profiles Vz (FEPs) for R (positively charged), E (negatively charged),
S (polar neutral), W (hydrophobic aromatic), V (hydrophobic non-
aromatic), and G (special cases). The other FEPs are available in
Supplementary Figure S3. From MD and independently of the
amino acid characteristics, the FEPs along the normal
coordinates present an asymmetry due to the presence of the
electric field and share two similar features: i) a local minimum
in the cis compartment (z ~ 0.5 nm) corresponding to the diffusion
of the peptide on the top surface of the membrane and ii) a global
minimum in the trans compartment (z ~ − 0.5 nm) corresponding
to the diffusion of the peptide on the bottom surface of the
membrane after translocation. However, the behavior of
negatively charged amino acids (E and D) shows some
differences compared to the others. In the cis compartment,
there are two local minima centered around z ~ 0.0 and z ~
1.0 nm. This happens because negatively charged amino acids
interact with the electric field in the opposite direction of
translocation, and even after the full translocation of the peptide,
these amino acids can go back individually to the pore during the
diffusion process. It means that the free-energy barriers for all amino
acids except the negatively charged ones correspond to the full
translocation, whereas for negatively charged amino acids, it
corresponds mainly to the exit of the pore, for which the barrier
of the entrance is much smaller (Figure 2B; Supplementary Figure
S3A). For comparison, the profiles for cations K+ and anions Cl− are
symmetrical and flat in the bulk region. The free-energy increases
when approaching the MoS2 surface and being maximum (saddle
point) at z ~ 0 nm.

From the 1D FEPs Vz, we estimated the effective free-energy
barrier for the translocation of each amino acid X. As shown in
Figure 2C, the free-energy barriers ΔVz are correlated with the
volume of the amino acids (Pearson correlation ~ 0.7). This is
particularly clear for amino acids with volumes below 150 �A

3
,

and even for larger amino acids (> 150 �A
3), the tendency is
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increasing, although other properties may influence the
translocation, the charge property being one of them, as shown
by comparing amino acids with similar volumes and different charge
properties, i.e., E and V or K and L in Figure 2C. The correlation of
free-energy barriers ΔVz with the amino acid number of atoms is
similar to the one with the volume of amino acids (Pearson
correlation ~ 0.7, Supplementary Figure S3B). For comparison,
the free-energy barriers for the passage of K+ and Cl− ions are
4.9 and 4.4 kT, respectively (Figure 2E).

Finally, we computed the effective free-energy surfaces Vρ,z

(FESs) of each amino acid during their passage inside the MoS2
nanopore. First, the FESs explored by the 20 proteinogenic amino
acids are very heterogeneous (Figure 2D; Supplementary Figure
S3C). However, some observations must be highlighted. For

instance, all three positively charged amino acids, K, H, and R,
translocate through the pore far away from the vertical edges located
at ρ ~ R. It is also the case even if it is less pronounced for
hydrophobic non-aromatic amino acids, such as V, I, L, and M.
The opposite behavior is observed for negatively charged amino
acids E and D, which reside inside the nanopore closer to the vertical
edges due to the presence of Mo atoms in the pore throat, with their
global minimum being inside the pore, as explained earlier from
FEPs Vz. It is also the case for serine (S), which is characterized by
the presence of an oxygen atom at the extremity of its side chain, as it
is the case for E and D. For comparison, free-energy surfaces of K+

and Cl− ions present the same behavior, i.e., cations translocate in a
narrower channel than anions due to the presence of positively
charged Mo atoms at the mouth of the pore. However, compared to

FIGURE 2
(A) Sensing time TS (in ns) as a function of amino acids. The color code is the same as in Figure 1. (B) Effective free-energy profiles Vz (in kT unit, T =
300 K) along the normal coordinate z of the amino acid side chain center of mass. Gray rectangles represent the position of the MoS2 nanoporous
membrane. (C) Effective free-energy barriers ΔVz (in kT unit) as a function of the amino acid volume (in�A

3
). (D) Effective free-energy surfaces Vρ,z (in kT

unit) as a function of the radial and normal coordinates of the amino acid side chain center of mass inside the nanopore (ρ < R = 0.65 nm and |z| < h/
2 = 0.16 nm). The colormap is terrain, from blue (0 kT) to green (2.5 kT) to yellow (5 kT) to brown (7.5 kT) to white (≥10 kT). The red and yellow circles
represent the global and local minima within 1 kT, respectively. (E) Effective free-energy profiles Vz along the normal coordinate z of the ions. (F) Effective
free-energy surfaces Vρ,z (in kT unit) as a function of the radial and normal coordinates of the ions inside the nanopore.
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the amino acids, the translocation landscape of ions is more flat and
spread over the entire pore channel. Second, as shown in Figure 2D,
some amino acids present a wide, extended basin in their FESs, such as
H, N, W, and G, whereas some of them present a narrower
translocation channel, such as R, Q, A, and P. It is not surprising
for G since it is characterized by the smallest side chain, i.e., an H atom.
Nevertheless, it is surprising for W amino acid, which is the largest
amino acid in terms of volume. It comes from the different orientations
of the aromatic rings observed during MD. Therefore, hydrophobic
aromatic amino acids W and Y present multiple minima in the radial
direction ρ during their passage inside the nanopore. In the wider
translocation channel (H, N, W, and G), FESs are quite flat, with only
small barriers between the existing multiple local minima. In the
narrower channel, the barriers are much larger, with uphill profiles
inside the pore to enter it (K and Q) or exit it (M, C, V, and T).

3.2 Detection of peptide-induced blockade
events

Figure 3A shows ionic current variations monitored during MD
and representing the translocation of the 20 different proteinogenic
amino acids through MoS2 nanopores. The data are grouped
according to the family to which amino acid X belongs,
i.e., positively charged (blue), negatively charged (red), polar/
neutral (violet), hydrophobic aromatic (cyan), hydrophobic non-
aromatic (green), and a special case (orange). In the absence of
peptide inside the nanopore, a steady ionic current of mean value
I0 = 3.55 ± 0.25 nA flows through the pore. The threading of the
peptide into the nanopore induces transient blockades of the ionic
current, each ionic current blockade corresponding to the presence of
an individual peptide in the nanopore (Nicolaï et al., 2020). From
ionic current time series, peptide-induced blockade events were
extracted using a two-threshold method (Supplementary Figure S4)
in order to proceed in a very similar way as performed in experiments
(Ouldali et al., 2020). Each peptide-induced blockade event is
characterized by a blockade ionic current trace Ib(t) of duration τb
(Figure 3B). The total sensing duration per amino acid, which
corresponds to tens of translocations, varies from 10% (T) to 25%
(V) of the total simulation time per amino acid (12.5 µs), with an
average of around 17%. As shown in Figure 3B and as observed
experimentally, there is a very large variability of blockade ionic
current traces that can be visually observed for all amino acids
(Supplementary Figures S5–S8). On the one hand, for a given
amino acid, some events with similar duration τb are characterized
by deep ionic current blockades, and some traces are characterized by
slight ionic current blockades, as shown in Figure 3B for N and I
amino acids. On the other hand, some events maintain fairly constant
blockade current traces, and others show switching levels and bumps,
as shown in Figure 3B for R and F amino acids, depending on the
radial position of the peptide in the pore (Nicolaï and Senet, 2022).
Finally, some blockade traces are characterized by very short duration
(a few ns), whereas others are relatively long (a few hundred of ns), as
shown in Figure 3B for D and C amino acids. To better characterize
this variability of traces detected from translocation simulations, we
computed probability densities of blockade ionic current P(Ib) and
compared them between the 20 proteinogenic amino acids.

3.3 Probability densities of blockade ionic
current traces

Figure 3C shows the probability densities P(Ib) for each amino
acid grouped per family. Overall, the superimposed densities do
not exhibit well-separated populations between the amino acids
within a family, as measured experimentally for biological
nanopores (Ouldali et al., 2020). Nevertheless, some notable
exceptions are observed and discussed in the following text. In
the present work, P(Ib) densities present multiple peaks for each
amino acid, i.e., sub-populations, which means that different
fingerprints of blockade current exist during translocation
simulations through MoS2 nanopores. Per amino acid, the
number of sub-populations in the data was assessed by using
the Gaussian mixture model (GMM) clustering technique
associated with the Bayesian Information Criterion (BIC, see
Materials and methods). In total, we identified two (P), three (H,
R, D, W, V, I, L, M, C), four (K, E, S, T, Q, F, Y, A, G), or five (N)
sub-populations per amino acid (Supplementary Table S1),
corresponding to four ranges of blockade current Ib: first, the
range (0, 1.0) nA, corresponding to depths ΔIb larger than around
70% of the open pore signal; second, the range (1.0, 1.5) nA,
corresponding to depths ΔIb between around 60% and 70%; third,
the range (1.5, 2.0) nA, corresponding to depths ΔIb between 40%
and 60%; and fourth, the range (2.0, 2.5) nA, corresponding to
depths ΔIb smaller than 40%. The two-threshold method
imposed here does not permit the detection of depths ΔIb
lower than 30% of the open-pore current.

For all 20 proteinogenic amino acids, the major sub-population
of P(Ib) is between 1.7 nA (depth ΔIb of 50%) for W amino acid and
1.9 nA (depth ΔIb of 45%) for P amino acid, which is close to be
easily distinguishable (Figure 3C). The associated weights of each
sub-population (see Supplementary Table S1) range from 34% (N)
to 80% (P). Per family, for positively charged amino acids, 3 (H and
R) and 4 (K) fingerprints of blockade current are detected, with
major sub-populations centered around 1.7–1.8 nA. The main
differences between the three positively charged amino acids are
observed for K, which presents a minor sub-population at 0.4 nA
(depth ΔIb of 90%) compared to H and R, and for H, which presents
a minor sub-population around 0.9 nA (depth ΔIb of 70%). For
negatively charged amino acids, 4 (E) and 3 (D) fingerprints of
blockade current are detected, with major sub-populations centered
around 1.7 nA, these values being slightly smaller than the ones for
positively charged amino acids. The main differences between E and
D are observed for larger blockade ranges (depth ΔIb > 60%), with
minor sub-populations centered around 1.3 and 0.6 nA for E and
around 1.0 nA for D.

For polar/neutral amino acids, 4 (S, T, Q) and 5 (N)
fingerprints of blockade current are detected, with major sub-
populations centered between 1.7 and 1.8 nA. These values are
comparable with charged amino acids, S and T closer to (K, H,
and R) and (N and Q) closer to (E and D), as shown in Figure 3C.
However, for minor sub-populations, polar/neutral amino acids
present much more dissimilarities between them than charged
amino acids. For instance, T amino acid shows a singular minor
sub-population centered around 1.3 nA. In addition,
singularities are also observed for N and S amino acids,
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which show a minor sub-population at 2.0 and 1.5 nA,
respectively.

For hydrophobic/aromatic amino acids, 3 (W) and 4 (F and Y)
fingerprints of blockade current are detected, with major sub-
populations centered around 1.7 nA (F andW) and 1.8 nA (Y). For
Y amino acid, a minor sub-population close to the major one at
1.5 nA is detected, which is not the case for F and W amino acids.
Moreover, compared to W and Y, F amino acid presents a minor
sub-population centered at 0.7 nA, which corresponds to a depth

ΔIb of 80% (75% at maximum forW and Y). For hydrophobic/non-
aromatic amino acids, 3 (V, I, L, and M) and 4 (A) fingerprints of
blockade current are detected, with the major sub-population
centered around 1.7 nA with values being extremely close.
Among all the amino acid families, the hydrophobic/non-
aromatic is the one showing the least differences between
amino acids except for L, which shows a singular behavior with
two major sub-populations of similar weight at 1.8 and 1.1 nA. To
a lesser extent, M amino acid shows the same sub-population at

FIGURE 3
(A) Ionic current (in nA) as a function of time (in μs) recorded during MD simulations of the translocation of the 20 amino acids through MoS2
nanopore. Dashed lines represent the average open-pore value < I0 > . The gray area represents the threshold used to detect peptide-induced blockade
events (see Materials and methods). For each amino acid, the same color code is used as in Figure 1B. (B) Examples of peptide-induced blockade ionic
current traces Ib(t) recorded during translocation simulations. Depth ΔIb ≡ 1 − Ib/ < I0 > (in %) and duration τb (in ns) are indicated. The color code is the
same as in (A). (C) Probability densities P(Ib) computed using a bin of 0.1 nA. The color code is the same as in (A).
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1.1 nA but with a smaller weight, 20% vs. 40% for L
(Supplementary Table S1).

Finally, for the special case amino acids, 2 (P), 3 (C), and 4 (G)
fingerprints of blockade current are detected, with the major sub-
populations being centered around 1.7 nA for C and G, and 1.9 nA
for P, which is the largest value detected. Visually, the special case
family is the one that reveals the largest dissimilarities with a major
sub-population for P amino acid that is very wide compared with
not only G and C but also all the other amino acids. Moreover, C
amino acid presents a second well-separated sub-population at
1.2 nA (depth ΔIb of 65%) compared to G and P. Last but not
the least, surprisingly, G amino acid, which is the smallest amino
acid with an H atom as a side chain, presents a sub-population at
0.4 nA (depth ΔIb of 90%) as observed for K amino acid. This
confirms that the volume of the amino acids (Perkins, 1986) is not
the only physical mechanism underlying the dependence of
blockade ionic current on the amino acid type through MoS2
solid-state nanopores (Supplementary Figure S9). In fact, only
tryptophan (W) amino acid, which is the largest amino acid in
volume (228 Å3), presents the largest major sub-population of
blockade ionic current among all the 20 proteinogenic amino
acids. On the contrary, glycine (G), which is the smallest amino
acid in volume (60 Å3), presents a minor sub-population in the same
range as W (same weight), with a value centered at 0.35 nA for G
compared to 0.94 nA for W.

Compared to the experimental work mentioned in the
introduction (Wang et al., 2023), we identified more sub-
populations per amino acid. For SSNs with diameters comparable
to the size of the amino acids being detected (0.6 nm), the
experimental distributions of the current trace are bimodal,
whereas in the present work, it can vary from 2–5 sub-
populations. It is due to the fact that we consider a single device
here, compared to 41 experimental devices, with a pore diameter of
1.3 nm compared to sub-nm (0.6–0.8 nm) to 1.6 nm in experiments
and the time scale of microseconds in MD compared to seconds in
experimental measurements. However, the overlap between the
probability distributions P(Ib) of the different amino acids is
similar between our theoretical work and the experimental one,
but the separation of the maximum peaks is more important in the
latter than the ones presented in Figure 3C and in Supplementary
Table S1. Finally, the correlation between the means of blockade
current and the volume of the amino acid is well established
experimentally for SSNs with diameters comparable to the size of
the amino acids being detected, whereas in our simulations with
larger pore diameters, other mechanisms, such as the orientation of
the side chains, are important, as already demonstrated in a previous
work (Nicolaï et al., 2020). This mechanism is also observed
experimentally for positively charged amino acids (Wang et al.,
2023).

To conclude, among the 20 proteinogenic amino acids studied
here, peptides containing K, T, N, G, P, or L amino acids produced
distinct minor blockade sub-populations of ionic current
compared to the other amino acids, whereas the major blockade
sub-populations of ionic current are very similar to be
differentiated. Therefore, additional information from blockade
traces of ionic current is required to improve their recognition
using MoS2 SSNs. A first guess is to include, in the clustering
analysis, a better description of the depth and duration of the

blockade traces of ionic current detected from translocation
simulations.

3.4 Clustering of blockade levels from ionic
current traces

To quantify the depth ΔIb and duration τb of each level of
ionic current observed during peptide-induced blockade events
and extracted from the time series shown in Figure 3A, we
applied a structural break detection algorithm (see Materials
and methods). It allows us to convert raw signals of blockade
current traces into simplified step-wise signals, as shown in
Figure 4A. It leads to: i) a better characterization of blockade
events compared to the traditional methodology, i.e., using the
mean values of ionic current during the associated blockade
event, considering the events to be constant as a function of
time, and ii) an increase of the statistics of blockade event data.
For instance, it reduces by a factor of 3 the mean-squared errors
between the raw and the step-wise model signals compared to
the constant model signal (Supplementary Figure S10). In
addition, it increases by a factor of 6 the statistics of
blockade event data, which is crucial for machine learning
applications.

Figure 4B represents the duration τb vs. depth ΔIb of blockade
levels of ionic current extracted from structural break detection.
First, ΔIb is between 1.0 and 3.5 nA, which represents depths
from 30% to 100% of the total open-pore conductance. Second,
duration τb is between a few hundreds of picoseconds to a few
hundreds of nanoseconds. The visual comparison of 2D maps
(ΔIb, τb) per amino acid family is complex due to the existing
overlap between blockade level characteristics. However, we can
observe some major differences between positively and negatively
charged amino acids. For example, E and D amino acids present
blockade levels with larger depths, whereas K, H, and R present
blockade levels with shorter durations. Moreover, the
hydrophobic/non-aromatic amino acid family (A, V, I, L, and
M) shows similarity with the positively charged amino acid
family. Finally, for G amino acid, which presented a non-
negligible sub-population of depth ΔIb 90% blockade in its
probability density P(Ib) (Figure 3C), we can observe in its 2D
map (ΔIb, τb) that only three very long blockade levels among the
hundreds detected are, in fact, responsible for this behavior
(Figure 4B).

To extract duration τb and depth ΔIb fingerprints of blockade
events associated with the 20 proteinogenic amino acids for
further sequencing applications, we applied unsupervised
learning (clustering) to the 2D maps presented in Figure 4B.
The GMM algorithm was employed repeatedly to detect a single
cluster per amino acid by modifying the data taken into account
to initialize each cluster mean (see Materials and methods). As
input data of GMM algorithm, each blockade level k was
characterized by the three following features
(a.a labelk,ΔIbk, τbk). As output data of the GMM algorithm,
the cluster means of duration < τb > and depth <ΔIb > were
extracted for each amino acid and 2D probability densities P(<
ΔIb >, < τb >) were computed. As shown in Figure 4C, the
application of the clustering technique to the depth and duration
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of blockade levels provides crucial information for the
identification of the 20 proteinogenic amino acids using MoS2
SSNs. First, negatively charged amino acids E and D show very

similar fingerprints within each other and very low similarity
compared to all the other amino acids (except for T, W, F, I, and
C with medium similarities, Figure 4D and Supplementary

FIGURE 4
(A) Structural break detection applied to ionic current blockade traces. The raw signal is converted into a step-wise signal, and each level of blockade
ionic current is characterized by its duration τb and depth ΔIb. (B) Blockade level duration τb (in ns) vs. blockade level depth ΔIb (in nA). The data are
grouped by amino acid family using the same color code as in Figure 1. (C) 2D Probability density functions of cluster means <ΔIb > and < τb > . Yellow
circles represent the extrema. (D) Similarity matrix between 2D PDFs shown in (C). (E) Ideal representation of a blockade ionic current tracemade of
the 20 proteinogenic amino acids and extracted from extrema shown in (C).
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Figure S11). In addition, they both present two distinct extrema
(Figure 4C; Table 1), which correspond to the two relevant
blockade levels of current that can be associated with them.
These two distinct fingerprints are not present for medium
similarity amino acids (T, W, F, I, and C), for which only the
levels having the smallest depths are observed. Second, a
comparable observation can be made for positively charged
amino acids K, H, and R. They present the same number of
fingerprints (2 extrema, Table 1) and show distinct fingerprints
compared to all the other amino acids except with M, which is
extremely similar to K. Moreover, the comparison between
positively charged and neutral Histidine (Supplementary
Figure S12) confirms that the presence of a second extremum
at a smaller duration τb is specific to positively charged amino
acids. On the other hand, H and R present fingerprints with very
high similarities within each other and with P, but with a
different number of extrema (2 vs. 1). Compared to E and D,
the two fingerprints observed for K, H, and R are characterized
by different durations for smaller depths (Figure 4E).

Overall, in addition to charged amino acids, which present
specific characteristics and can be easily identified, T and L amino

acids also present singular behavior with 4 and 3 fingerprints
(Table 1), respectively. These two amino acids can also be easily
identified visually from clustering of levels duration and depth of
blockade events. Within each amino acid family, starting with the
polar/neutral family, only S and Q show high similarity, while all
the others present very low similarity within each other. It is
noticeable that N amino acid, although being characterized by a
single fingerprint as many other neutral amino acids (80% of
them), differs by possessing the smallest and relatively short level
of blockade current among all the amino acids. Then, for
hydrophobic amino acids, only F and W present very similar
fingerprints, as well as A and V. Finally, for the special cases
family, only G and P present medium similarity. To summarize
and as shown in Figure 4E, only two families of amino acids can
be visually identified from their blockade levels of ionic current
recorded from their translocation through single-layer MoS2
nanopores: the positively charged amino acids on one side and
the negatively charged amino acids on the other side. For neutral
amino acids, T and L can also be identified, presenting singular
fingerprints. This result is crucial to demonstrate the feasibility of
using 2D MoS2 nanopores for protein sequencing applications.

TABLE 1 Characteristics of extrema per amino acid (a. a.) extracted from 2D PDFs of cluster means <ΔIb > and < τb > shown in Figure 4C. Ne corresponds to the
number of extrema per a. a.

a. a. family a. a. Ne (<ΔIb > ; < τb > ) (nA ; ns)

Positively charged

K (lysine)

2

(1.65 ; 5.6)
(1.95 ; 1.4)

H (Histidine)

R (arginine)

Negatively charged E (glutamic acid) 2 (1.85 ; 14.1)
(2.65 ; 17.8)

D (aspartic acid)

Polar neutral

S (serine) 1 (1.75 ; 8.9)

T (threonine) 4
(1.85 ; 11.2)
(2.65 ; 14.1)
(2.75 ; 2.8)
(2.75 ; 8.9)

N (asparagine) 1 (1.45 ; 4.5)

Q (glutamine) (1.75 ; 8.9)

Hydrophobic aromatic

F (phenylalanine)

1

(1.75 ; 11.2)

W (tryptophan) (1.75 ; 11.2)

Y (tyrosine) (1.75 ; 7.1)

Hydrophobic non-aromatic

A (alanine)

1

(1.75 ; 7.1)

V (valine) (1.75 ; 8.9)

I (isoleucine) (1.75 ; 11.2)

L (leucine) 3 (1.95 ; 1.1)
(1.95 ; 2.8)
(2.75 ; 2.8)

M (methionine) 2 (1.65 ; 5.6)
(1.95 ; 1.4)

Special cases

G (glycine)

1

(1.75 ; 8.9)

P (proline) (1.55 ; 5.6)

C (cysteine) (1.85 ; 11.2)
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4 Conclusion

In the present work, we demonstrated the ability of single-
layer MoS2 nanopore sensors to differentiate positively and
negatively charged amino acids from neutral ones using
classical MD and unsupervised machine learning-based
models. From the large variability of ionic current traces
monitored during translocation simulations and shown in
Figure 3B and Supplementary Figures S5–S8, we developed a
methodology to extract relevant blockade levels of ionic current
based on multiple translocations (readouts) of a given amino
acid. We used structural break detection applied to the different
traces. Then, 2D clustering of blockade depth (drop) and duration
(dwell) allows us to statistically identify relevant discrete blockade levels,
hereafter called fingerprints specific to each amino acid. From this
methodology, we showed that both positively and negatively charged
amino acids are characterized by two fingerprints, while most of the
neutral amino acids are characterized by a single one (except T, L, and
M). In addition, the similarity between amino acids fingerprints is very
low, with 60% of the similarities between pairs of amino acids being
below 30%, with 30% being between 30% and 70%, and 10% larger than
70%. From the present conclusion, we propose the use of Coarse-
Grained SEQuences (CGSEQs) of proteins for their identification.
CGSEQs are made of three motifs A, B, or C, A being positively
charged amino acids (K, H, and R), B being negatively charged amino
acids (E and D), and C being neutral amino acids. For example, the
CGSEQ of the KTKEGV sequence, which is a specific motif of the
protein α-synuclein, a biomarker of Parkinson’s disease (Dettmer et al.,
2015; Nicolaï et al., 2020), is ACABCC.

As a proof of concept, we tested the CGSEQ protein
sequencing hypothesis by using the protein sequences
available from the ASTRAL database (Brenner et al., 2000),
which provides representative subsets of proteins after the
elimination of doublons and sequence identity larger than
95%. It corresponds to a total of 13,000 protein sequences
instead of 35,000 available. For each pair of sequences of the
same length, we computed the CGSEQ percentage identity as
the normalized dot product between simplified sequences by

assigning value 1 for the product of two identical symbols and
0 otherwise. For example, the dot product of ACAB with BCAA
is (0 + 1 + 1 + 0)/4 = 0.5. As shown in Figure 5A, the average
percentage of CGSEQ identity, computed considering at least
10 protein sequences of the same length for each length
available, varies from 9.0% to 21.6%, with an average score
of 13%, which is very low. By comparison, the average
percentage identity using the full sequence of amino acids is
6% (values range between 5.4% and 17.2%). In addition, if we
consider one of the largest ensembles of protein sequences of
the same length, i.e., N = 99 amino acids, we observe that 6% of
CGSEQ identities are exactly zero (Figure 5B). Moreover, 35%
and 92% of the CGSEQ identities are below 10% and 20%,
respectively (Figure 5C). Therefore, the present results and the
CGSEQ identity analysis demonstrate that the differentiation of
positively charged, negatively charged, and neutral amino acids
using MoS2 nanopores would allow the identification of
proteins from their sequences. This is a major finding for
further protein sequencing applications as it seems that the
goal of detection of every amino acid of a polypeptide for its
identification is not necessary.
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FIGURE 5
(A) Average CGSEQ percentage identity (left y-axis) as a function of the sequence length computed from protein sequences available in the ASTRAL
database. Green and red dots indicate the identity values using the full sequence and the coarse-grained sequence, respectively. Blue dots indicate the
number of sequences as a function of the sequence length from the database (right y-axis). (B) CGSEQ identity matrix computed between protein
sequences of lengthN = 99 available in the ASTRAL database. (C)Histogram of CGSEQ identity computed between protein sequences of lengthN =
99 available in the ASTRAL database.
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