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modulating hippocampal learning and storage (McGaugh, 2000). 
It is thus not possible to use findings from IA tasks to explain the 
role of NE in the formation of memory for amygdala-dependent 
fear conditioning.

In the present study, we therefore sought to systematically 
explore the contribution of βARs to auditory fear conditioning 
in the LA. We first replicated, using a range of doses, the finding 
that infusion of propranolol into the LA fails to affect fear memory 
consolidation. Next, we examined the effects of pre-training infu-
sions of the same range of propranolol doses, and found that LTM 
was impaired. If the LTM impairment produced by pre-training 
infusions was due to an effect on learning, pre-training infusion 
of propranolol should also impair short-term memory (STM). 
Indeed, this was found. Finally, we examined effects of pre-testing 
infusion of propranolol in the LA on fear expression to rule out the 
possibility that a deficit in expression during training accounts for 
the effects on learning. Together, the results suggest that βARs in 
the LA are involved in the acquisition, but not the consolidation or 
expression, of memory for auditory fear conditioning.

Materials and Methods
aniMals
Adult male Sprague–Dawley rats were obtained from Hilltop 
Laboratory Animals, Inc. (Scottdale, PA, USA) at a weight of 275–
300 g upon arrival. Rats were individually housed in transparent plas-
tic Nalgene cages and maintained on a 12/12 h light/dark cycle (lights 
on at 7:00 AM) within a temperature- and humidity-controlled 
environment. Food and water were available ad libitum  throughout 

introduction
Norepinephrine (NE) has long been implicated in fear and anxiety 
(Gray, 1978; Aston-Jones and Bloom, 1981; Aston-Jones et al., 1999, 
2000; Sullivan et al., 1999; McGaugh et al., 2002), and is known to 
play a role in learning, memory and plasticity (Bailey et al., 2000; 
McGaugh et al., 2002; Roozendaal et al., 2004; Tully et al., 2007). 
Nevertheless, the contribution of NE to Pavlovian fear condition-
ing, a leading model for understanding the neural basis of fear and 
anxiety and learning and memory, is not well understood.

There have been many studies of NE contributions to aversive 
memory tasks, especially inhibitory avoidance (IA) (McGaugh, 2004; 
Roozendaal et al., 2008). These studies clearly show that NE, acting via 
beta-adrenergic receptors (βARs), contributes to the consolidation 
of long-term memory (LTM) of IA. This has been shown in studies 
in which NE or βAR agonists or antagonists are given immediately 
after training, either systemically or within the lateral (LA) and basal 
(B) amygdala. In contrast, studies of auditory fear conditioning have 
failed to find effects of immediate post-training treatment with NE or 
the βAR antagonist propranolol given systemically (Lee et al., 2001), 
and post-training infusions of propranolol into in the LA and B 
also fail to have an effect on LTM (Debiec and LeDoux, 2004). This 
discrepancy between results in IA and fear conditioning tasks is not 
restricted to NE manipulations (e.g. Bueno et al., 1993; Wilensky 
et al., 2000). Most likely, the differences between the paradigms are 
due to the fact that in auditory fear conditioning memory is con-
solidated in the amygdala (Schafe et al., 1999; Schafe and LeDoux, 
2000; Rodrigues et al., 2004), whereas IA memory formation is hip-
pocampal dependent (O’Keefe and Nadel, 1978) with the amygdala 
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the duration of the experiments. All  procedures were conducted in 
accordance with the National Institutes of Health Guide for the Care 
and Use of Experimental Animals and were approved by the New 
York University Animal Care and Use Committee.

stereotaxic surgery
Rats were anesthetized with a mixture of ketamine (Ketaject®; 
100 mg/kg, i.p.) and xylazine (Xyla-Ject®; 10 mg/kg, i.p.), with 
supplementation as needed, along with buprenorphine–HCl 
(Buprenex® 0.02 mg/kg, s.c.) for analgesia, and placed in a stere-
otaxic apparatus (David Kopf Instruments, Tujunga, CA, USA). 
Supplemental doses of the mix were given as needed to maintain 
a deep level of anesthesia. Body temperature was maintained with 
a heated gel pad. Stainless steel guide cannulae (22 gauge; Plastics 
One, Roanoke, VA, USA), fitted with 28 gauge internal cannulae 
that extended 1.5 mm beyond the guides, were lowered into the LA 
using the following coordinates from Paxinos and Watson (1998) 
(28) for the LA: −3.2 mm anteroposterior (AP), ±5.5 mm medi-
olateral (ML), and −8.0 mm dorsoventral (DV) from the skull. The 
cannulae were secured to the skull using surgical screws and acrylic 
dental cement. Twenty-eight gauge dummy cannulae, cut to extend 
0.5 mm from the guides, were inserted to prevent clogging (29–32). 
After surgery, rats were administered buprenorphine hydrochloride 
(Buprenex® 0.02 mg/kg, s.c.) for analgesia, and given at least 7 days 
to recover from surgery prior to behavioral manipulations.

drug preparation and Microinfusions
Propranolol ((±)-Propranolol hydrochloride) was obtained from 
Sigma-Aldrich Co. (St. Louis, MO, USA), and freshly dissolved in 
artificial cerebrospinal fluid (ACSF) immediately prior to injec-
tions. Concentrations were prepared for three dose groups: 0, 0.1, or 
1.0 μg/0.25 μl/side. For the drug infusions, internal infusion cannulae 
were attached to 1.0 μl Hamilton syringes via .015” × .043” × .014” 
polyethylene tubing obtained from A-M Systems, Inc. (Carlsborg, 
WA, USA). Each tubing and syringe was backfilled with distilled 
water, and a small air bubble separated the water from the infusate. 
While held in the experimenter’s lap, rats were bilaterally infused 
with 0.25 μl using an infusion pump that delivered drug at a con-
stant rate of 0.15 μl/min. Cannulae were left in place for an addi-
tional 75 s to allow drug diffusion away from the cannula tip.

fear conditioning apparatus and stiMuli
Rats underwent habituation and fear conditioning in one of four 
identical chambers constructed of aluminum and Plexiglas walls (Rat 
Test Cage, Coulbourn Instruments, Allentown, PA, USA), with metal 
stainless steel rod flooring that was attached to a shock generator 
(Model H13-15; Coulbourn Instruments). The chambers were lit 
with a single house light, and each chamber was enclosed within a 
sound-isolation cubicle (Model H10-24A; Coulbourn Instruments). 
Fear testing took place within a modified version of the context, with 
smooth black plastic flooring, mild peppermint scent, and dim red 
lighting. An infrared digital camera, mounted on top of each chamber, 
allowed videotaping during behavioral procedures for subsequent 
behavioral scoring. A computer, installed with Graphic State 2 soft-
ware and connected to the chambers via the Habitest Linc System 
(Coulbourn Instruments), controlled the presentation of stimuli dur-
ing behavioral sessions. Chamber rod and plastic floors, trays and walls 

were thoroughly cleaned with water and dried between sessions. All 
rats were given handling and a 30-min habituation session to the fear 
conditioning context on a day prior to fear conditioning, and also 
given a 5-min acclimation period to freely explore the chamber before 
onset of the first stimulus during training and testing sessions.

fear conditioning and testing procedures
Conditioning was conducted in groups of four rats at a time, each in 
a different chamber. Following the initial 5-min acclimation period, 
all rats were presented with three conditioning trials (CS–US pair-
ings) on Day 1. The CS was a 30-s, 5 kHz, 80 dB SPL sine wave tone, 
which co-terminated with a 1-s, 0.6 mA footshock US. The mean 
inter-trial interval was 4 min (2–6 min range) for both condition-
ing and testing sessions. After conditioning, rats were returned to 
their home cages within the colony room.

Testing for CS-elicited fear was conducted in the modified con-
text on Day 3, 2 days after conditioning. After the 5-min acclimation 
period, rats were presented with three CS-alone presentations, using 
the same stimulus parameters as in conditioning, but excluding 
the footshock US. Behavior was recorded and freezing was scored 
as described below.

MeasureMent of freezing behavior
Freezing was used to measure the conditional fear response, and 
was defined as the cessation of all movement with the exception 
of respiration-related movement and non-awake or rest body pos-
ture (McAllister and McAllister, 1971; Fanselow, 1994). Behavior 
was videotaped and later scored offline with a digital stopwatch by 
recording the total time spent freezing during every 30-s tone CS. 
Pre-CS freezing was also scored during the 30-s interval prior to 
the initial tone onset, and was used as a measure of non-specific 
freezing to the context. Freezing was scored by an experimenter 
blind to drug group allocation.

histology
To verify the intra-amygdala placement of the injection cannula tips, 
following behavioral procedures rats were anesthetized with an over-
dose of chloral hydrate (25%, 1 ml/100 g) and transcardially perfused 
with 10% buffered formalin. Brains were removed and stored in a 
solution containing 30% sucrose dissolved in 10% buffered forma-
lin. Subsequently, brains were blocked, and cut in 50-μm sections 
through the amygdala using a freezing microtome. After standard 
histological Nissl-staining, sections were examined on a light micro-
scope for injector tip localization into the amygdala. Only data from 
rats that had bilateral injector placements localized to the LA were 
included in the study. Of 127 rats that received cannula implants, 47 
were removed following histological examination because of mis-
placed cannulae. Samples sizes indicated for each experiment below 
refer to rats with injection sites successfully localized to the LA.

statistical analysis
Mean behavioral freezing scores from the three-trial testing sessions 
were evaluated using analysis of variance (ANOVA), to test for the 
effect of propranolol dose. Rats were also evaluated for freezing during 
the pre-CS 30-s interval just prior to the first CS presentation during 
the testing session to evaluate freezing not specific to the tone CS. Nine 
rats that showed greater than 50% freezing during the pre-CS period 
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experiMent 4: effects of pre-testing intra-la propranolol on 
fear MeMory expression
To test whether or not intra-amygdala infusion of propranolol 
interferes with the expression of a previously formed fear memory, 
18 rats were given fear conditioning drug-free, and then 2 days 
later given one of three doses of propranolol (0, 0.1, or 1.0 μg in 
0.25 μl ACSF) approximately 30 min prior to testing for CS-elicited 
freezing in the modified context.

results
We assessed whether or not intra-LA administration of the beta-AR 
antagonist, propranolol, would affect the acquisition, consolida-
tion, or expression of memory for auditory fear conditioning. For 
all experiments only rats with confirmed placements in the LA were 
included in the analysis (Figure 1).

experiMent 1: post-training propranolol does not affect ltM 
for fear conditioning
Numerous studies have found that immediate post-training manip-
ulations of βARs disrupt the consolidation of IA learning, whereas 
several studies have failed to find an effect on fear conditioning 
(see “Introduction”). We therefore attempted to replicate with our 
paradigm the lack of an effect of post-training manipulations of 
βARs with propranolol. Most previous studies of fear conditioning 
have used systemic manipulations. The only previous study to use 
intra-LA infusions used only a single dose (Debiec and LeDoux, 
2004). We used three doses of propranolol infused into LA in dif-
ferent groups. Results from the LTM test showed that post-training 
propranolol did not affect freezing during the test (F

2,12 
= 0.29; 

p = 0.75), regardless of the dose (Figure 2).

experiMent 2: pre-training la propranolol iMpairs ltM for 
fear conditioning
In this experiment we tested whether pre-training infusions of 
propranolol into LA, in contrast to post-training infusions, might 
disrupt fear conditioning. Results from the LTM test in rats given 

were eliminated. Lastly, to evaluate propranolol effects on immediate 
(within-session) acquisition behavior, an ANOVA on propranolol 
dose was conducted across training session data from all experiments 
to compare learning between rats given different propranolol treat-
ments, using mean freezing scores during the second and third CS 
trials (the first CS trial that preceded the first US was excluded). For 
all tests, significant ANOVA results were followed up using Fisher’s 
LSD post hoc test for comparisons among three means. Statistica 8 
(StatSoft, Inc., Tulsa, OK, USA) was used for the analyses. All data are 
presented as mean ± standard error of the mean (SEM).

experiMent 1: effects of post-training intra-la propranolol 
on ltM for fear conditioning
To assess the effects of immediate post-training infusions of pro-
pranolol in LA on LTM for auditory fear conditioning, 15 rats 
were administered bilateral microinjections of one of three doses 
of propranolol (0, 0.1, or 1.0 μg in 0.25 μl ACSF) immediately after 
fear conditioning. Two days later the rats were tested drug-free for 
CS-elicited freezing in the modified context.

experiMent 2: effects of pre-training intra-la propranolol on 
ltM for fear conditioning
To assess the effects of pre-training infusion of propranolol in LA 
on LTM for fear conditioning, 19 rats were administered bilateral 
microinjections of one of three doses of propranolol (0, 0.1, or 
1.0 μg in 0.25 μl ACSF) approximately 30 min prior to fear con-
ditioning. Two days later rats were tested drug-free for CS-elicited 
freezing in the modified context.

experiMent 3: effects of pre-training intra-la propranolol on 
stM for fear conditioning
To assess the effects of propranolol on STM for fear conditioning, 
19 rats were administered pre-training propranolol microinjections 
as in Experiment 2, except that the test for CS-elicited freezing in 
the modified context was given three hours after conditioning. A 
second test for LTM was also given 2 days later.

Figure 1 | Cannula placements in the lateral amygdala. Images show cannula placements for rats included in Experiments 1–5, as indicated. Symbols indicate 
injection sites from each of the three dose groups (°0 μg,  0.1 μg, •1 μg).
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on the acquisition of CS–US during the fear conditioning session. 
Mean freezing levels during the second and third CS presentations 
of training were analyzed in rats given pre-training propranolol 
doses in Experiments 1–2. Results showed a significant effect of 
pre-training manipulation on freezing during the training session 
(F

2,35 
= 5.02; p = 0.01). Mean comparisons indicated that rats pre-

treated with both 0.1 or 1.0 μg propranolol groups before train-
ing had significantly lower levels of freezing during the training 
session, compared with rats that were pre-treated with vehicle 

pre-training propranolol showed a significant main effect of 
 propranolol dose (F

2,16 
= 9.08; p < 0.01), and mean comparisons 

indicated that 0.1 and 1.0 μg propranolol dose groups had signifi-
cantly lower levels of freezing compared with the vehicle control 
group (p < 0.01). Thus, pre-training propranolol microinjections 
into the LA significantly attenuated LTM for auditory fear condi-
tioning (Figure 3).

experiMent 3: pre-training propranolol iMpairs both stM and 
ltM for fear conditioning
Pre-training infusions in LA could have effects on LTM because they 
disrupt learning or because they disrupt post-training consolida-
tion (conversion of intact STM into LTM). A deficit in STM and 
LTM after pre-training infusion of propranolol in LA would thus 
be consistent with a disruption of acquisition while intact STM 
but impaired LTM after pre-training infusion of propranolol in 
LA would be consistent with disruption of consolidation. Results 
from the STM test in rats given pre-training propranolol showed 
a significant main effect of propranolol dose on STM (F

2,16 
= 7.44; 

p < 0.01). Mean comparisons indicated that both the 0.1 or 1.0 μg 
propranolol groups had significantly lower levels of freezing com-
pared with the vehicle control group (p < 0.01). The LTM test for 
the same rats showed that the disruption of STM was still evi-
dent 2 days later (F

2,16 
= 9.37; p < 0.01), with both 0.1 and 1.0 μg 

propranolol groups at significantly lower levels than the vehicle 
control group (p < 0.01), confirming the results from Experiment 
1. Thus, pre-training propranolol microinjections into the LA 
significantly attenuated both STM and LTM for auditory fear 
conditioning (Figure 4).

The effects on STM could be due to a failure to acquire fear 
conditioning, or instead to a disruption of the maintenance of 
STM once acquired. In an attempt to distinguish these possibili-
ties, effects of infusions of propranolol into the LA were assessed 

Figure 2 | Post-training propranolol does not affect LTM for fear 
conditioning. Rats from Experiment 3 were given microinfusions of 
propranolol (0 μg, n = 5; 0.1 μg, n = 5; 1 μg, n = 5) into the lateral amygdala 
(LA) immediately after three-trial auditory fear conditioning. Post-training 
propranolol had no effect on long-term memory (LTM) for fear conditioning 
when tested drug-free 2 days later. The figure depicts mean freezing levels 
during the LTM test.

Figure 3 | Pre-training propranolol disrupts LTM for fear conditioning. 
Rats from Experiment 1 were given microinfusions of propranolol (0 μg, n = 6; 
0.1 μg, n = 6; 1 μg, n = 7) into the lateral amygdala (LA) prior to three-trial 
auditory fear conditioning. Propranolol pre-treated rats showed attenuated 
long-term memory (LTM) for fear conditioning when tested drug-free 2 days 
later. The figure depicts mean freezing levels during the LTM test. ** indicates 
significantly lower freezing relative to vehicle (p < 0.01).

Figure 4 | Pre-training propranolol disrupts STM and LTM for fear 
conditioning. Rats from Experiment 2 were given microinfusions of 
propranolol (0 μg, n = 7; 0.1 μg, n = 6; 1 μg, n = 6) into the lateral amygdala 
(LA) prior to three-trial auditory fear conditioning. Propranolol pre-treated rats 
showed attenuated short-term memory (STM) when tested at three hours 
after fear conditioning, and memory was still impaired when tested for 
long-term memory (LTM) 2 days later. The figure depicts mean freezing levels 
during the STM and LTM tests. ** indicates significantly lower freezing 
relative to vehicle (p < 0.01).
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during training, during a STM test, and during a LTM test, and the 
failure of immediate post-training infusions or pre-testing infu-
sions to affect LTM, strongly argues that βARs in the LA contribute 
to the acquisition but not the consolidation of the memory of the 
auditory fear conditioning experience.

Previous studies of fear conditioning have consistently failed to 
find effects of noradrenergic transmission on the consolidation of 
fear conditioning using systemic drug injections (Lee et al., 2001; 
Debiec and LeDoux, 2004; Grillon et al., 2004) or genetic manipula-
tion (Murchison et al., 2004). Only one study examined the effects 
of intra-LA propranolol on fear conditioning (Debiec and LeDoux, 
2004). This study also failed to find an effect, but only one dose was 
tested. In the present study we confirmed with a range of doses that 
intra-LA infusion of propranolol fails to disrupt consolidation.

Studies using other behavioral paradigms have found effects of 
systemic (Przybyslawski et al., 1999) and intra-amygdala (Hatfield 
and McGaugh, 1999) infusions of propranolol on the consolida-
tion of aversive conditioning using an IA paradigm (McGaugh, 
2000). Effects have also been found on spatial learning (Fanelli 
et al., 1985). These tasks, in contrast to auditory fear conditioning, 
depend on the hippocampus. It is thus possible that βARs contrib-
ute to consolidation of hippocampal but not amygdala memory 
storage. This is consistent with other findings showing that βARs 
are involved in the consolidation of contextual fear conditioning, 
which is hippocampal dependent (Kim and Fanselow, 1992; Phillips 
and LeDoux, 1994).

What, then, might be the basis for the effects on the acquisition of 
fear conditioning? Studies using an in vitro slice preparations show 
that stimulation of βARs can induce synaptic plasticity in the hippoc-
ampus and amygdala, and that blockade of these receptors dampens 
long-term synaptic plasticity induced by stimulation of afferent inputs 
(Huang et al., 2000; Johnson et al., 2006; Tully et al., 2007; Johnson 
et al., in preparation). It is thus possible that intra-LA blockade of 
βARs disrupts the synaptic plasticity that underlies fear acquisition.

(p = 0.01). These results suggest that LA propranolol attenuates 
learning of the CS–US association during the fear conditioning 
session (Figure 5).

The findings in Experiment 3 are thus consistent with the con-
clusions from Experiments 1 and 2. They suggest that βARs in the 
LA are involved in the acquisition but not consolidation of fear 
memory.

experiMent 4: pre-testing propranolol does not affect fear 
MeMory expression
One possible explanation for the effects of pre-training propranolol 
on fear conditioning is that intra-amygdala propranolol has imme-
diate effects on fear expression that results in an indirect attenua-
tion of fear expression during the conditioning procedure. Indeed, 
βAR antagonists such as propranolol are sometimes used to treat 
stage fright and other fear symptoms (James et al., 1978; Brantigan 
et al., 1979; Neftel et al., 1982; Lehrer et al., 1987). To test whether 
or not intra-amygdala propranolol disrupts fear expression, rats 
were microinfused with propranolol before testing fear triggered 
by an established fear CS. Results showed no effect of pre-testing 
propranolol on freezing during the test (F

2,15 
= 0.01; p = 0.99), 

indicating that propranolol does not affect the expression of con-
ditioned fear (Figure 6), at least not when delivered directly into 
the amygdala. Effects reported in humans may be due to actions 
in other brain areas or in the peripheral nervous system (Conant 
et al., 1989).

discussion
The present study examined the effects of intra-amygdala blockade 
of βARs using the βAR antagonist propranolol on Pavlovian fear 
conditioning. The main finding was that propranolol disrupted 
LTM when given before, but not immediately after, the training 
session. The success of pre-training infusions in disrupting freezing 

Figure 6 | Pre-testing propranolol does not affect fear expression. Rats 
from Experiment 4 were fear conditioned, and then 2 days later given 
microinfusions of propranolol (0 μg, n = 5; 0.1 μg, n = 7; 1 μg, n = 6) into the 
lateral amygdala (LA) immediately before a fear memory test. Propranolol had 
no effect on fear memory expression. The figure depicts mean freezing levels 
during the expression test.

Figure 5 | Pre-training propranolol disrupts within-session fear 
acquisition. Propranolol pre-treated rats from Experiments 1 and 2 (0 μg, 
n = 13; 0.1 μg, n = 12; 1 μg, n = 13) showed impaired freezing to the auditory 
conditioned stimulus (CS) within the fear conditioning session. The figure 
depicts mean freezing levels during the second and third trials of the three-trial 
training session. ** indicates significantly lower freezing relative to vehicle 
(p = 0.01).
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