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rather, choice in reinforcement learning tasks is characterized by a 
stochastic soft maximization (“softmax”) rule that allocates choices 
randomly, but with a bias toward the options believed to be richer 
(Daw et al., 2006). An important open question, however, is how the 
brain controls the degree to which choice is focused on apparently 
better options; that is, how much prior experience biases current 
action selection. This is commonly operationalized in RL models 
by a gain parameter (called “temperature”) that scales the effect of 
learned values on biases in action choice; however, though some 
hypotheses exist, its physiological instantiation is unknown (Doya, 
2002 Daw et al., 2006; Cohen et al., 2007). In the present study, we 
consider the possibility that dopamine – and specifically, dopamine 
signaling at a tonic timescale – might be involved in controlling 
this aspect of behavioral expression and, as a result, modulate the 
balance between exploration and exploitation.

The hypothesized role of dopamine in learning about action 
values (Montague et al., 1996; Schultz et al., 1997) is based largely 
on recordings of phasic dopamine responses. However, dopamine 
neurons also exhibit a slower, more regular tonic background 
activity (Grace and Bunney, 1984b). Pharmacological and genetic 
experiments, which impact dopamine signaling at a tonic times-
cale, suggest a role for tonic dopamine in the expression rather 
than acquisition of motivated behavior (Cagniard et al., 2006a,b). 
To date, these experimental observations have not been analyzed 
in the context of computational reinforcement learning models, 
in a manner analogous to studies of phasic signaling, which has 

IntroductIon
The dopamine system plays a critical role in learning about rewards 
and performing behaviors that yield them (Berke and Hyman, 2000; 
Dayan and Balleine, 2002; Wise, 2004; Cagniard et al., 2006b; Daw 
and Doya, 2006; Salamone, 2006; Berridge, 2007; Day et al., 2007; 
Phillips et al., 2007; Schultz, 2007a; Belin and Everitt, 2008). Despite 
the ongoing debate on the precise role of dopamine in learn-
ing, motivation, and performance (Wise, 2004; Salamone, 2006; 
Berridge, 2007), the impact of hypothesized dopamine functions 
on adaptive behavior in a more (semi-) naturalistic environment 
is largely unexamined.

In natural environments, animals often have to choose between 
several actions, and the outcome of these actions may shift across 
time. As a consequence, the animal has to continually sample the 
environment and adjust its behavior in response to changing reward 
contingencies. To accomplish this, the animal must strike a bal-
ance between exploiting actions that have been previously rewarded 
and exploring previously disfavored actions to determine whether 
contingencies have changed. In the study of reinforcement learning 
(RL), the challenge of striking such a balance has been termed the 
explore-exploit dilemma, and formalizes an issue that lies at the 
heart of behavioral flexibility and adaptive learning (Sutton and 
Barto, 1998).

An implicit assumption in RL theories is that the learned value 
expectations determine action choice. Importantly, because of the 
explore-exploit dilemma, this control is not thought to be absolute: 
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hampered efforts to formalize these results and to understand the 
relationship between theories of dopamine’s action in performance 
and learning (Berridge, 2007; Niv et al., 2007; Salamone, 2007). 
We take advantage of how the distinction between acquisition 
and expression is formalized in temporal difference RL models 
through the learning rate and temperature parameters, respectively, 
to quantitatively evaluate the impact of elevated tonic dopamine on 
choice behavior in the context of the computational model widely 
associated with phasic dopamine.

We used a homecage operant paradigm where mice earn their 
food entirely through lever pressing. In this “closed economy” 
(Rowland et al., 2008) with no access to food outside of the work 
environment, no experimenter induced food-restriction is needed; 
the amount of resources gained and spent reflect the animal’s behav-
ioral strategy in adapting to its environment. In our paradigm, two 
levers yield food, but at different costs. At any one time, one lever 
is inexpensive (requiring few presses for a food) and another is 
expensive (requiring more presses). Which lever is expensive and 
which is inexpensive switches every 20-40 minutes.

We tested wild-type C57BL/6 mice and hyperdopaminergic 
dopamine-transporter knock down mice (DATkd) with reduced 
DA clearance and elevated extracellular tonic DA (Zhuang et al., 
2001). Fitting the data to a reinforcement learning model, we find 
that altered dopamine modulates temperature – the explore-exploit 
parameter – resulting in decreased responsiveness to recent reward, 
without a change in learning rate, resulting in diminished behavioral 
flexibility in response to shifting environmental contingencies.

MaterIals and Methods
anIMals
All mice were male between 10 and 12 weeks of age at the start 
of the experiment. Wild-type C57BL/6 mice were obtained from 
Jackson Laboratories. The dopamine transporter knock-down 
mice (DATkd) were from an established colony backcrossed with 
C57BL/6 more than ten generations. The DATkd have been pre-
viously described and characterized (Zhuang et al., 2001; Pecina 
et al., 2003; Cagniard et al., 2006a; Yin et al., 2006). All mice were 
housed under standard 12:12 light cycles. All animal procedures 
were approved by the Institutional Animal Care and Use Committee 
at The University of Chicago.

BehavIor setup and housIng
Mice were singly housed in standard cages equipped (Med-
Associates, St. Albans, VT, USA) with two levers placed on one 
side of the cage approximately six inches apart with a food hopper 
between the levers. A pellet dispenser delivered 20 mg grain-based 
precision pellets (Bio-Serv, Frenchtown, NJ, USA) contingent on 
lever presses according to a programmed schedule. No other food 
was available. Water was available ad libitum. Upon initial place-
ment in the operant homecages, three pellets were placed in the 
food hopper and the first 50 lever presses on either lever yielded a 
pellet (continuous reinforcement), after which a fixed ratio (FR) 
schedule was initiated. The cumulative lever press count for each 
lever was reset for both levers at each pellet delivery. All mice 
acquired the lever pressing response overnight. On the first day 
of FR (baseline), both levers operated on an FR20 schedule. On 
subsequent days, at any given time one lever was expensive and the 

other inexpensive lever. The inexpensive lever was always FR20. The 
expensive lever incremented by 20 each day from 40 to 200. Which 
lever was cheap and which expensive switched every 20–40 min. 
After the final FR200 increment, the program reverted to baseline 
conditions (FR20 both levers) for 3 days.

data collectIon and analysIs
All events – lever presses, pellet delivery, cost change between 
levers – were recorded and time-stamped using Med-PCIV soft-
ware (Med-Associates, St. Albans, VT, USA). The data was then 
imported into MATLAB for analysis. Total consumption, high cost, 
low cost presses, ratio of low-cost to total, average cost per pel-
let, number of meals per day, average size of meals and duration 
of meals were calculated directly by the program operating the 
experiment (i.e., Figure 1 and Table 1). The onset of a meal was 
defined as the procurement of one pellet and the offset defined 
as the last pellet earned before 30 min elapsed without procur-
ing a pellet. To calculate average lever pressing before and after 
episodes of cost switching between the levers, averaged across the 
experiment (Figure 2), all experimental days (i.e., with a cost dif-
ferential between levers) were combined into a single dataset for 
each mouse. The time points for all cost switches were identified 
and a 10-min window (data recorded in 0.1 s bins) before and 
after each were averaged across switch episodes. The mean over all 
events was smoothed with a half-Gaussian filter using a weighted 
average kernel to retain original y-axis values from the data. The 
resulting smoothed data were averaged across mice within each 
genotype. To calculate runlength averaged across switch episodes, 
all lever presses within a run (consecutive presses on one lever 
without intervening presses on the other lever) were coded as the 
total length of the run (e.g., for a run of three presses, each would 
be coded as 3). Time bins in which no lever press occurred were 
coded with zero. When the mean across episodes was calculated, 
episodes without any pressing on either lever (e.g., mouse sleeping) 
were coded as not a number (NaN) and excluded from the mean. 
To make statistical comparisons of the above analyses, the raw data 
(.ie., not smoothed) across 0.1 s bins were collapsed into 20 one 
minute bins which were used as repeated measures in two-way 
ANOVAs. For single statistical comparisons, t-tests were used.

data ModelIng
To model leverpress-by-leverpress how choices were impacted by 
rewarding feedback, we first removed temporal information from 
the dataset to express the data as a series of choices c

t
 (=1 or −1 

according to which was pressed) of either lever, and of accompany-
ing rewards r

t
 (=1, 0, or −1 where no reward was coded as 0 and a 

rewarded response on lever 1 or −1 was coded as 1 or −1, respec-
tively). We characterized the choice sequences using two models, a 
more general logistic regression model (Lau and Glimcher, 2005) 
and a more specific model based on temporal difference learning 
(Sutton and Barto, 1998), and estimated the free parameters of 
these models for mice of each genotype.

In the regression model (Lau and Glimcher, 2005), the depend-
ent variable was taken to be the binary choice variable c, and as 
explanatory variables for each t we included the N rewards preced-
ing it, r

t−N…t−1
. Additionally, we included the prior leverpress (c

t−1
) 

to capture a tendency to stay or switch, and a bias variable (1) to 
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To measure goodness of model fit, we report a pseudo-r2 statistic 
(Camerer and Ho, 1999; Daw et al., 2006), defined as (R − L)/R, 
where R is the negative log likelihood of the data under random 
chance (the number of choices multiplied by −log(0.5)), and L 
is the negative log likelihood of the data under the model. To 
compare models, we used the Bayesian Information Criterion 
(Schwarz, 1978) to correct the raw likelihoods for the number of 
free parameters fit. Likelihoods and BIC scores were aggregated 
across mice. For comparing parameters between genotypes, we 
treated the parameter estimates as random variables instantiated 
once per animal then tested for between-group differences with 
two-sample t-tests. For visualization purposes, we plotted the mean 
coefficients for lagged reward from the logistic regression model 
with N = 100, averaged across animals within each genotype. For the 
reinforcement learning model, we computed the equivalent weights 
on lagged rewards implicit from Eq. 2 (for rewards τ trials ago, this 
is α

V
 ·β

V
·(1 – α

V
)τ–1

 
+ α

S
 β

S
·(1 – 1α

S
)τ–1, which can be obtained by 

iteratively substituting the update rules for V and S into Eq. 2, τ 
times), and again averaged these across animals.

results
WIld-type and datkd exhIBIt sIMIlar BehavIor When the cost 
of Both levers Is loW
To assess for potential non-task related differences between the 
groups, baseline behavior was assessed during periods in which 
both levers yielded reward equally on a low-cost, FR20 schedule. 
Baseline measures were taken at the beginning and end of the exper-
imental period. As there were no significant differences between 
pre- and post- experiment consumption (mean difference food 
consumed, 0.15g; t = 0.732, p = 0.4792, N = 6–7), they are combined 
in Table 1. No differences were observed in total consumption, 
total lever pressing, number of meals, meal size, meal duration or 
starting weights between the groups. Although hyperdopaminergic 
mice have been associated with greater motivation and willingness 
to work for reward when food-restricted (Cagniard et al., 2006a,b), 
we observe no difference in primary motivation for food or in the 
expenditure of energy (lever pressing) to obtain food under these 
initial, low cost conditions.

datkd MIce allocate More effort to hIgh-cost lever pressIng
During the experimental period there is always a cost differential 
between the levers and the assignment of low versus high cost to 
the left or right levers switches every 20–40 min. Figures 1A and B 
shows lever pressing on the high and low cost levers across the 
experiment. A full, repeated measure ANOVA with genotype and 
lever as independent variables reveals a significant main effect of 

capture fixed, overall preference for or against lever 1, for a total 
of N + 2 free parameters (regression weights expressing, for each 
explanatory variable, how it impacted the chance of choosing either 
lever). We used logistic regression to estimate maximum likelihood 
weights for each mouse’s choices separately, using the entire dataset 
concatenated across experimental days. We repeated the fit process 
for N = 1 − 100.

Error-driven reinforcement learning models such as temporal 
difference learning are closely related to a special case of the above 
model (Lau and Glimcher, 2005) with many fewer parameters, 
and we also fit the parameters of such a model to animals’ choice 
behavior. In particular, we assumed subjects maintain a value V

t
 

for each lever, and for each choice updated the value of the chosen 
lever according to V

t + 1
(c

t
) = V

t
(c

t
) + α

V
·δ

t
, where α

V
 is a free learning 

rate parameter and the prediction error δ
t
 is the difference between 

the received and expected reward amounts, which in our notation 
can be written δ

t
 = abs(r

t
) − V

t
(c

t
). Additionally, defining −c

t
 as the 

option not chosen, we assumed this option is also updated accord-
ing to V

t + 1
(−c

t
) = V

t
(−c

t
) + α

V
(0 − V

t
(−c

t
)). (See Daw and Dayan, 

2004; Corrado et al., 2005; Lau and Glimcher, 2005). Finally, we 
assumed subjects choose probabilistically according to a softmax 
choice rule, which is normally written:

P c
V

V V

V V

t
t

t t

t t

=( ) = ⋅
⋅ + ⋅ −

= −

1
1

1 1

1

exp( ( ))

exp( ( )) exp( ( ))

( ) (

β
β β

σ β −−[ ]( )1)
 

(1)

Here the parameter β controls the degree to which choices are 
focused on the apparently best option. We refer to this parameter 
as the temperature, although it is technically the inverse tempera-
ture; the term originates in statistical mechanics where larger tem-
peratures (here, smaller inverse temperatures) imply that particle 
velocities are more randomly distributed. In the second form of the 
equation, σ(z) is the logistic function 1/(1 + exp(−z)), highlighting 
the relationship between the RL model and logistic regression.

We augmented the model from Eq. 1 with additional bias terms, 
matching those used in the logistic regression model. Also, because 
the fits of the logistic regression model (see Results) suggested addi-
tional short-latency effects of reward on choice, we included an 
additional term to capture these effects:

P c

V V c S S

t

V t t c t s t t

=( )
= − −[ ]+ + + − −[ ]( )−

1

1 1 1 11 1σ β β β β( ) ( ) ( ) ( )
 

(2)

Here, as in the logistic regression model, the parameters β
1
 and 

β
c
 code biases for or against lever 1, and for or against sticking with 

the previous choice. S
t
 is a second, “short-latency” value function 

updated from received rewards using the same learning rules as V
t
 

but with its own learning rate and temperature parameters, α
s
 and 

β
s
. As for the logistic regression model, we fit the model of Eq. 2 to 

the choice and reward sequences for each mouse separately, in order 
to extract maximum likelihood estimates for the six free param-
eters (α

V
, β

V
, α

s
, β

s
, β

1
, and β

c
). For this, we searched for parameter 

estimates that maximized the log likelihood of the entire choice 
sequence (the sum over trials of the log of Eq. 2) using a non-linear 
function optimizer (fmincon from MATLAB optimization toolbox, 
Mathworks, Natick, MA, USA).

Table 1 | Comparison of baseline behavior between genotypes.

 Wild-type DATkd t p

Starting weight 27.07 26.79 −0.323 0.7506

Consumption (20 mg pellets) 159.7 158.7 −0.169 0.8692

Total lever presses/day 3394.4 3415.2 0.174 0.8648

Number of meals/day 10.5 10.1 −0.569 0.5810

Average meal size 15.7 17.0 0.882 0.3967

Average meal duration 75.3 78.0 0.368 0.7197
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to earn one pellet than wild-type mice (Figure 1D, F
(1,144)

 = 4.04, 
p = 0.059). Data in Figures 1A and B are normalized to body weight, 
i.e., lever presses per gram of body weight.

The DATkd mice consume more food (Figure 1E, F
(1,144)

 = 5.94, 
p = 0.025) per gram of body weight without gaining more weight 
than wild-type (Figure 1F, F

(1,144)
 = 0.01, p = 0.922), reflecting a 

less efficient behavioral strategy for maintaining energy balance. 
That is, the DATkd mice work harder and eat more to maintain 
the same body weight as wild-type. The increase in consumption 

genotype (F
(1,18)

 = 17.13, p < 0.001) and a trend for genotype × lever 
interaction (F

(1,18)
 = 3.43, p = 0.08) on lever pressing. Analyzing the 

levers separately, the DATkd mice expend more effort on the high 
cost lever than wild-type (Figure 1A, F

(1,144)
 = 8.65, p < 0.01). There 

is no statistically significant difference in pressing on the low cost 
lever (Figure 1B, F

(1,144)
 = 1.95, p = 0.179). This significant increase in 

high-cost pressing results in a trend toward diminished ratio of low 
cost versus total pressing (Figure 1C, F

(1,144)
 = 2.64, p = 0.121) and, as 

a result, DATkd, on average, spend more effort lever  pressing in order 

Figure 1 | Lever pressing, consumption and body weight across 
experimental days. Average number of lever presses (LP) per gram of body 
weight on the (A) expensive lever (genotype, p < 0.01) and (B) inexpensive lever 
(genotype, NS). (C) Ratio of lever presses on the low cost lever to total lever 

presses (genotype, p = 0.121). (D) Average number of lever presses per pellet 
earned (genotype, p = 0.059). (e) Average number of pellets earned per day per 
gram of body weight (genotype, p = 0.025). (F) Daily body weight across 
experiment (genotype, NS). Error bars = S.E.M., N = 10.
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and an ability to recognize when the reward  contingencies switch 
between levers. After a contingency change, the wild-type mice sam-
ple the new contingencies to establish the relative value of each lever 
and establish a new policy to exploit their updated knowledge until 
the next contingency switch.

In contrast, the DATkd do not show a preference for the low-cost 
lever prior to contingency changes (Figure 2B; pre-switch main effect 
of lever, F

(1,81)
 = 0.176, p = 0.6848). However, they exhibit the same initial 

response to a change in cost contingencies as the wild-type (Figure 2B; 
post-switch lever × time, F

(9,81)
 = 9.127, p < 0.001): an initial burst of 

activity on what was once the low cost lever, but is now more expensive. 
After this burst, the DATkd do not show a preference for one lever or 
another (Figure 2B; last five bins only, lever main effect, F

(1,36)
 = 0.035, 

p = 0.8556). Figure 2F shows, that like the wild-type, the DAT mice 
also receive immediate reinforcement following the new contingencies, 
suggesting that the increase pressing on the previously cheap lever, 
as in wild-type, reflects an extinction burst. This indicates that the 
DATkd are sensitive to changes in reward contingencies and like wild-
type sample the new contingencies to establish a new action policy 
(Figure 2B; full lever × time, F

(19,171)
 = 3.39, p < 0.0001), ruling out the 

possibility that the DATkd are slower to recognize changes in the costs 
of the levers. However, despite their sensitivity to changes in the cost of 
rewards and the energetic advantage this knowledge could potentially 
provide if they were to exploit it, they do not preferentially press the 
inexpensive lever. Instead, they adopt an action policy of pressing both 
levers equally, despite the levers’ relative rates of return.

run length as an Index of persIstence
Measuring average lever press rates alone does not enable us to 
evaluate the pattern of switching between levers. To study this pat-
tern, we analyzed run length –  number of consecutive presses on 
a single lever before switching to the other lever (see Materials and 
Methods) – observing a significantly different pattern between the 
groups (Figures 2C and D; geno × lever × time, F

(19,342)
 = 3.545, 

p < 0.0001). In wild-type, run length is consistent with the distribu-
tion of pressing observed in Figure 2A: the mice show greater run 
length on the low cost lever prior to the reward contingency switch 
between levers, followed by an extinction burst on the now high cost 
lever and a subsequent increase in run length with the now low cost 
lever (Figure 2C; lever × time, F

(18,162)
 = 4.674, p < 0.0001). In contrast, 

prior to the reward contingency change, the DATkd show greater run 
length on the expensive lever. After the change in costs between levers, 
the DATkd decrease their run length on the new low cost lever and 
increase persistence on the new high cost lever resulting overall in 
no significant difference in pressing between the levers across time 
(Figure 2D; lever × time, F

(18,162)
 = 0.317, p = 0.9967). This indicates 

the DATkd increase or decrease their persistence commensurate with 
the cost of both levers, rather than focusing long runs on the low cost 
lever. Again, this suggests that the hyperdopaminergic mice are sensi-
tive to contingency changes and their persistence on the expensive 
lever, relative to wild-type, is not indiscriminate.

rate of respondIng and post-reInforceMent pauses sIMIlar 
BetWeen groups
Apparent differences in choice behavior between the genotypes 
might arise secondary to a more fundamental difference in 
motor performance. We analyzed several measures to assess this 

does not reflect an overall higher basal activity level as there were 
no consumption or weight differences when the cost of both levers 
was low.

WIld-type and datkd Both respond to cost sWItches BetWeen 
levers But eMploy dIfferent strategIes for  
MaxIMIzIng reWard
There are several possible explanations of why the DATkd spend 
more effort working for food on the high-cost lever in order to 
maintain their body weight. They may have impaired learning and 
are not able to process reward information accurately and efficiently 
enough to respond to changes in reward contingencies between the 
levers. They may be more perseverative in their behavior, making it 
difficult for them to disengage one lever and engage another. This 
would not only result in wasted presses on the high cost lever, but 
would reduce sampling efficiency making them slower to recognize 
when the cost contingencies between levers have changed. To exam-
ine their behavioral strategies in greater detail, we analyzed lever 
pressing on the high and low cost levers before and after episodes 
of contingency switches between the levers.

total effort allocatIon
Figures 2A and B show the average lever press rate on both levers 
10 min prior to and after a switch in reward contingencies between 
the levers (vertical dashed line), averaged across the experiment. A 
significant difference is observed in the pattern of responding across 
contingency changes between the groups (Figures 2A and B; geno-
type main effect, F

(1,342)
 = 17.11, p < 0.001; genotype × lever × time, 

F
(19,342)

 = 2.53, p < 0.001). Prior to a switch in reward contingencies, 
wild-type mice exhibit pressing on both levers but clearly favor 
the inexpensive lever (Figure 2A; pre-switch main effect of lever, 
F

(1,81)
 = 15.07, p = 0.0037). After cost contingencies switch, the wild-

type show an initial burst of activity on what was once the low cost 
lever, but is now more expensive, followed by a decline in presses 
on this lever (Figure 2A; post-switch lever × time, F

(9,81)
 = 72.518, 

p = 0.0001). After this burst, they increase their pressing on the newly 
established low cost lever, reversing their distribution of pressing in 
order to favor lower pressing per pellet (Figure 2A; last five bins only, 
lever main effect, F

(1,36)
 = 10.726, p = 0.0096). The observed increase 

in pressing on the previously cheap but now expensive lever could 
reflect the animals’ recognition of the contingency change or arise 
simply as a consequence of continuing to press the previously pre-
ferred lever until it yields reward on the higher ratio. Figure 2E shows 
the rate of earned reinforcement 10 min prior to and following the 
shift in lever costs averaged across the experiment. After the con-
tingency change, there is an immediate increase in earned rewards 
on the now cheap lever followed by a brief decrease before the mice 
establish a new preference shifting effort to the now cheap lever. This 
indicates that the burst on the previously expensive lever does not 
arise as mice simply complete the now higher ratio. Instead, the mice 
rapidly experience reward at the new contingencies but nonetheless 
return to the previously cheap lever and persist with it temporar-
ily before shifting and establishing a new preference. This suggests 
the sharp increase in cheap now expensive lever presses following 
contingency changes is analogous to an extinction burst. These data 
demonstrate that wild-type mice have an overall preference for the 
low cost lever (Figure 2A; full lever × time, F

(19,171)
 = 17.9, p < 0.0001) 
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(Figure 3A; genotype × bins F
(9,162)

 = 2.67, p = 0.0065). These 
data suggests no great differences between the groups in rate 
of responding, though the wild-type may exhibit slightly more 
rapid, successive presses. Because subtle differences in pausing 
after reward may be lost in the IRT histogram, we specifically 
evaluated post-reinforcement pauses (PRPs). Figures 3C and D 
shows a histogram of PRPs for both groups with no significant dif-
ferences observed. Together with no differences at baseline, these 

 possibility and find little difference between the groups. There is 
no  significant difference between groups in the rate of respond-
ing averaged across meal episodes (mean: WT 4.75 ± 0.173, DAT, 
5.52 ± 0.236, genotype main effect, F

(1,180)
 = 2.347, p = 0.1429, data 

not shown). Second, a histogram of inter-response times (IRTs) 
normalized as percentage of total IRTs shows no main effect of 
genotype (Figures 3A and B; F

(1,162)
 = 3.155, p = 0.0925) though 

wild-type exhibit a slightly greater percentage of shorter IRTs 

Figure 2 | Mean allocation of effort and runlength on the high and low 
cost lever following the switch in reward contingency (dashed line). Mean 
lever presses per minute 10 min before and after reward contingency switch for 
(A) wild-type and (B) DATkd (genotype × lever × time, p < 0.0001). Mean 
runlength on each lever for (C) wild-type (D) DATkd (genotype × lever × time, 

p < 0.001). Mean rate of reinforcement across all contingency switches for (e) 
wild-type and (F) DATkd on the low → high cost lever (solid line, gold shading) 
and high → low cost lever (dotted line, gray shading) averaged across all 
episodes of contingency switches between levers (vertical dashed lines). 
Shading = S.E.M., N = 10.
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reward (and cost) history to determine their behavioral strategy 
in a dynamic environment and not as a result of generalized indif-
ference to cost.

datkd lever choIce Is less Influenced By recent reWard than 
WIld-type
The aggregate behavioral measures examined so far arise from 
cumulative, choice-by-choice decision-making. Animals must 
allocate their lever presses guided by recent rewarding outcomes, 
which are the only feedback that signals the periodic changes in 
cost contingencies. To understand how animals adapted their lever 
pressing, choice-by-choice, in response to reward outcomes and 
history, we fit behavior with reinforcement learning models that 
predict lever choice as a function of past experience (e.g., Lau and 
Glimcher, 2005). For this analysis, we considered only which levers 
were chosen in what order, and not the actual timing of lever presses. 
In this way, we were able to abstract away the temporal patterning 
of the behavior and analyze the choice between levers in a manner 
consistent with previous work on tasks in which choices occurred in 

data indicate that generalized performance or vigor differences 
between the groups cannot account for the observed difference 
in behavioral choices and strategy.

datkd shoW effort dIstrIButIon sIMIlar to WIld-type When 
cost dIfferentIal Is statIonary
There are several potential explanations to the behavioral results 
described. The DATkd mice may be insensitive to costs and/or 
might derive some intrinsic value from lever pressing itself. To 
test these, we conducted a similar experiment with a cheap and 
expensive lever but which lever was cheap and expensive remained 
constant. We observe no significant differences between the groups 
in the stationary version of the paradigm (Figures 4A–D). This 
clearly indicates that the DATkd do not derive an intrinsic value 
from lever pressing. More importantly, though the results in the 
switching paradigm are consistent with a reduced sensitivity to cost 
in the DATkd, this experiment indicates that they are not indif-
ferent to cost. Thus, their apparent reduced sensitivity to cost in 
the switching paradigm arises as a consequence of how they use 

Figure 3 | inter-response times and post-reinforcement pauses across 
experiment. (A) Histogram of inter-response times (IRTs) in 1 s bins normalized 
to percentage of total IRTs for WT (blue bars) and DATkd (red bars) 
(genotype × bins, p = 0.0065). (B) Scatterplot of individual subject IRT 

histograms. (C) Histogram of post-reinforcement pauses (PRPs) in 1 s bins 
normalized to total PRPs for WT (blue trace) and DATkd (red trace) 
(genotype × bins, NS). (D) Scatterplot of individual subject PRP 
histograms. N = 10.
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indicating a strong tendency to switch to the other lever. This effect 
decayed quickly and was replaced by the opposite tendency to stay 
on the lever that recently yielded reward.

We reasoned that instead of reward dependency following a 
single exponential curve, as in a standard reinforcement learning 
model, the response to reward appeared to be well characterized 
by the superposition of two exponentials, a short-latency tendency 
to switch initially overwhelming a more traditional, longer-latency 
value learning process.

We therefore fit the animals’ choices with an augmented error-
driven learning model (Eq. 2), which included a standard value 
learning process accompanied by a second, short-latency process 
plus bias terms. This is equivalent to constraining the reward history 
coefficients from the logistic regression model to follow a curve 
described by the sum of two exponentials. Figure 5B displays the 
reward dependency curves implied by the best-fitting parameters 
of this reduced model to the choice data, in the same manner as 
those from the regression model; they appear to capture the major 
features of the original fits while somewhat “cleaning up” the noise. 
Although the reinforcement learning model had far fewer free 
parameters than the regression model (six per animal), it fit the 
choice data nearly as well (negative log likelihood, aggregated over 
animals, 1.156e + 5; pseudo-r2, 0.83). In order to compare the good-
ness of fit taking into account the number of parameters optimized, 

discrete trials rather than ongoing free-operant responses (Sugrue 
et al., 2004; Lau and Glimcher, 2005; Daw et al., 2006). We used two 
models adapted from that literature, first a general logistic regres-
sion model that tests the overall form of the learning constrained by 
few assumptions (Lau and Glimcher, 2005) and, suggested by these 
fits, a more specific model based on temporal difference learning 
(Sutton and Barto, 1998). Parameters estimated from the fit of the 
more specific model characterize different aspects of the learning, 
and these were compared between genotypes.

First, logistic regression was used to predict choices as a function 
of the rewards received (or not) for recent previous lever presses, 
along with additional predictive variables to capture biases (see 
Materials and Methods). Figure 5A depicts the regression coef-
ficients for rewards received from 1 to 100 lever presses previously, 
in predicting the current lever press. Coefficients (y-axis) greater 
than zero indicate that a reward tends to promote staying on the 
lever that produced it, while coefficients less than zero indicate 
that rewards instead promote switching. A standard error-driven 
reinforcement learning model (such as Eq. 1 from Materials and 
Methods) is equivalent to the logistic regression model with reward 
history coefficients that are everywhere positive, largest for the most 
recent rewards and with the effect of reward declining exponentially 
with delay (Lau and Glimcher, 2005). The coefficients illustrated in 
Figure 5A instead were sharply negative for the most recent reward, 

Figure 4 | effort and earned rewards when the price of the high and low cost levers does not switch. Average lever presses on the (A) low cost and (B) high 
cost lever and average pellets earned on (C) low and (D) high cost levers as the price of the high cost lever increases across days. No significant genotype 
differences across panels. Error bars = S.E.M, N = 6.
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learning process, which controls the extent to which learning about 
values guides action choice. This is consistent with the aggregate 
findings (Figures 1 and 2) that they distribute effort more evenly 
across both levers, resulting in more high cost lever presses and 
an overall less cost-effective behavioral strategy. By contrast, the 
remaining parameters of the model did not differ. These results 
suggest that the effect of the DAT knockdown was specific to the 
value learning process and not to the short-latency switching part 
of the model (Figures 5C and D, two exponentials plotted sepa-
rately) or the other bias terms. Within value learning, the genotype 

we used the Bayesian Information Criterion (BIC; Schwarz, 1978) 
to penalize data likelihoods for the number of free parameters. 
According to this score, the best of the regression models, trading 
off fit and complexity, was that for N = 20 (the number of rewards 
back in time for which coefficients were fit; 22 free parameters per 
animal, negative log likelihood, 1.168e + 5, pseudo-r20.83). The 
6-parameter reinforcement learning model thus fit the data better 
(smaller negative log likelihood) than this model, even before cor-
recting for the fact that it had about 1/4 the number of free param-
eters. (The difference in BIC-corrected likelihoods was 4.81e + 4 in 
favor of the simpler model, which constitutes “very strong” evidence 
according to the guidelines of Kass and Raftery, 1995). In all, these 
results suggest that the choice data were well characterized by the 
6-parameter reinforcement learning model.

Finally, having developed, fit and validated a computational 
characterization of the choice behavior, we used the estimates of the 
model’s free parameters to compare the learning process between 
genotypes. Table 2 presents fitted parameters for each group and 
statistical comparisons. These comparisons show a selective dif-
ference in the parameter β

V
, which was smaller in the DATkd mice 

(t = 3.1, p < 0.01). This is the temperature parameter for the value 

Figure 5 | Model of reward function and persistence on high and low 
cost lever averaged across reward procurement. (A) Reward history as 
100 discrete parameters representing 100 actions (rewarded or not) back in 
time, solid line represents group averages superimposed on a scatterplot of 
individual subjects (wild-type, blue; DATkd, red). (B) Reward as a continuous 
function comprised of two exponentials (4 parameters).  Though the function 

incorporates the effect of reward infinitely back in time, only the first 100 
actions back are shown. Light traces show curves plotted ± standard error of 
parameters within groups. (C,D) The two exponentials of the model plotted 
separately.  Solid lines represent model using group means of parameters 
and light traces represent individual subjects.  See Table 2 for 
statistics. N = 10.

Table 2 | Fitted model parameters by genotype.

 Wild-type DATkd t p

‘‘Switch’’ learning rate  0.342 0.3431 0.020 0.984

‘‘Switch’’ Temperature −8.185 −9.245 0.521 0.608

‘‘Stay’’ learning rate 0.042 0.044 0.121 0.904

‘‘Stay’’ temperature 39.9 26.06 3.016 0.007

Last lever pressed 3.082 3.259 1.163 0.260

Bias 0.461 0.455 0.026 0.979
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the updating and utilization of incentive values in  decision-making, 
on a choice-by-choice basis, in response to shifting environmental 
contingencies and reward outcomes. By fitting the data to the com-
putational model at the heart of reinforcement learning theories 
of dopamine (Montague et al., 1996; Schultz et al., 1997; Sutton 
and Barto, 1998), we find that elevated tonic dopamine does not 
alter learning, as reflected in the learning rate parameter, but does 
alter the expression of that learning, as reflected by the temperature 
parameter, which modulates the degree to which prior reward biases 
action selection. Surprisingly, the DATkd mice are less influenced by 
recent reward resulting in diminished coupling between on-going 
reward information and behavioral choice.

It has been suggested that tonic and phasic dopamine may serve 
different functions (Schultz, 2007b), with tonic contributing to the 
scaling of motivated behavior (Cagniard et al., 2006b; Berridge, 
2007; Salamone, 2007) while phasic provides a prediction error 
signal critical to learning (Schultz et al., 1993, 1997; Schultz and 
Dickinson, 2000). Consistent with previous work (Zhuang et al., 
2001; Cagniard et al., 2006a,b; Yin et al., 2006), the current study 
supports this view as the DATkd mice retain phasic dopamine 
activity (Zhuang et al., 2001; Cagniard et al., 2006b) and show no 
alterations in learning. In contrast, we show for the first time that 
tonic dopamine can alter the temperature parameter in a temporal 
difference RL model, which suggests a mechanism by which the 
expression of motivated behavior may be modulated or scaled by 
dopamine within a common framework with its role in reinforce-
ment learning.

functIonal accounts of dopaMIne
In contrast to theories that focus on dopamine’s role in reward 
learning, associated with phasic activity (but see Gutkin et al., 2006; 
Palmiter, 2008; Zweifel et al., 2009), tonic dopamine has been asso-
ciated with motivational accounts of dopamine function whereby 
dopamine increases an animal’s energy expenditure toward a goal. 
The effects of dopamine on motivation have been characterized as 
enhanced incentive or “wanting”(Berridge, 2007), decreased sensi-
tivity to cost (Aberman and Salamone, 1999; Salamone et al., 2001; 
Mingote et al., 2005), “scaling” of reinforced responding (Cagniard 
et al., 2006b) or as a mediator of “vigor” (Lyons and Robbins, 1975; 
Taylor and Robbins, 1984; Niv et al., 2007).

In one attempt to formalize these ideas and reconcile them with 
RL models of phasic dopamine, Niv et al. (2007) proposed that 
instrumental actions actually involve two separate decisions: what 
to do (the choice between actions), and when (or how vigorously) to 
do it. They suggested, moreover, that phasic dopamine might affect 
choice of “what to do” via learning while tonic dopamine would 
modulate the vigor of the chosen action, as an expression effect. 
In the present study, the DATkd genotype show altered choices 
between levers, suggesting that tonic dopamine can, independent 
of learning, affect choice of what to do as well as the vigor with 
which a choice is pursued (see also Salamone et al., 2003).

The most straightforward and mechanistic interpretation 
of the data is that tonic dopamine modulates the gain in action 
selection mechanisms (Servan-Schreiber et al., 1990; Braver et al., 
1999). Dopamine affects cellular and synaptic processes widely 
throughout the brain (Hsu et al., 1995; Kiyatkin and Rebec, 1996; 
Flores-Hernandez et al., 1997; Nicola et al., 2000; Cepeda et al., 

difference was specific to the temperature parameter rather than 
the learning rate parameter α

V
, which characterizes how readily 

values adapt to feedback. This selective difference between groups 
is also apparent in Figures 5B and C, where the tendency toward 
a short latency switch following a reward appears similar between 
groups, but the subsequent countervailing tendency to return to a 
lever that has delivered reward appears blunted (Figures 5B and D, 
lower peak). Although this tendency is scaled down in the DATkd 
mice, the time course by which rewards exert their effect, i.e., the 
timescale of decay of the function, which captures the learning 
rate parameter, appears unchanged. Together, these results indi-
cate that the DATkd mice, choice-by-choice, adapt their choices 
to recent rewards with a similar temporal profile, but that recent 
rewards exhibit an overall less profound influence on their behavior, 
resulting in diminished coupling between temporally local rates of 
reinforcement and decision-making.

dIscussIon
Though dopamine has been studied for decades, its impact on adap-
tive behavior in complex, naturalistic environments can difficult 
to infer in the absence of paradigms designed specifically to exam-
ine adaptation to environmental conditions. The paradigm used 
here trades the highly controlled approach of traditional behavior 
testing for a semi-naturalistic design that generates a rich dataset 
against which different models and hypotheses can be examined 
(and generated) and in the process eliminates many difficult to 
address confounds such as the impact of food restriction, handling, 
time of testing, and so on.

In the present study, we used a closed-economy, homecage para-
digm to ask if elevated tonic dopamine alters the animals’ flex-
ible adaptation to changing environmental reward contingencies. 
When shifting reward contingencies between the levers is intro-
duced, wild-type mice distribute more effort to the currently less 
expensive lever, increasing yield for energy expended. In contrast, 
the hyperdopaminergic mice distribute their effort approximately 
equally between the levers, apparently less influenced by the relative 
cost of the two levers. As a consequence, on average they expend 
more effort for each pellet earned than wild-type mice. In this 
paradigm, however, little is gained by this effort. Data from low-
cost baseline, when both levers function at the same cost, and from 
a non-switching version of the task, indicate that the differences 
observed between genotypes cannot be attributed to differences 
in baseline consumption, generalized effects of activity level, dif-
ferences in motor performance, or an intrinsic valuation of lever 
pressing. Rather, the observed difference arises specifically as a con-
sequence of on-going adaptation to a dynamic environment.

dIscernIng alteratIons In reInforceMent learnIng 
(acquIsItIon) froM changes In MotIvatIon (expressIon)
A fundamental debate is whether dopamine influences behavior 
through reinforcement learning or by modulating the expression of 
motivated behavior (Wise, 2004; Salamone, 2006; Berridge, 2007). 
Accumulating data support both perspectives; however, distin-
guishing the relative contribution of learning versus expression to 
adaptive behavior and integrating these two roles into a compre-
hensive framework remain elusive. To disentangle these two poten-
tial influences on adaptive behavior, we ask how dopamine alters 
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of gain in corticostriatal processing of information modulating 
action selection. Importantly, though, in this view dopamine is not 
modulating incentive value or cost sensitivity per se, but the gain in 
action selection processing which alters the influence of incentive 
or costs on behavioral choice.

dopaMIne and the regulatIon of exploratIon and exploItatIon
It is curious that increased tonic dopamine diminishes coupling 
between choice and reward history when one might expect an 
enhanced gain function to make an organism more sensitive to 
recent reward and to marginal contrasts between putative values 
of two choices. However, the effects of changing concentrations of 
dopamine in various brain regions associated with different func-
tions have been often characterized by an inverted U shaped curve 
(Seamans et al., 1998; Williams and Dayan, 2005; Delaveau et al., 
2007; Vijayraghavan et al., 2007; Clatworthy et al., 2009; Monte-Silva 
et al., 2009; Schellekens et al., 2010) such that too much dopamine 
may effectively reduce gain as observed on the behavioral level. 
One reason for this might be saturation in realistic neural repre-
sentations: although in the model, gain can be increased without 
bound, in the brain, too much dopamine might ultimately wash 
out fine discriminations due to saturation. As a consequence, only 
middle ranges of extracellular dopamine would provide optimal 
gain for exploiting prior learning. In contrast, low dopamine would 
diminish exploitation resulting in generalized, non-goal- and task-
related exploration while high dopamine would facilitate explora-
tion between established, goal- and task-related options.

Because it modulates the connection between value and choice, 
the gain mechanism embodied by the softmax temperature in rein-
forcement learning models is often identified with regulating the 
balance between exploration and exploitation. If tonic dopamine 
affects this temperature, then it might, functionally, be involved in 
regulating exploration by modulating the degree to which prior 
learning biases action selection; that is, by controlling the degree 
of exploitation. Dopamine may not be unique in modulating the 
balance between exploration and exploitation; other accounts 
have associated exploration with top-down control from anterior 
frontal cortex (Daw et al., 2006) and/or with temperature regu-
lation by another monoamine neuromodulator, norepinephrine 
(Aston-Jones and Cohen, 2005a,b).

dopaMIne and BehavIoral flexIBIlIty
The ability to flexibly deploy and modify learned behaviors in 
response to a changing environment is critical to adaptation. Though 
the PFC is widely associated with behavioral flexibility, considerable 
data suggest that flexibility arises from a cortico-striatal circuit in 
which both cortical and subcortical regions contribute important 
components to flexible behavior (Cools et al., 2004; Frank and Claus, 
2006; Lo and Wang, 2006; Hazy et al., 2007; Floresco et al., 2009; 
Haluk and Floresco, 2009; Pennartz et al., 2009; Kehagia et al., 2010). 
In the present study, it is possible that changed dopamine in the PFC 
contributed to the observed phenotype. Xu et al. (2009) recently 
reported that DAT knock-out mice (DATko) lack LTP in prefrontal 
pyramidal cells. However, the knock-out line used in that study and 
the knock-down used here differ  significantly making it difficult to 
draw inferences from one line to the other. The DATko phenotype 
is more severe and complicated with developmental abnormalities, 

2001; Horvitz, 2002; Reynolds and Wickens, 2002; Bamford et al., 
2004; Goto and Grace, 2005a, b; Calabresi et al., 2007; Wu et al., 
2007; Kheirbek et al., 2008; Wickens, 2009), especially in the stria-
tum, believed to be central in action selection (Mogenson et al., 
1980; Mink, 1996; Redgrave et al., 1999). Activation of D2 receptors 
on corticostriatal terminals has been shown to filter cortical input 
(Cepeda et al., 2001; Bamford et al., 2004) and activation of D1 
receptors on striatal medium spiny neurons (MSNs) can provide 
a gain function by altering the threshold for switching from the 
down-state to the up-state while facilitating responsiveness of those 
MSNs already in the up-state (Nicola et al., 2000). Consequently, 
dopamine is positioned to modulate the processing of information 
flowing through the striatum by modulating both plasticity and 
gain (or temperature), reflecting a dopaminergic role in learning 
and expression of learning, respectively (Braver et al., 1999). This 
hypothesis, that tonic dopamine modulates gain on corticostriatal 
processing thereby regulating the temperature at which learned 
expected values influence action selection, would explain how tonic 
dopamine could affect both choice of “what to do” and the “scaling” 
of the expression of learned, reinforced behavioral responses.

Insofar as functional aspects of behavior, such as incentive and 
cost (or exploration, performance, uncertainty, and so on) are proc-
essed through the striatum, a temperature/gain regulation function of 
dopamine would alter these functional aspects of behavior. However, 
the functional effects and the underlying mechanism need not be 
co-extensive. Depending upon the input, task or specific anatomical 
region manipulated, a temperature modulation function might have 
seemingly distinct functional effects on behavior (Braver et al., 1999). 
Though response selection in striatum is particularly associated with 
its dorsolateral region and incentive processing with ventral regions, 
the nucleus accumbens in particular (Humphries and Prescott, 2010; 
Nicola, 2007), in the present study, we cannot discern which striatal 
compartment contributes to the observed phenotype. Determining 
the unique contribution of the ventral and dorsal striatum to behav-
ioral flexibility will require further studies.

The notion that dopamine may change the expression of moti-
vated behavior by altering the gain operating on the processing 
of either cost or incentive is consistent with previous theories of 
dopaminergic function (Salamone and Correa, 2002; Berridge, 2007). 
However, discerning whether dopamine operates on costs, incentive 
value or both may ultimately require greater understanding of the 
precise neural representation of these functional constructs.

For example, Rushworth and colleagues (Rudebeck et al., 2006) 
have suggested that tracking of delay- and effort-based costs are 
mediated by the orbitofrontal and anterior cingulate cortices, 
respectively, both of which project to the ventral striatum. Shidara 
and colleagues (Shidara et al., 1998, 2005; Shidara and Richmond, 
2004) provide data that the anterior cingulate processes reward 
expectancy and that the ventral striatum tracks progress toward 
a reward. Presumably such information maintains focus on a 
goal, favoring task-related action selection during the exertion 
of effort or across a temporal delay. This would give rise to an 
apparent reduced sensitivity to costs though the underlying mecha-
nism would be an enhanced representation of progress toward a 
goal. A mechanism such as this would equally support dopamine 
 theories of enhanced incentive and reduced sensitivity to costs, 
both of which arise as a consequence of dopaminergic modulation 
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including growth retardation, pituitary hypoplasia, lactation deficits, 
and high mortality (Bosse et al., 1997), none of which occur in the 
knock-down line used here (Zhuang et al., 2001). More importantly, 
the DATko, consistent with a loss of PFC LTP, show learning, and 
memory deficits (Giros et al., 1996; Gainetdinov et al., 1999; Morice 
et al., 2007; Weiss et al., 2007; Dzirasa et al., 2009). In contrast, learn-
ing has been shown to be normal in the DATkd (Cagniard et al., 
2006a,b; Yin et al., 2006), including in the present study. Moreover, 
the weight of evidence suggest that dopamine reuptake in the PFC 
is mediated primarily by the norepinephrine transporter (NET) 
rather than DAT, suggesting that a knockdown of DAT would not 
significantly alter the kinetics of reuptake in the PFC (Sesack et al., 
1998; Mundorf et al., 2001; Moron et al., 2002). In contrast, the 
changes in dopamine dynamics in the striatum are pronounced and 
well documented (Zhuang et al., 2001; Cagniard et al., 2006b).

It is unlikely that behavioral flexibility is localized specifically to 
any single anatomical region; rather, flexibility is likely an emergent 
property arising from interdependent interaction between struc-
tures within circuits. For example, Kellendonk et al. (2006) dem-
onstrate that overexpression of D2 receptors in the striatum can 
alter PFC function. From this perspective, we would expect that 
the PFC does contribute to the observed phenotype because it is an 
integral component of the corticostriatal circuit mediating choice 
behavior. In the present study, however, the weight of evidence 
supports the notion that potential changes in PFC function arise as 
a consequence of alterations in dopaminergic tone in the striatum 
rather than in the PFC directly, consistent with the widely held view 
that the striatum critically mediates reward learning and action 
selection. To this we add the suggestion that striatal dopamine may 
contribute to behavioral flexibility by modulating the degree to 
which prior learning is or is not exploited.

dIstInguIshIng the contrIButIon of tonIc and  
phasIc dopaMIne
Dopamine cells have been characterized as having two primary 
modes (Grace and Bunney, 1984a,b), tonic (slow, irregular pace-
maker activity), and phasic (short bursts of high frequency spikes). 
Experimentally isolating and manipulating these to investigate their 
putatively distinct functions remains a significant challenge. When 
DAT expression is reduced, the amplitude of dopamine release from 
evoked stimulation is reduced to 25% of wild-type (Zhuang et al., 
2001). Despite this reduced release, the effect on tonic dopamine 
is robust and clear, resulting in both increased rate of tonic activ-
ity and elevated extracellular dopamine in the striatum (Zhuang 
et al., 2001; Cagniard et al., 2006b). In contrast, phasic activity itself 
remains unaltered (Cagniard et al., 2006b).

Though phasic activity itself remains intact, the impact of 
reduced amplitude of release during that activity is uncertain. 
That is, it is possible that reduced dopamine during phasic release 

might underlie the observed phenotype rather than increased tonic 
activity. The weight of evidence argues against this. Phasic activity 
is most widely associated with mediating a prediction error during 
reward learning (Schultz et al., 1997), with evidence that the mag-
nitude of phasic activity correlates to the magnitude of unexpected 
reward (Tobler et al., 2005). However, we observe no alterations in 
reward learning. Dopamine has also been associated with energiz-
ing and mobilizing reward oriented appetitive behavior, but we 
observe no reduction in motivation and effort.

Bergman and colleagues (Joshua et al., 2009) suggests that phasic 
dopamine activity itself may be composed of two components: a fast 
phase that serves an activational function and a more prolonged, 
slow phase that modulates plasticity. It is intriguing to consider 
that a reduction in the amplitude of putative fast phase activity 
may result in less activation and gain of learned values, effectively 
reducing the bias of prior learning on choice, as observed here. 
However, in the present study the mice have extensive experience 
with the lever and reward contingencies. The literature on phasic 
dopamine suggests that bursting should occur primarily during 
unexpected outcomes, such as contingency switches in this task. 
However, it is precisely around these switches that the WT and 
DATkd behavior is similar while differences in choice are observed 
primarily during the stable periods between contingency switches. 
Thus, though we cannot conclusively rule out a potential role for 
reduced amplitude of phasic release in the phenotype observed 
here, the weight of evidence points to the pronounced changes in 
tonic dopamine as the critical factor.

Though dopamine is often associated with greater motivation, 
willingness to work, and persistence in pursuing a goal, the present 
study suggests a potential trade-off between such enhanced motiva-
tion and flexibility. The relative value of persistence and flexibility 
will depend upon the environment. Consequently, polymorphisms in 
genes regulating dopamine function (D’Souza and Craig, 2008; Frank 
et al., 2009; Le Foll et al., 2009; Marco-Pallares et al., 2009) may have 
evolved from evolutionary pressures arising from different environ-
ments. In some environments, extraordinary persistence (exploitation 
of prior learning) may be essential for survival. In other environments, 
exploration is essential and persistence with a previously, but not cur-
rently, successful action wastes energy. Genetic diversity in dopamine 
function may afford enhanced adaptive survival by providing a range 
of phylogenetic solutions to the problem of determining the degree 
to which an organism should base future behavior on past outcomes, 
a vexing challenge in adaption for any organism.
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