
BEHAVIORAL NEUROSCIENCE

changes in copy-number variation (CNV). CNV represents a gain 
(duplication) or loss (deletion or inversion) in a chromosomal 
region greater than 1 kb in size. With approximately 12% of the 
human genome varying in copy number (Carter, 2007), CNVs 
contribute significantly to genetic heterogeneity. A recent surge 
of research has revealed associations between CNVs and autism, 
including both duplications and deletions (Berg et al., 2007; Sebat 
et al., 2007; Weiss et al., 2008; Xu et al., 2008; Cho et al., 2009; 
Glessner et al., 2009; Guilmatre et al., 2009).

In addition to genetic variation, several other factors have been 
identified from epidemiological studies, which increase the risk 
for ASD diagnosis, including obstetric complications, such as pre-
eclampsia (Mann et al., 2010), premature birth or low birth weight 
(Eaton et al., 2001), and advanced paternal age (APA; Reichenberg 
et al., 2006). APA is a risk factor identified by epidemiology that is 
potentially modifiable, and thus represents a rare target for ASD 
research.

AdvAnced PAternAl Age
Advanced paternal age is associated with a broad range of disease 
outcomes in children, ranging from an increased risk for neural 
tube defects and cleft palate (McIntosh et al., 1995), intellectual 
impairments (Malaspina et al., 2005; Saha et al., 2009), epilepsy 
(Vestergaard et al., 2005), and bipolar disorder (Frans et al., 2008). 
The most robust and replicated studies in this field have demon-
strated a link between APA and elevated risk for the neurodevel-
opmental disorders autism (for example, Reichenberg et al., 2006; 
Durkin et al., 2008; Tsuchiya et al., 2008; Lundstrom et al., 2010; 
Shelton et al., 2010) and schizophrenia (Malaspina et al., 2001; 
Brown et al., 2002; Dalman and Allebeck, 2002; Byrne et al., 2003; 
El-Saadi et al., 2004; Tsuchiya et al., 2005). One study assessed a 
cohort of 132,271 individuals and found that children of men aged 

Autistic sPectrum disorder
Autistic spectrum disorder (ASD) represents a group of poorly 
understood disorders with complex etiologies, confounded by 
substantial clinical and genetic heterogeneity. Males are affected 
four times as often as females (Chakrabarti and Fombonne, 2005) 
with a population prevalence of 0.6–0.7% (Szatmari et al., 2007; 
Geschwind, 2008). Autism is broadly defined as a neurodevelop-
mental syndrome with markedly abnormal or impaired develop-
ment in social interaction and communication, and involving 
repetitive or restricted patterns of behavior (DSM-IV). Diagnosis 
depends on clinical recognition of these behavioral symptoms. ASD 
also includes atypical autism, Asperger’s syndrome, Rett syndrome, 
overactive disorder, and pervasive developmental disorders, all of 
which are etiologically related to autism (Reichenberg et al., 2006). 
Although the neurobiology of ASD is not completely understood, 
one key neurobiological feature of ASD is early brain overgrowth, 
which is thought to reflect defects in neural patterning and wiring 
(Courchesne et al., 2007).

While the etiology of ASD remains unknown, twin and family 
studies have supported a significant genetic contribution to the 
disorder. The concordance rates for autism and ASD in monozy-
gotic (MZ) twins are 70 and 90%, respectively, compared to the 
dizygotic (DZ) concordance rates of 5 and 10% (Sebat et al., 2007). 
Rett syndrome is a rare form of ASD that arises from mutations in 
the methyl-CpG-binding protein-2 (MeCP2) gene (Monteggia and 
Kavalali, 2009). However, ASD displays considerable heterogene-
ity and the recent large collaborative genome scan by the Autism 
Genome Project (AGP) of nearly 1200 sibling pairs with ASD iden-
tified several regions of interest, yet failed to identify one region 
with genome-wide significance (Szatmari et al., 2007). The genetic 
contribution to ASD etiology is thus likely to involve subtle altera-
tions including rare single nucleotide polymorphisms (SNP) or 
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40 years or older had a nearly six-fold increased risk of ASD com-
pared to the children of men aged 30 years or younger (Reichenberg 
et al., 2006). This finding has been replicated in a large, population-
based Danish study (Larsson et al., 2005). In recent years several 
large US studies (some of which may include overlapping cases) 
have also reported an association between APA and increased risk 
of ASD (Croen et al., 2007; Durkin et al., 2008; Grether et al., 2009; 
Shelton et al., 2010).

BiologicAl mechAnisms underPinning APA And risk 
of Autism
Advanced paternal age represents an opportunity to investigate gene 
and environment interactions with the potential to help understand 
how de novo mutation events occur and contribute to disorders such 
as ASD (Malaspina, 2001; Sebat et al., 2007). However, the molecu-
lar mechanisms underlying the effects of APA on disease outcomes 
in children remain essentially unknown. A large number of factors 
influences human development and could covary with paternal age, 
one of which is maternal age (Saha et al., 2009). Most attention to 
date has focused on the effects of aging on the integrity of germ cells, 
because mammalian germ cell development differs between males 
and females. A greater number of germ line cell divisions occur in 
the sperm relative to the egg and the disparity between the quantity 
of male and female divisions increases with age. With respect to 
humans, only 24 cell divisions are required in the development of an 
oocyte and 22 of these occur before birth. In contrast, spermatogo-
nia undergo an estimated 30 cell divisions before puberty and then 
divide every 16 days thereafter. Therefore, the sperm of a 40-year-
old man has undergone over four times as many replications than 
that of a 20-year-old. Each time these cells divide, the replication of 
the genome increases susceptibility to copy error mutations (Crow, 
2000). APA-related copy error is likely to result in rare mutations in 
individual sperm. This suggests that such copy error could contrib-
ute to changes in structural variation, such as CNVs. Therefore, one 
challenge lies in the clarification of an association between APA and 
an increase in CNVs using a suitable model system.

Dysregulation of epigenetic processes during spermatogenesis 
in older men also has the potential to contribute to the associa-
tion between APA and neurocognitive disorders (Perrin et al., 
2007). Changes in chromatin packaging and integrity (Zubkova 
and Robaire, 2006) and hypermethylation in ribosomal DNA 
(Oakes et al., 2003) were evident in spermatozoa of older rats 
when compared to younger rats. Further, it is possible that age-
related alterations in gene imprinting mediate APA effects on the 
next generation. Usually genes are expressed from both paternal 
alleles. For imprinted genes, only one of the alleles is transcribed, 
the other allele is represented in a parent-of-origin dependent man-
ner (Surani, 1998; Reik and Walter, 2001). Within the genome, the 
majority of imprinted genes occur in large clusters controlled by 
imprinting centers (Koerner and Barlow, 2010). In some instances, 
imprinted gene expression can be tissue-specific and within the 
brain it may occur in a region or cell-specific manner (Davies et al., 
2004; Gregg et al., 2010a,b). Changes to the expression of imprinted 
genes may alter brain development (Gregg et al., 2010b) and have 
been connected with neurocognitive disease (Davies et al., 2004; 
Isles et al., 2006; Perrin et al., 2007). Perrin et al. (2007) suggests that 
APA could increase the likelihood of epimutations or mutations 

within imprinted genes or imprinting centers. The next challenge 
is, therefore, to develop an animal model to test the hypothesis that 
APA can directly alter epigenetic processes.

There is some indirect evidence from clinical research to support 
the hypothesis that these APA-related mechanisms may be impli-
cated in ASD. Genetic studies indicate that CNVs are significantly 
more common in ASD (Sebat et al., 2007; Christian et al., 2008; 
Marshall et al., 2008; Merikangas et al., 2009; Weiss and Arking, 
2009; Pinto et al., 2010). Rett syndrome, an X chromosome-linked 
ASD, has been associated with mutations in MeCP2 gene encoding a 
protein with key functions in the regulation of epigenetic patterning 
(Nagarajan et al., 2008; Feinberg, 2010; Gonzales and LaSalle, 2010).

Furthermore, loss of methylation at the maternally imprinted 
insulin-like growth factor II (IGF2) gene was associated with APA in 
cord blood cells of Chinese subjects (Dai et al., 2007). Interestingly, 
the levels of this growth hormone were elevated in blood of boys 
with ASD or autism and this may have contributed to the larger 
head circumference and body mass index seen in these boys (Mills 
et al., 2007). Moreover, global methylation profiling of lympho-
blastoid cell lines from monozygotic twins discordant for autism 
showed altered methylation in promoters for several candidate 
genes previously linked to autism (Nguyen et al., 2010). However, it 
is difficult to differentiate between cause and effect in these studies.

The molecular mechanisms described above may not be mutu-
ally exclusive but they may interact with each other to increase 
the risk of developing ASD (Schanen, 2006). Thus, the one com-
monly recurrent cytogenetic aberration associated with ASD entails 
duplications of chromosome 15q11–13, which occur in up to 5% 
of patients with ASD (Cook et al., 1997, 1998; Schroer et al., 1998). 
The affected region includes paternally and maternally imprinted 
genes and maternally derived duplications confer an 85% increase 
in the risk of developing ASD (Cook et al., 1997). Genome-wide 
expression profiling using lymphoblasts from ASD patients with 
duplications in this region identified over 100 consistently differ-
entially expressed transcripts, but most of this arose from genes 
outside the duplication (Baron et al., 2006). These observations 
emphasize the notion that the autism phenotype is an incompletely 
penetrant, multigenic trait.

AnimAl models
Although clinical research is clearly important, testing causative 
and mechanistic hypothesis is difficult in humans because multiple 
genetic and environmental factors are involved in the etiology of 
ASD. Animal models that focus on behavioral dimensions associ-
ated with underlying biological mechanisms are valuable for this 
purpose. However, many core behavioral symptoms of ASD include 
aspects that may be impossible to model in mice. For example, 
theory of mind, which is the ability to empathize with the feel-
ings and intentions of others, as well as language deficits are not 
easily evaluated in the mouse. Therefore, ASD may be particularly 
difficult to model in rodents (Crawley, 2007). In contrast, social 
behavior can be effectively assessed in mouse models, because mice 
are known to engage in high levels of social interaction and social 
communication (Gheusi et al., 1994).

Three broad types of approach have been used in mouse models 
of autism. The first of these used targeted disruption or mutation of 
genes that may be involved in ASD susceptibility, such as the Fmr1 
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of 28.5 months (Massie et al., 1991); non-representative animals 
that live for extended periods influence this measure. The Jackson 
Laboratory (http://jaxmice.jax.org/strain/000664.html) notes that 
the median age span for C57 is approximately 20 months. If a 
naturalistic model is preferred, then one would select sires for APA 
models as close to the age at which there is a known APA effect on 
psychiatric illness in humans. For autism and schizophrenia, this 
is 40–50 years in the human (Malaspina et al., 2001; Reichenberg 
et al., 2006), which is equivalent to 12–15 months in the mouse (or 
16–20 months in the rat).

To date, there are three published models investigating the 
behavioral effects of APA in the mouse. Table 1 depicts the behav-
ioral phenotypes and specific features of each of these models. The 
first study investigated the effects of APA on spontaneous activity 
and passive avoidance learning in adult offspring from a hybrid 
(C57BL/6JIco x CBA/JIco) mouse strain (Garcia-Palomares et al., 
2009). These authors demonstrated a learning deficit in the off-
spring of sires aged 25 and 30 months, compared to the offspring of 
sires 3 months old, and a decrease in motor activity. However, this 
reduced activity was only found in the offspring of extremely old 
sires (the 30-month-old group). Only 5 sires out of 20 survived at 
this age and as such, may have contributed less variation than from 
the other age groups (all comprising 20 sires). Thus, the behavioral 
phenotype in this model could be a result of a combination APA 
and unusual paternal longevity.

A second mouse model of APA utilized the inbred C57BL/6J 
strain to examine APA effects on social and exploratory behaviors 
in the offspring of 2 month-old and 10 month-old sires (Smith 
et al., 2009). They reported less engagement in social activity and 
reduced exploratory behavior for the offspring of older sires. 
However, locomotion was not altered in this model, as seen in 
the Garcia-Palomares et al. (2009) study, and no other behavioral 
domains were examined.

gene that is associated with Fragile X syndrome (McNaughton et al., 
2008). The drawback of this approach is that the targeted allele in 
the mouse may be functionally distinct from the allele present in 
the ASD population (Moy et al., 2006). A second approach has 
been to generate models based on defects in neurotransmission, 
such as neonatal serotonin depletion, or alterations in parts of the 
serotonin signaling pathway (Moy and Nadler, 2008). The third 
major approach to modeling autism in the mouse has been based 
on known epidemiological risk factors such as APA. This is an 
emerging area of animal modeling that correlates naturalistically 
with disease etiology in humans.

AnimAl models of APA
The first rodent study investigating the consequences of APA on 
adult behavior assessed the offspring of 2.5–23 month-old male 
Wistar rats on measures of spontaneous activity and learning capac-
ity in a conditioned avoidance task (Auroux, 1983). This study 
revealed a significant decrease in learning capacity in male and 
female offspring with increasing paternal age. This learning defi-
cit was seen in male offspring of sires that were 6 months of age 
or older, but only became apparent in female offspring when the 
sires were 18 months old. While the Auroux (1983) study showed 
a cognitive defect resulting from APA in the rat, inbred mouse 
strains are preferred for this type of research. The use of inbred 
strains minimizes genetic variability in order to optimize the dis-
section of potential genetic and epigenetic mechanisms underlying 
APA. Additionally, the genome of the inbred mouse provides the 
opportunity for genetic manipulation to test specific hypotheses.

When generating new models of complex psychiatric disease, it 
is difficult to decide the most appropriate conditions for the model. 
For example, at what age is a mouse considered of “advanced age?” 
The longevity of laboratory mice varies substantially by strain and 
laboratory. While male C57BL/6J mice have an average life span 

Table 1 | Behavioral phenotype in offspring of rodent APA models.

Study Year Strain/species APA sire age Behaviors examined Outcomes

Auroux (1983) 1983 Wistar Rat 23 months Avoidance learning ↓
    Emotionality –

    Locomotion –

Garcia-Palomares et al. (2009) 2009 C57BL/6JIco x CBA/JIco mouse 25–30 months Avoidance learning ↓
    Locomotion ↓
Smith et al. (2009) 2009 C57BL/6J mouse 10 months Social behavior ↓
    Exploration ↓
    Locomotion –

Foldi et al. (2010) 2010 C57BL/6J mouse 12–18 months Neurological function –

    Anxiety ↑
    Exploration ↑
    Social behavior –

    Locomotion –

    Learned helplessness ↓
    Acoustic startle –

    Prepulse inhibition –

↑ = APA resulted in a significant increase in this behavior.
↓ = APA resulted in a significant decrease in this behavior.
– = APA did not alter this behavior.
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It is known that behavioral phenotypes are markedly affected by 
housing and testing conditions, even when significant precautions 
are taken to equate test apparatus, protocols, and other features of 
animal husbandry (Crabbe et al., 1999). So perhaps it is unsur-
prising that the reported APA phenotypes differ so significantly, 
considering inconsistencies in both animal husbandry and testing 
techniques. What is also obvious from comparing phenotypes is 
that APA in the mouse is not associated with rare outliers, but results 
in shifts in various behavioral outcomes that are significant at the 
population level. One would presume that if we were dealing with 
a model of rare, dominant de novo genetic events, that this would 
result in qualitative alterations in phenotype, rather than quanti-
tative population-level effects. Alternately it may be that because 
these population-level effects are in such non-selective behaviors, 
that they are the result of a cumulative effect of different rare muta-
tions or CNVs that impact on the same behaviors. The instability 
of the phenotype may also simply reflect the broad associations 
with disease outcomes in human populations.

It is possible that offspring behavioral phenotypes are altered 
by non-genetic transmission of paternal characteristics, such as 
paternal behavior. One study has explored the strength of  paternal–
offspring open-field behavior correlations, based on the length 
of sire exposure (LSE) prenatally (Alter et al., 2009). This study 
demonstrated stronger correlations when sires were housed with 
pregnant females (dams) for longer durations. LSE could impact 
offspring development via maternal stress, such as by altering 
maternal hormone levels (Lupo Di Prisco et al., 1978) or other 
variation in male phenotypic qualities (Drickamer et al., 2000). 
We have recently shown that prenatal LSE alone does not influ-
ence behavioral outcomes in offspring, by comparing the two pre-
dominant methods for breeding laboratory mice. The offspring of 
both pair-housed and time-mated breeding dyads had equivalent 
behavioral phenotypes (Foldi et al., 2011). However, the effects of 
preconception and prenatal paternal behavior may be highlighted 
when variables such as paternal drug exposure are included. For 
example, paternal cocaine abuse in mice prior to coitus has been 
shown to decrease attention and working memory in offspring 
(He et al., 2006). Whether the reported APA rodent phenotypes are 
affected by the postnatal presence or absence of the sire remains 
unknown, since these four studies removed the sires prior to birth. 
However, considering the behavioral changes in older mice (Strong 
et al., 1980; Frick et al., 2000), it is plausible that sire behavior would 
contribute to offspring phenotypes.

It may also be that naturalistic models are not appropriate. The 
hypothesized mechanism of APA involves rare genetic events, affect-
ing only a small percentage of offspring. Perhaps the field needs to 
move into a model where rare mutations can be detected in very 
large populations, for example in Drosophila (Burne et al., 2011). 
Additionally, it may be that a reliable phenotype only becomes 
apparent in the offspring of extremely old male mice, as was seen 
in the Garcia-Palomares (2009) study. Thus, the next generation 
of APA mouse models should utilize an APA “dose” design (e.g., 
12, 18, and 24 months. This will ascertain firstly, whether increased 
APA in the mouse produces an increased phenotypic difference and 
secondly, whether APA “dose” can explain the disparity within the 
three published behavioral phenotypes. Regardless, the APA mouse 
model will allow the exploration of within-mouse correlations 

The third APA mouse model developed by our group uses 
4 month-old (control) and 12–18 month-old (APA) sires of the 
inbred C57BL/6J strain (Foldi et al., 2010). APA sire ages were 
selected because they best match the at-risk relative age in humans. 
Sires were mated with 4 month-old females and adult offspring 
were examined on a comprehensive battery of behavioral tests, 
designed to assess the broad domains of anxiety, exploration, loco-
motion, learned helplessness, sensorimotor gating, and working 
and spatial memories. Following behavioral phenotyping, the 
brains of these mice were imaged ex vivo on a 16.4T MRI scan-
ner. Brain morphology was also examined at birth in a separate 
cohort of animals. The behavioral phenotype of APA mice in our 
study included a significant increase in anxiety-related behavior and 
exploration and an altered coping strategy to an aversive environ-
ment (the Forced Swim test). In contrast to the Garcia-Palomares 
et al. (2009) study, we showed no alterations in locomotion or 
learning, although different paradigms were used to assess learn-
ing in both studies. Also in contrast with the Smith et al. (2009) 
study, social behavior in APA mice was normal and exploration 
was increased, not decreased. The trajectory of cortical develop-
ment was also altered for male APA mice, in that as neonates, APA 
males had significantly thinner cortices than did control males. 
This appeared to reverse by adulthood in that the cortical volumes 
of male APA mice were now significantly larger than control male 
mice. This volumetric increase was specific to the rostral portion 
of the cortex (i.e., rostral to the lateral ventricles; Foldi et al., 2010). 
Our study remains the only published model of APA to investigate 
brain structural outcomes. The altered pattern of cortical growth in 
APA mice is of particular relevance to the association between APA 
and autism. The cortices of APA neonates were thinner than those 
of controls, indicating that APA altered the trajectory of cortical 
development in this model. The cerebral cortex in the brain of a 
neonatal mouse is similar to that of a late second trimester or early 
third trimester human fetus (Clancy et al., 2001). This pattern of 
cortical development may be similar to indices of brain growth in 
children with autism. Although head circumference is only a proxy 
marker of brain size, head circumference in children who develop 
autism is slightly smaller at birth but the growth in circumfer-
ence accelerates abnormally 6–21 months after birth (Courchesne 
et al., 2003; Dementieva et al., 2005). Neuroimaging studies have 
also suggested that autism is associated with rapid and excessive 
brain growth in the first years of life, resulting in increased cortical 
volume at 2–4 years of age (Courchesne et al., 2001; Sparks et al., 
2002). Furthermore, cerebral overgrowth in autism is greatest in 
the frontal and temporal cortices (Carper and Courchesne, 2005), 
which is consistent with the neuroanatomical findings described 
in APA mice by Foldi et al. (2010). Therefore, in terms of brain 
morphology, our APA mouse model seems to recapitulate part of 
the structural neurobiology of autism. In addition, the anatomi-
cal changes were observed only in male APA offspring, with no 
alterations shown for female mice. Considering the marked excess 
of autism in males [11] this further supports the relevance of our 
model to the disorder.

While there remains a lack of consistency in the behavioral 
phenotypes of these three APA-related mouse models, there are 
important differences in how they are constituted. Importantly, 
the age of the APA sires used for each study varied (see Table 1). 
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