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phospholipase D (NAPE-PLD) and diacylglycerol lipase (DAGL) 
accelerated molecular biological studies on the eCB biosyntheses 
(Bisogno et al., 2003; Okamoto et al., 2004). eCBs are synthesized 
“on demand” at the post-synaptic sites of neurons after an increase 
in neural activity and calcium ion influx, and are then released 
into the synaptic cleft. Their main function appears to be the sup-
pression of neurotransmitter release from the presynapse. Thus, 
eCBs act as retrograde neurotransmitters, modulating other neu-
rotransmitter systems.

CB
1
 and CB

2
 are metabotropic receptors coupled to G-proteins 

of the Gi/o type. CB
1
 receptors are localized mainly in the cen-

tral nervous system, but are also present in a variety of peripheral 
tissues; they are among the most abundant and widely distrib-
uted G-protein coupled receptors in the brain. CB

1
 receptors are 

expressed in multiple brain areas, including the olfactory bulb, 
neocortex, pyriform cortex, hippocampus, amygdala, basal ganglia, 
thalamic and hypothalamic nuclei, cerebellar cortex, and brainstem 
nuclei (Herkenham et al., 1990, 1991; Katona et al., 2001). CB

2
 

receptors are mostly peripherally located on immunological tissues, 
but they have also been found within the central nervous system 
on neurons and glial cells with their expression mainly related to 
conditions of inflammation (Galiegue et al., 1995; Schat et al., 1997; 
Begg et al., 2005). More recent immunohistochemical analyses have 
revealed the presence of CB

2
 receptors in apparently neuronal and 

glial processes in diverse rat brain areas, including the cerebellum 
and hippocampus (Van Sickle et al., 2005; Onaivi et al., 2006).

IntroductIon
Considerable evidence suggests that cannabinoids impair hip-
pocampal-dependent learning and memory processes, such as 
spatial learning and context-related memory tasks (Sullivan, 2000; 
Riedel and Davies, 2005). In this review, I will provide evidence that 
suggests that the effects of cannabinoids on memory and plasticity 
are complex and depend on several factors, such as the nature of 
the task (emotional or non-emotional), the memory stage investi-
gated (acquisition, retrieval, and extinction), and the experimental 
model used. Naturally, the behavioral effects of cannabinoids on 
memory may vary as a function of dose, route of administration, 
and the specific drug used.

cannabInoId receptors In the hIppocampus
Cannabis has a long history of consumption both for recreational 
and medicinal uses. The main psychoactive constituent of mari-
juana, delta-9-tetrahydrocannabinol (THC), was identified in 1964 
(Gaoni and Mechoulam, 1964) and this discovery led to the iden-
tification of the endogenous endocannabinoid (eCB) system. This 
system includes cannabinoid receptors (CB

1
 and CB

2
), eCBs [anan-

damide and 2-arachidonoyl-glycerol (2-AG)], enzymes involved in 
their synthesis and metabolism [fatty acid amide hydrolase (FAAH) 
for anandamide and the monoacylglycerol lipase (MAGL) for 
2-AG], and an eCB transporter (Devane et al., 1992; Freund et al., 
2003; Kogan and Mechoulam, 2006). Recent cDNA cloning of the 
key enzymes such as N-acylphosphatidylethanolamine-hydrolyzing 
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In the hippocampus, CB
1
 receptors are expressed at an espe-

cially high density in the dentate gyrus, CA1, and CA3 regions 
(Herkenham et al., 1990, 1991; Matsuda et al., 1990; Tsou et al., 
1998). CB

1
 receptors are predominantly localized on the axon 

terminals and preterminal segments of cholecystokinin (CCK)-
expressing GABAergic interneurons (Nyíri et al., 2005); however, 
they have also been demonstrated to inhibit glutamatergic transmis-
sion in cultured hippocampal cells (Shen, et al., 1996). CB

1
 recep-

tors located on GABAergic axon terminals are activated by lower 
concentrations of cannabinoid receptor agonists than CB

1
 receptors 

located on glutamatergic terminals (Ohno-Shosaku et al., 2001; 
Hoffman et al., 2007) and CB

1
 receptor expression is significantly 

lower on glutamatergic terminals than on GABA axon terminals 
in the hippocampus (Katona et al., 2006; Kawamura et al., 2006). 
Specifically, activation of hippocampal CB

1
 receptors decreases 

GABA release (Katona et al., 1999; Hajos et al., 2000; Hoffman and 
Lupica, 2000; Hoffman et al., 2003). The CB

1
-containing GABergic 

interneurons are thought to control oscillatory electrical activity 
in the hippocampus in the theta and gamma frequencies, which 
plays a role in synchronizing pyramidal cell activity (Hoffman and 
Lupica, 2000).

Overall, the evidence favors a predominant role for GABAergic 
pathways in the effects of cannabinoids on hippocampal-dependent 
memory processes.

cannabInoId agonIsts ImpaIr hIppocampal-
dependent learnIng and memory
In humans, non-human primates, and rodents, cannabinoids 
impair the performance of a wide variety of memory tasks that 
share the common feature of requiring the hippocampus for nor-
mal performance (Sullivan, 2000; Davies et al., 2002; Riedel and 
Davies, 2005). In laboratory rodents, activation of cannabinoid 
receptors via THC or synthetic analogues such as WIN 55,212-2, 
CP55940, HU-210 or the endogenous agonist anandamide impairs 
learning (Davies et al., 2002). Administration of THC disrupts 
hippocampal-dependent learned behavior in operant and spatial 
maze models of memory (Nakamura et al., 1991; Heyser et al., 1993; 
Lichtman et al., 1995; Brodkin and Moerschbaecher, 1997; Mallet 
and Beninger, 1998; Ferrari et al., 1999; Varvel et al., 2001). For 
example, systemic THC administration (2–6 mg/kg i.p.) impairs 
working memory tested in the radial-arm spatial task and the 
cannabinoid antagonist SR141716A (1–10 mg/kg) prevents these 
deficits in a dose-dependent manner (Lichtman and Martin, 1996). 
Similarly, THC (8 mg/kg) impairs the acquisition of spatial learn-
ing in the water maze and the performance of mice in a working 
memory task, while consolidation and retrieval of a previously 
learned task are not affected. Pre-treatment with the antagonist 
SR 141716A (1 mg/kg i.p.) prevents these learning deficits (Da and 

Takahashi, 2002). Additionally, systemic administration of THC or 
the synthetic cannabinoid receptor agonist WIN 55,212-2 reliably 
impairs performance in delayed-match-to-sample and delayed-
non-match-to-sample tasks, and this is accompanied by decreases 
in hippocampal cell firing during the sample phases of the task 
(Heyser et al., 1993; Hampson and Deadwyler, 1999, 2000).

Overall, the literature discussed above suggests that activation 
of cannabinoid receptors impairs learning. However, since the ago-
nists were systemically infused, most of these experiments do not 
specifically show that cannabinoids impair learning and memory 
via action on the hippocampus. Rather, the involvement of the hip-
pocampus is assumed because it is an important target for systemi-
cally administered cannabinoids and because most of the paradigms 
described are spatial tasks known to be hippocampus-dependent.

More recent research has directly tested whether specific admin-
istration of cannabinoids into the hippocampus would have similar 
effects (summarized in Table 1). Intrahippocampal infusions of 
the agonists CP55940, THC, or WIN 55,212-2 were found to dis-
rupt performance in the radial-arm maze, and in T-maze delayed 
alternation, passive avoidance, spatial learning, and place recogni-
tion memory tasks (Lichtman et al., 1995; Mishima et al., 2001; 
Egashira et al., 2002; Suenaga and Ichitani, 2008; Suenaga et al., 
2008; Wegener et al., 2008; Abush and Akirav, 2010). For example, 
activation of hippocampal cannabinoid receptors by the agonist 
WIN 55,212-2 (1–2 μg) dose-dependently decreases the explora-
tion of an object in a new place, and this effect is antagonized by 
pre-treatment with the cannabinoid receptor antagonist AM 281 
(2 mg/kg, i.p.; Suenaga and Ichitani, 2008). WIN 55,212-2 (5 μg) 
injected into the dorsal hippocampus increases the number of 
reference memory errors in the eight-arm radial-maze task, sug-
gesting impairment of memory retrieval (Wegener et al., 2008). 
Additionally, post-training intrahippocampal administration of 
WIN 55,212-2 (2.5 and 5 μg) disrupts long-term spatial mem-
ory, but not acquisition or short-term memory, in a rat reference 
memory task in the water maze (Yim et al., 2008). We have recently 
found that WIN 55,212-2 administered systemically (0.5 mg/kg) 
or specifically into the hippocampal CA1 area (5 μg/side) before 
massed training in the Morris water maze impairs spatial learn-
ing (Abush and Akirav, 2010). Thus experiments that specifically 
targeted the hippocampus confirm the implications of the earlier 
systemic research as to the impairing effect of cannabinoids on 
hippocampal-dependent learning and memory.

cannabInoId agonIsts ImpaIr hIppocampal synaptIc 
plastIcIty
In neuronal circuits, memory storage depends on activity-
dependent modifications in synaptic efficacy, such as long-term 
potentiation (LTP) and long-term depression (LTD), which are 

Table 1 | Effects of intra-dorsal hippocampal WIN 55,212-2 on learning and memory.

Doses (μg) Task Memory stage Effects References

1–2 Place recognition Short-term retrieval Impair Suenaga and Ichitani (2008)

5 Radial-maze Long-term retrieval Impair Wegener et al. (2008)

2.5 and 5 Spatial (water maze) Long-term retrieval Impair Yim et al. (2008)

5 Spatial (water maze) Acquisition Impair Abush and Akirav (2010)

Frontiers in Behavioral Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 34 | 2

Akirav Cannabinoids effects on hippocampal memory

http://www.frontiersin.org/Behavioral_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


from the examination of field potential in an intact rat model ver-
sus slices, or from various methodological issues, such as different 
stimulation protocols, different drug doses, etc.

effects of cannabInoId agonIsts on emotIonal and 
non-emotIonal memory
Although considerable evidence suggests that activation of CB

1
 

receptors can induce learning and memory impairments (Sullivan, 
2000; Robinson et al., 2003; O’Shea et al., 2004; Varvel et al., 2005), 
CB

1
 receptors are essential for the extinction of conditioned fear 

associations (Marsicano et al., 2002), indicating an important role 
for this receptor in neuronal emotional learning and memory.

role of the cannabInoId system In extInctIon
Extinction was established as a tool to treat conditioned fear by 
Freud in the 1920s. It has become widely accepted that a deficit in 
the capacity to extinguish memories of fear is at the root of fear 
disorders as a result of the distinction between those who do and do 
not develop serious symptoms after fearsome experiences, and the 
fact that fear disorders are treated with therapy based on extinction 
procedures. Moreover, panic attacks, phobias, and particularly post-
traumatic stress disorder (PTSD) are viewed by many as a deficit 
of extinction that should therefore be treated by an intensification 
of extinction (Charney et al., 1993; Wessa and Flor, 2007; Milad 
et al., 2008).

Conditioned fear is induced by pairing a neutral, conditioned 
stimulus (CS; e.g., a light, a tone, or a context) with an aversive 
stimulus (unconditioned stimulus, US; e.g., a mild footshock) that 
evokes a measurable fear response. Experimental extinction learn-
ing occurs when a CS that previously predicted a US no longer 
does so, and over time, the conditioned response (e.g., freezing or 
elevated skin conductance responses) decreases. Extinction learn-
ing involves the ventromedial prefrontal cortex (PFC), amygdala, 
and hippocampus (Milad and Quirk, 2002; Phelps et al., 2004; 
Bouton et al., 2006). PTSD patients continue to re-experience the 
traumatic event over a long timeframe and avoid trauma-related 
stimuli, even though they recognize that the traumatic event is 
no longer occurring. It has been suggested that dysfunctional fear 
extinction plays an important role in the development of clinical 
symptoms, such as reexperiencing trauma in PTSD (Rothbaum 
and Davis, 2003; Milad et al., 2006; Quirk et al., 2006; Rauch et al., 
2006). PTSD patients also demonstrate impaired extinction in the 
aftermath of new trauma. For example, Milad et al. (2008) have 
shown deficient extinction recall as measured in skin conductance 
response in a 2-day fear conditioning and extinction procedure in 
PTSD patients.

Clearly, animal models do not entirely mimic the complex 
features of psychiatric disorders. However, they can predict the 
clinical effects of substances and provide insights into the biologi-
cal mechanisms of these diseases. Marsicano et al. (2002) found 
that CB

1
 receptor-deficient mice show normal acquisition and 

consolidation in a fear conditioning task, but fear extinction is 
strongly impaired. Impaired extinction is also observed when the 
antagonist SR141716 is injected systemically into wild-type mice 
before the extinction trial, indicating that CB

1
 receptors are required 

at the moment of the extinction training. The findings that CB
1
 

knockout mice exhibit impaired short- and long-term extinction 

the two main forms of synaptic plasticity in the brain. A key 
feature of LTP and LTD is that a short period of synaptic activity 
(either high- or low-frequency stimulation) can trigger persistent 
changes in synaptic transmission lasting at least several hours 
and often longer. This single property initially led investigators 
to suggest that these forms of plasticity are the cellular correlate 
of learning (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 
1973). Indeed, efforts to understand synaptic plasticity are driven 
by the belief that such synaptic modifications might occur during 
learning and memory. However, it is extremely difficult to dem-
onstrate directly that learning-induced synaptic changes occur 
following experience.

The mechanisms underlying synaptic plasticity have been stud-
ied more intensely in the hippocampus than in any other brain 
region. Both forms of synaptic plasticity have been studied most 
intensively at the Schaffer collateral–CA1 synapses of the hip-
pocampus because of the established role of the CA1 area in spa-
tial memory (Behr et al., 2009). LTP and LTD are thought to be 
involved in memory formation at glutamatergic synapses in the 
hippocampus. Cannabinoids appear to work by reducing glutamate 
release below the level needed to activate N-Methyl-d-aspartate 
(NMDA) receptors that are required for LTP and LTD (Shen et al., 
1996; Misner and Sullivan, 1999). CB

1
 receptors are capable of 

regulating both inhibitory and excitatory neurotransmitter release 
in the hippocampus and are thus capable of exerting subtle control 
over synaptic plasticity.

Most of our knowledge about cannabinoids and activity- 
dependent changes in synaptic strength comes from studies per-
formed at excitatory synapses, largely using acute hippocampal slices 
as the experimental model (Chevaleyre et al., 2006). Cannabinoid 
receptor activation inhibits both LTP and LTD induction in the 
hippocampal slice. The inhibition of LTP in field potentials in the 
CA1 region has been demonstrated using THC, HU-210, WIN 
55,212-2, 2-AG, and anandamide (Nowicky et al., 1987; Collins 
et al., 1994, 1995; Terranova et al., 1995; Misner and Sullivan, 1999) 
and has been found recently to inhibit hippocampal LTD of CA1 
field potentials as well (Misner and Sullivan, 1999). The impair-
ment in the induction of LTP in the CA1 is blocked by cannabinoid 
antagonists such as SR141716A.

We have recently examined cannabinoid modulation of LTP 
and LTD in a different experimental model: acute anesthetized rats. 
Using this experimental condition, we found that i.p. administra-
tion of WIN 55,212-2 or the CB

1
 receptor antagonist AM251 at the 

doses tested impairs LTP in the Schaffer collateral–CA1 projection, 
with no effect on LTD (Abush and Akirav, 2010; see Figure 1).

de Oliveira Alvares et al. (2006) have also demonstrated impair-
ment of LTP in a CA1 slice preparation following AM251 adminis-
tration. Sokal et al. (2008) found that the CB

1
 receptor antagonist 

SR141716A blocked the potentiation of the fEPSP slope observed 
following HFS to the perforant path. However, other studies 
conducted on hippocampal slices of the Schaffer collateral–CA1 
synapses have shown that CB

1
 blockade favors LTP in the hip-

pocampus (Slanina et al., 2005) and that mice lacking CB
1
 recep-

tors show enhanced LTP (Bohme et al., 2000). However, in the 
study by Slanina et al. (2005), the drug was present throughout the 
experiment and LTP was elicited by moderate stimulations (20 or 
50 pulses). Thus, the discrepancies with our findings could result 
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startle. This was replicated using systemic (Pamplona et al., 2008) 
and intracerebroventricular (Bitencourt et al., 2008) injections. In 
another study (Varvel et al., 2007), OL-135 (30 mg/kg), an inhibi-
tor of FAAH, enhanced the rate of extinction in a water maze task. 
Pamplona et al. (2006) showed that WIN 55,212-2 (0.25 mg/kg) 
facilitates the extinction of contextual fear in the fear conditioning 
task and of spatial memory in the water maze reversal task. We have 
used the light–dark inhibitory avoidance procedure to demonstrate 
the effects of WIN 55,212-2 administered into the CA1 or the BLA 
on extinction. This procedure is dependent on both the amygdala 
and hippocampus as a single CS–US (context–footshock) pairing 
establishes a robust long-term memory, expressed as an increase in 
latency to enter the dark chamber at testing. Repeated retrieval of 
the avoidance response in the absence of the US induces extinction 
of inhibitory avoidance memory, meaning that the animal learns 

of  cue-induced conditioned fear responses have been replicated by 
other groups for the extinction of both cue- and context-induced 
fear responses (Finn et al., 2004; Suzuki et al., 2004; Chhatwal et al., 
2005; Lafenêtre et al., 2007; Lutz, 2007; Niyuhire et al., 2007). We 
have recently shown that microinjecting the antagonist AM251 
(6 ng) into the BLA or the CA1 significantly impairs extinction of 
inhibitory avoidance (Ganon-Elazar and Akirav, 2009; Abush and 
Akirav, 2010). Several studies suggest that the eCB system is not 
involved in the extinction of non-aversive memories (Hölter et al., 
2005; Niyuhire et al., 2007).

On the other hand, studies have demonstrated that pharma-
cological activation of eCB signaling promotes extinction of fear 
memories. For example, Chhatwal et al. (2005) found that systemic 
administration of the eCB transporter AM404 (10 mg/kg) pro-
motes extinction of fear that was conditioned using fear-potentiated 

FIguRE 1 | CB1 receptor antagonist and agonist impair the induction of LTP. (A) 
AM251 injected i.p. (1 or 2 mg/kg) 30 min before application of high frequency 
stimulation (HFS; 200 Hz) to the Schaffer collateral significantly impairs the induction 
of LTP in the CA1 compared with the vehicle group (P < 0.01, vehicle differs from all 
the groups). No significant difference is observed between the groups before HFS. 
(B) WIN 55,212-2 (0.5 mg/kg) injected i.p. 20 min before application of HFS (200 Hz) 

to the Schaffer collateral significantly impairs the induction of LTP in the CA1 
compared with the vehicle group (P < 0.01). No significant difference is observed 
between the groups before HFS. Inset: representative traces in the CA1 for vehicle 
(upper traces) and WIN 0.5 mg (lower traces) groups taken before (black) and 90 min 
after (gray) HFS to the Schaffer collateral (calibration: 0.2 mV, 10 μs). Data published 
by Abush and Akirav (2010) in Hippocampus.
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studies suggesting that exogenous acute cannabinoid treatment 
may have different outcomes depending on task aversiveness and 
the brain region involved (Suzuki et al., 2004; de Oliveira Alvares 
et al., 2005; Varvel et al., 2005; Ganon-Elazar and Akirav, 2009; 
Abush and Akirav, 2010).

effects of cannabInoIds on stress and anxIety
Considerable evidence suggests that cannabinoids are anxiolytics 
and modulate the behavioral and physiological response to stress-
ful events (Viveros et al., 2007; Hill et al., 2010). Consequently, the 
effects of CB

1
 agonists on learning and memory may be attribut-

able to a general modulation of anxiety or stress levels and not to 
memory per se.

Stress is most readily defined as any stimulus that presents a 
challenge to homeostasis including any actual or potential distur-
bance of an individual’s environment. The stress response enables 
the animal to adapt to the changing environment (Joëls and Baram, 
2009). Fear is an adaptive component of the acute stress response to 
potentially dangerous stimuli that threaten the integrity of the indi-
vidual. However, when disproportionate in its intensity, chronic, 
irreversible, and/or not associated with any actual risk, it constitutes 
a maladaptive response and may be symptomatic of anxiety-related 
neuropsychiatric disorders (Taber and Hurley, 2009).

Anxiety disorders are marked by excessive fear (and avoidance), 
often in response to specific objects or situations, in the absence 
of true danger, and they are common in the general population 
(Shin and Liberzon, 2010). As excessive fear is a key component 
of anxiety disorders, the search for the neurocircuitry of anxiety 
disorders has focused extensively on studies of fear circuits in ani-
mal models. These studies examined the neurocircuitry associated 
with fear responses in rats and mice using fear conditioning para-
digms, inhibitory avoidance, and fear-potentiated startle models. 
The amygdala, PFC, and hippocampus have arisen as clear regions 
of interest in studies of anxiety disorders and are implicated in 
PTSD (Shin and Liberzon, 2010).

The hippocampus is often implicated in the neurobiology of 
stress. Mineralocorticoid and glucocorticoid receptors are expressed 
in high numbers within the hippocampus. Although stress-induced 
corticosteroid signaling in the hippocampus has a beneficial role in 
regulating the time course of the hypothalamic–pituitary–adrenal 
(HPA) axis stress response (De Kloet et al., 2005), prolonged gluco-
corticoid signaling can damage the hippocampus as measured by 
dendritic atrophy, decreased neurogenesis, and deficits in synap-
tic plasticity (McEwen and Gould, 1990; Sapolsky, 1996; McEwen, 
1999; Meaney, 2001). In PTSD and major depression patients, hip-
pocampus volumes are reduced (Bremner et al., 1995; Sheline et al., 
1999; Woon and Hedges, 2008), and smaller hippocampal volumes 
are predictive of vulnerability to developing stress-related disorders 
(Pitman et al., 2006).

role of the endocannabInoId system In uncondItIoned stress 
and anxIety
Results from many studies indicate that the eCB system modulates 
unconditioned stress- and anxiety-like responses (Viveros et al., 
2005; Gorzalka et al., 2008; Lutz, 2009). A general conclusion that 
can be tentatively derived from the complicated and often contra-
dictory literature is that inhibition of eCB signaling increases stress 

that the context no longer predicts the footshock. We found that 
WIN 55,212-2 administered into the CA1 facilitates the extinction 
of inhibitory avoidance, with no effect on extinction kinetics when 
microinjected into the BLA (Ganon-Elazar and Akirav, 2009; Abush 
and Akirav, 2010).

Hence, the results of Marsicano et al. (2002) and subsequent 
investigations demonstrate that inhibition of eCB transmission 
robustly inhibits (or prolongs) fear extinction (Suzuki et al., 2004; 
Pamplona et al., 2006; Ganon-Elazar and Akirav, 2009; Abush and 
Akirav, 2010). Conversely, stimulation of eCB transmission acceler-
ates fear extinction (Suzuki et al., 2004; Chhatwal et al., 2005; Barad 
et al., 2006; Abush and Akirav, 2010).

comparIng the effects of cannabInoId agonIsts on aversIve 
and non-aversIve tasks
It has been suggested that the neural processes underlying emo-
tional memory formation (such as extinction learning) and non-
emotional memories (such as spatial learning) are differentially 
sensitive to cannabinoid receptor activation (Chhatwal and Ressler, 
2007). An intriguing question is whether cannabinoids have a simi-
lar effect on other types of emotional memories that do not involve 
fear and extinction learning.

We have recent findings suggesting that cannabinoid receptor 
activation has differential effects on learning and memory that 
are task-, brain region-, and memory stage-dependent (Segev and 
Akirav, 2011). We examined the effects of WIN 55,212-2 micro-
injected into the amygdala and the subiculum on the acquisition 
and retrieval of a neutral learning task (i.e., social discrimination) 
and an aversive learning task (i.e., contextual fear conditioning). 
The subiculum is the principal target of CA1 pyramidal cells. It 
functions as a mediator of hippocampal–cortical interaction and 
has been proposed to play an important role in the encoding and 
retrieval of long-term memory. In fear conditioning paradigms, 
the BLA plays a central role in the formation and consolidation 
of fear-related memory traces (LeDoux, 2003; Maren and Quirk, 
2004), whereas the hippocampus’s role is to integrate the features of 
the context and not to form a context–shock association (Fanselow, 
1998). Unlike the aversive fear conditioning task, social discrimi-
nation is considered neutral or even rewarding. This finding was 
established using both conditioned place preference paradigms and 
T-maze learning rewarded by social interaction (Van den Berg et al., 
1999). Social recognition processes depend on brain regions such as 
the medial amygdala, which modulates the initial social encounter 
and formation of social memory (Ferguson et al., 2001; Bielsky 
and Young, 2004) and the ventral hippocampus (Van Wimersma 
Greidanus and Maigret, 1996; Kogan et al., 2000).

We found that in the aversive contextual fear task, WIN 
55,212-2 administered into the BLA impairs fear acquisition/
consolidation, but not retrieval, whereas in the ventral subiculum 
(vSub), WIN 55,212-2 impairs fear retrieval. In the non-aversive 
or rewarding social discrimination task, WIN 55,212-2 into the 
vSub impairs acquisition/consolidation and retrieval, whereas in 
the medial amygdala, WIN 55,212-2 impairs acquisition (Segev 
and Akirav, 2011). These findings suggest that cannabinoid ago-
nists can impair emotional (or aversive) as well as neutral (or 
rewarding) memory-related processes in a task-, region-, and 
memory stage-dependent manner. This is consistent with other 
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time spent on open arms. Onaivi et al. (1990) have shown that 
THC induces increased aversion to the open arms of the EPM 
in both rats and mice that is similar to the aversion produced 
by anxiogenic agents. In contrast, mice treated with the agonists 
cannabidiol and nabilone spend a greater amount of time in the 
open arms of the maze, an effect similar to that produced by 
diazepam, the reference anxiolytic agent.

In the light–dark box, Berrendero and Maldonado (2002) have 
shown that the systemic administration of a low dose of THC 
(0.3 mg/kg) produces clear anxiolytic-like responses. The CB

1
 

cannabinoid receptor antagonist SR 141716A (0.5 mg/kg) com-
pletely blocks the anxiolytic-like response induced by THC, sug-
gesting that this effect is mediated by CB

1
 cannabinoid receptors. 

In another study, systemic administration of the FAAH inhibitors 
URB597 and URB532 reduces anxiety-related behavior in the rat 
elevated zero-maze and in isolation-induced ultrasonic vocaliza-
tion tests (Kathuria et al., 2003). These effects are dose-dependent 
and blocked by the antagonist rimonabant. The FAAH inhibitor 
and eCB re-uptake inhibitor AM404 also exhibit a dose-depend-
ent anxiolytic profile in the EPM, defensive withdrawal test, and 
ultrasonic vocalization test (Bortolato et al., 2006). URB597 has 
also been shown to be anxiolytic in the rat EPM and open-field 
tests (Hill et al., 2007) and has recently been shown to reduce 
anxiety-related behavior in the EPM in Syrian hamsters (Moise 
et al., 2008).

Ribeiro et al. (2009) examined the dose-response effects of exog-
enous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in mice 
sequentially submitted to the open field and EPM. Systemically 
administered at 0.1 mg/kg (but not at 0.01 or 1 mg/kg), anandamide 
increases the time spent and the distance covered in the central zone 
of the open field, as well as exploration of the open arms of the EPM. 
Recently, Rubino et al. (2008b) demonstrated that the anxiolytic-
like effect of a low anandamide dose is reversed by administration 
of the antagonist AM251, whereas the anxiogenic-like effect is 

and anxiety, while moderate increases in eCB signaling decrease 
stress and anxiety (Lutz, 2009; summarized in Table 2). The term 
“moderate” is used because strong stimulation of eCB signaling by 
high doses of CB

1
 receptor agonists potentiates stress- and anxiety-

like responses (Rodriguez de Fonseca et al., 1996; Scherma et al., 
2008; Lutz, 2009). This biphasic effect has been demonstrated in 
animal models of anxiety (Lafenêtre et al., 2007; Hill and Gorzalka, 
2009), and also in humans. Cannabis may induce aversive states in 
some smokers, precipitating anxiety and panic attacks (Hall and 
Solowij, 1998). Furthermore, THC administration may result in 
psychotic-like states (Linszen and van Amelsvoort, 2007). These 
bidirectional effects of cannabinoids observed in humans can be 
mimicked in laboratory animals. Hence, in models predictive of 
anxiolytic-like activity, low doses of CB

1
 agonists tend to be anxio-

lytic and high doses tend to increase aversion and anxiety-related 
behaviors (Viveros et al., 2005).

Procedures used in studies on the role of eCBs in stress and 
anxiety evaluate the anxiolytic/anxiogenic effects of drugs by 
using standard tasks such as the elevated plus maze (EPM), 
social interaction, and defensive burying (Viveros et al., 2005; 
Lutz, 2009). Using the EPM, Patel and Hillard (2006) found that 
cannabinoid receptor agonists WIN 55212-2 (0.3–10 mg/kg) and 
CP55940 (0.001–0.3 mg/kg) administered systemically increase 
the time mice spend on the open arms (i.e., elicit an anxiolytic 
response) only at low doses. At the highest doses, both compounds 
alter overall locomotor activity. In contrast, THC (0.25–10 mg/kg) 
produces a dose-dependent reduction in time spent on open arms. 
The eCB uptake/catabolism inhibitor AM404 (0.3–10 mg/kg) pro-
duces an increase in time spent on the open arms at low doses 
and has no effect at the highest dose tested. The FAAH inhibitor 
URB597 (0.03–0.3 mg/kg) produces a monophasic, dose-depend-
ent increase in time spent on the open arms. Systemic admin-
istration of the CB

1
 receptor antagonists SR141716 (1–10 mg/

kg) and AM251 (1–10 mg/kg) produce dose-related decreases in 

Table 2 | Effects of cannabinoids on anxiety-related responses.

Agonist Species Doses Apparatus Effects References

WIN 55,212-2 Mice 0.3–10 mg/kg EPM + Patel and Hillard (2006)

CP55940 Mice 0.001–0.3 mg/kg EPM + Patel and Hillard (2006)

THC Mice 0.25–10 mg/kg EPM − Patel and Hillard (2006)

 Rats 1–10 mg/kg EPM − Onaivi et al. (1990)

 Mice 10–20 mg/kg  EPM − Onaivi et al. (1990)

 Mice 0.3 mg/kg Light–dark box + Berrendero and Maldonado (2002)

AM404 Mice 0.3–10 mg/kg EPM + Patel and Hillard (2006)

URB597 Mice 0.03–0.3 mg/kg EPM + Patel and Hillard (2006)

 Rats 0.05–0.1 mg/kg Zero-maze + Kathuria et al. (2003)

   Ultrasonic test + Kathuria et al. (2003)

URB532 Rats 0.1–10 mg/kg Zero-maze + Kathuria et al. (2003)

   Ultrasonic test + 

Nabilone Mice 10–100 μg/kg EPM + Onaivi et al. (1990)

Cannabidiol Mice 1–10 mg/kg EPM + Onaivi et al. (1990)

Anandamide Mice 0.1 mg/kg EPM + Ribeiro et al. (2009)

   Open field + 

Effects: −, anxiogenic effect; +, anxiolytic effect. EPM, elevated plus maze.
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the anandamide transport inhibitor AM404 (Resstel et al., 2008). 
Overall it appears that, as in the case of unconditioned fear, inhibi-
tion of eCB transmission increases fear while moderate stimulation 
of eCB transmission decreases fear.

the Involvement of the hIppocampus In endocannabInoId 
modulatIon of stress and anxIety
Techniques based on intracranial injections of cannabinoids 
in rats revealed that activation of CB

1
 receptors is involved in 

inducing anxiolytic- or antidepressant-like effects (Bambico et al., 
2007; Moreira et al., 2007; Rubino et al., 2008a,b). For example, 
Rubino et al. (2008a) found that low doses of THC microin-
jected into the PFC (10 μg) or ventral hippocampus (5 μg) in 
rats induces an anxiolytic-like response during tests in the EPM, 
while higher doses do not show an anxiolytic effect and even seem 
to switch into an anxiogenic profile. Nevertheless, other studies 
demonstrated that eCB activation in the amygdala and dorsal 
hippocampus results in an anxiogenic-like response. Low THC 
doses (1 μg) in the BLA produce an anxiogenic-like response 
whereas higher doses are ineffective (Rubino et al., 2008a). WIN-
55212-2 in the dorsal hippocampus (2.5 and 5 μg) produces a 
significant anxiogenic-like effect in rats that is reversed by AM251 
(Roohbakhsh et al., 2007).

Local infusion of cannabinoid compounds into specific brain 
areas might be instrumental in identifying neural pathways and 
neuroanatomically separated CB

1
 receptor subpopulations that may 

play distinct roles in and mediate the opposing actions of cannabi-
noids, notably, anxiolytic versus anxiogenic effects (Moreira et al., 
2007; Viveros et al., 2007). We examined the role of cannabinoids 
in modulating aversive and non-aversive learning paradigms in 
the hippocampus and amygdala (Ganon-Elazar and Akirav, 2009; 
Abush and Akirav, 2010; Segev and Akirav, 2011). Microinjecting 
the antagonist AM251 (6 ng) or the agonist WIN-55212-2 (5 μg) 
into the BLA, CA1, or vSub had no effect on anxiety levels as meas-
ured in the open-field, pain sensitivity (Ganon-Elazar and Akirav, 
2009; Abush and Akirav, 2010; Segev and Akirav, 2011), or EPM tests 
(Abush and Akirav, 2010). However, both agonist and antagonist 
had profound effects on aversive and non-aversive learning tasks. 
These findings suggest that in these studies the impairing and facili-
tating effects of local infusions of WIN-55212-2 on learning and 
memory are probably not attributable to a general modulation of 
anxiety. Nevertheless, the effects of cannabinoids on the interplay 
between anxiety and memory processes are difficult to separate 
and further examination of the effects of different cannabinoids 
is required.

To summarize the role of the eCB system in stress, anxiety, and 
conditioned fear, there is a general consensus that the effects of 
cannabinoid agonists on anxiety seem to be biphasic, with low 
doses being anxiolytic and high doses being ineffective or possibly 
anxiogenic. There are several important characteristics of the eCB 
system that might explain these different effects of eCB modula-
tion. First, in a physiological situation, eCB synthesis, and thus 
CB

1
 receptor activation, occurs in particular activated neuronal 

circuits. This is a notable difference from the situation following 
pharmacological treatment with receptor agonists, when the agent 
activates all CB

1
 receptors in the brain regardless of their specific 

involvement in a particular physiological process. Second, the CB
1
 

inhibited by pre-treatment with capsazepine, a transient recep-
tor potential vanilloid type 1 (TRPV1) receptor antagonist. The 
authors suggested that the anxiolytic effect evoked by anandamide 
might be due to the interaction with the CB

1
 cannabinoid receptor, 

whereas vanilloid receptors seem to be involved in the anxiogenic 
action of anandamide (Rubino et al., 2008b). Marsch et al. (2007) 
reported that TRPV1 “null” mice exhibit a significantly reduced 
response to anxiogenic stimuli. Therefore, the anandamide-induced 
inverted U-shape pattern might be based on the fact that the intrin-
sic efficacy of anandamide on TRPV1 is relatively low compared 
to that observed on the CB

1
 receptor (Ross, 2003).

Transgenic mice deficient for FAAH, the enzyme that degrades 
anandamide, demonstrate reduced anxiety-like behavior in the 
EPM and light–dark box compared with wild-type mice and these 
effects are prevented by systemic administration of the antagonist 
rimonabant (Moreira et al., 2008). By contrast, transgenic mice 
lacking expression of the CB

1
 receptor demonstrate an anxiogenic 

profile in the EPM, the light–dark box, open-field arena, and 
social interaction test (Haller et al., 2002, 2004; Maccarrone et al., 
2002; Martin et al., 2002; Urigüen et al., 2004) and demonstrate 
impaired stress coping behavior in the forced swim test (Steiner 
et al., 2008). Similarly, CB

1
 receptor antagonists increase anxiety-

related behaviors in the EPM (Patel and Hillard, 2006). Taken 
together, these studies suggest that eCBs act at CB

1
 receptors to 

reduce anxiety.

role of the endocannabInoId system In condItIoned fear and 
anxIety
Understanding the role of the eCB system in conditioned fear and 
aversive memories is important because a number of anxiety dis-
orders, including PTSD and phobias, are thought to result from 
dysregulated fear neurocircuitry (Rauch et al., 2006). Investigators 
have examined the effect of CB

1
 receptor agonists and antagonists 

on contextual and cue fear conditioning. Results from these studies 
were somewhat mixed. In rats, systemic injections of the CB

1
 recep-

tor antagonist AM251 enhance both the acquisition and expression 
of cue fear conditioning (Arenos et al., 2006; Reich et al., 2008). 
Administering AM251 (5 mg/kg, i.p) during tone–footshock con-
ditioning enhances acquisition of freezing behavior for both trace 
fear conditioning (hippocampal-dependent) and delay fear con-
ditioning (amygdala-dependent; Reich et al., 2008). Recently, we 
used an inhibitory avoidance task and found that microinjecting 
AM251 (6 ng) into the BLA significantly enhances conditioned 
avoidance but has no effect on conditioning when microinjected 
into the hippocampal CA1 area (Ganon-Elazar and Akirav, 2009; 
Abush and Akirav, 2010). However, others have shown that mice 
lacking the CB

1
 receptor or systemically administered with the CB

1
 

receptor antagonist AM251 (0.3–3 mg/kg) 30 min before behavioral 
testing show no contextually induced fear response (Mikics et al., 
2006). Furthermore, the CB

1
 receptor antagonist rimonabant or 

genetic deletion of the CB
1
 receptor has no effect on the acquisi-

tion of cue and context fear conditioning in mice (Marsicano et al., 
2002; Suzuki et al., 2004). On the other hand, cue-fear-potentiated 
startle is decreased by medial PFC injections of the CB

1
 receptor 

agonist WIN 55212-2 or the FAAH inhibitor URB597 (Lin et al., 
2008, 2009) and contextual fear conditioning is decreased by dor-
solateral periaqueductal gray injections of either anandamide or 
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