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2008). Changes in synaptic transmission and neuronal morphology 
are involved in the process of memory formation (Lamprecht and 
LeDoux, 2004).

This review is focused on the roles of the actin cytoskeleton in 
fear memory formation, in particular in the lateral amygdala (LA) 
and hippocampus brain regions shown to be involved in fear con-
ditioning. Fear conditioning is a useful behavioral paradigm used 
to study brain mechanisms underlying fear memory formation. In 
fear conditioning an association is formed between a neutral condi-
tioned stimulus (CS), such as a tone, and an aversive unconditioned 
stimulus (US), typically a mild footshock (LeDoux, 2000; Davis 
and Whalen, 2001; Schafe et al., 2001; Sah et al., 2003; Rodrigues 
et al., 2004; Maren, 2005). Fear conditioning leads to LTM of the 
CS that acquires affective properties and will subsequently elicit 
responses that typically occur in the presence of danger. The lateral 
nucleus of the amygdala receives information about the CS and US 
from thalamus and cortex and cells in LA are responsive to CS or 
US and some LA cells respond to both stimuli (e.g., LeDoux et al., 
1984; LeDoux et al., 1990a; Turner and Herkenham, 1991; Mascagni 
et al., 1993; Romanski and LeDoux, 1993; Romanski et al., 1993; 
Shi and Cassell, 1997; McDonald, 1998; Shi and Davis, 1998; Doron 
and LeDoux, 2000; LeDoux, 2000; Linke et al., 2000). Damage or 
functional inactivation of the LA during acquisition prevents the 
learning from taking place (e.g., LeDoux et al., 1990b; Helmstetter 
and Bellgowan, 1994; Muller et al., 1997; Fanselow and LeDoux, 
1999; Wilensky et al., 1999; Nader et al., 2001), and neural activity 
changes in LA by learning (e.g., Quirk et al., 1995; Quirk et al., 
1997; Collins and Pare, 2000; Repa et al., 2001). LA is connected 
directly or indirectly to other amygdala nuclei including the cen-
tral nucleus of the amygdala (CE) shown to participate in fear 

Long-term memory (LTM) formation is believed to involve alter-
ations of synaptic efficacy produced by modifications in neural 
transmission caused by physiochemical and/or structural modi-
fications of synaptic communication within neuronal networks 
(Konorski, 1948; Hebb, 1949; Dudai, 1989; Bliss and Collingridge, 
1993; Martin et al., 2000; Tsien, 2000; Kandel, 2001; Lamprecht 
and LeDoux, 2004). A prime challenge is to identify molecules 
involved in sustaining synaptic alterations and memory formation. 
Actin is a most attractive candidate to play a key role in memory 
formation as it is responsive to synaptic signaling, such as triggered 
during learning, and consequently may mediate cellular events that 
underlie changes in synaptic efficacy, such as synaptic transmission 
and morphology.

Actin cytoskeleton is involved in many key cellular processes 
including cellular morphogenesis, motility, division, and intra-
cellular transport. Actin exists in two states in cells, either as a 
globular monomer (G-actin) or following head-to-tail interaction 
as a polymer to form filamentous F-actin. Actin remodeling and 
the structure of F-actin network are tightly regulated by actin-
binding proteins (Luo, 2000; Dillon and Goda, 2005). These actin 
cytoskeleton-regulatory proteins mediate between intrinsic and 
extrinsic cellular signals and actin-dependent cellular functions. 
Thus, by forming such intricate network of filaments responsive 
to regulatory signals, actin mediates a large variety of cellular func-
tions from supporting cellular morphology to providing contrac-
tile forces needed for cellular activities including cell division and 
transport of vesicles. Actin monomers and filaments are abundant 
in presynapses and postsynapses and act to regulate key neuronal 
processes such as alterations in synaptic transmission and mor-
phology (Luo, 2002; Dillon and Goda, 2005; Cingolani and Goda, 
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memory  formation and also to serve as output nucleus to brain 
areas involved in fear responses (e.g., LeDoux, 2000; Wilensky et al., 
2006; Ciocchi et al., 2010; Haubensak et al., 2010; Duvarci et al., 
2011). The hippocampus is involved in contextual fear condition-
ing where the environmental contex is associated with an aversive 
event (e.g., Kim and Fanselow, 1992; Phillips and LeDoux, 1992).

As noted above, actin is involved in neuronal transmission and 
morphogenesis and in synaptic plasticity (Luo, 2002; Dillon and 
Goda, 2005; Cingolani and Goda, 2008) neuronal processes that 
have been shown to be implicated in fear memory formation in LA 
and hippocampus (see below). These findings beg the questions: 
is the actin cytoskeleton an essential component of the molecular 
events needed for long-term fear memory formation in these brain 
regions? If so, which cellular mechanisms are modulated by actin 
cytoskeleton and how they mediate fear memory formation?

Actin And feAr memory formAtion
Several studies have shown that the actin cytoskeleton is needed 
for both cued fear conditioning (tone–footshock pairing) and con-
textual fear conditioning memory formation in amygdala and hip-
pocampus. It was shown that intra-hippocampal infusion of actin 
cytoskeleton assembly inhibitors (latrunculin A or cytochalasin D) 
impaired the consolidation of contextual fear memory (Fischer 
et al., 2004). Moreover, microinjection of these compounds into the 
hippocampus impaired the extinction of contextual fear memory, 
a form of learning whereby the animal re-learns that the context is 
not fearful (Fischer et al., 2004). Microinfusion of cytochalasin D, 
an actin polymerization inhibitor, into rat LA immediately before 
fear conditioning training interfered with the formation of long-
term fear memory (LTM) but not short-term fear memory (STM; 
Mantzur et al., 2009). Furthermore, microinfusion of cytochalasin 
D into rat LA immediately after fear conditioning dampened LTM. 
Cytochalasin D had no effect on fear conditioning memory retrieval 
when injected immediately before LTM test. Rehberg et al. (2010) 
showed that auditory cued but not contextual fear memory is 
disrupted, when the actin depolymerization inhibitor phalloidin 
was injected into basolateral complex of the amygdala (BLA) 6 h 
after conditioning. Re-consolidation of memory is also depend-
ent on regulation of actin polymerization (Rehberg et al., 2010). 
Microinjection of cytochalasin D into the BLA or CA1 was shown 
to impair the return of fear after reconditioning at the last extinc-
tion session indicating that actin polymerization is also needed for 
reconditioning (Motanis and Maroun, 2011). Actin cytoskeleton 
was shown to be involved in other types of memory formation 
(e.g., conditioned taste aversion: Bi et al., 2010; aversive memories 
of drug withdrawal: Hou et al., 2009). In summary, convincing 
evidence is available indicating that actin cytoskeleton is involved 
in fear memory formation.

the roles of Actin regulAtory proteins in feAr 
memory
How does neuronal activation in amygdala or hippocampus dur-
ing fear conditioning lead to changes in actin cytoskeleton needed 
for fear memory formation? Actin cytoskeleton polymerization 
and depolymerization are tightly controlled by regulatory proteins 
(Luo, 2000). Other actin-mediated function such as intracellular 
transport and contractility are also mediated by actin-binding 

 proteins (Kamm and Stull, 2001; Somlyo and Somlyo, 2003). These 
regulatory proteins (Figure 1) could mediate actin involvement 
in fear memory formation as they are functionally linked with 
synaptic receptors that participate in fear conditioning such as 
the glutamate receptors, Eph receptors, and adhesion molecules 
such as cadherin (Gerlai et al., 1999; Rodrigues et al., 2004; Schrick 
et al., 2007; Maguschak and Ressler, 2008; Savelieva et al., 2008). 
For example, actin dynamics in spines are inhibited by activation 
of either α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
(AMPA) or N-methyl-d-aspartate (NMDA) glutamate receptors 
(Fischer et al., 2000). Moreover, activation of either receptor inhib-
ited actin-based protrusive activity from dendritic spine head. In 
addition, several actin regulatory proteins, such as members of 
the Rho GTPase family, are activated by glutamate receptor to 
regulate neuronal morphogenesis. Studies are available suggest-
ing that RhoA mediates the promotion of normal dendritic arbor 
development by NMDA receptor activation (Li et al., 2000), and 
recruitment and activation of RhoA underlies spines morphol-
ogy in a glutamate receptor-dependent manner (Schubert et al., 
2006). Two-photon glutamate uncaging leads to long-term volume 
increase of single spine and to rapid activation of RhoA and Cdc42 
in stimulated spine (Murakoshi et al., 2011). Moreover, NMDA or 
its downstream signaling pathways stimulation may lead to regu-
lation of Rho or Rac GTPases activity (e.g., Tejada-Simon et al., 
2006; Nakazawa et al., 2008; Saneyoshi et al., 2008). Eph receptors 
are also regulators of the Rho/Rac/CDC42 GTPases proteins and 
affect actin dynamics and neuronal morphology (Shamah et al., 
2001; Irie and Yamaguchi, 2002; Penzes et al., 2003; Klein, 2009). 
Adhesion molecules may regulate Rho/Rac/CDC42 GTPases pro-
teins to affect actin cytoskeleton (e.g., Brusés, 2006).

Indeed, several actin regulatory proteins have been shown to 
be involved in fear memory formation. Following fear condition-
ing, the tyrosine phosphorylated p190 RhoGAP becomes associ-
ated with a molecular complex in LA (Lamprecht et al., 2002). 
Importantly, evidence is available that p190 RhoGAP is involved 
in mediating actin reorganization. Specifically, in p190 RhoGAP 
mutant mice, polymerized actin accumulates extensively in cells of 
the neural tube floor, suggesting that p190 RhoGAP plays a role 
in regulating actin assembly (Brouns et al., 2000). P190 RhoGAP 
regulates Rho GTPase protein, a molecular switch that controls 
many key cellular processes including actin dynamics. Inhibition 
of the Rho GTPase effector, the Rho-associated kinase (ROCK), a 
kinase that affects actin cytoskeleton (Amano et al., 2010), in LA 
impaired the formation of long- but not short-term fear memory 
formation (Lamprecht et al., 2002). Interestingly, the activation 
of Rho and Rac GTPases led to rearrangement of cerebral actin 
cytoskeleton, enhanced neurotransmission and synaptic plastic-
ity, and facilitation of fear conditioning (Diana et al., 2007). In 
addition, RhoB, a member of the Rho GTPase family, is involved 
in short-term plasticity in hippocampus, in the regulation of cofi-
lin and dendritic and spine morphology (McNair et al., 2010). 
Intracerebroventricular injection of ROCK inhibitor leads to 
increase in anxiety-related behaviors (Saitoh et al., 2006). ROCK 
regulates actin cytoskeleton via other signaling molecules such 
as the LIM kinase (LIMK) that regulates actin dynamics. LIMK 
exerts its effect on actin polymerization by phosphorylating and 
thus inactivating the actin depolymerization factor (ADF)/cofilin 
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Profilin is another actin cytoskeleton-regulatory protein that 
regulates actin polymerization by funneling ATP-actin to the 
growing actin filaments (Witke, 2004). Profilin was shown to be 
translocated into dendritic spines in cultured hippocampal neu-
rons after neuronal stimulation, LTP and long-term depression 
(LTD; Ackermann and Matus, 2003; Neuhoff et al., 2005). The 
translocation of profilin is associated with the suppression of actin 
dynamics in the spine head and the stabilization of spine morphol-
ogy. Fear conditioning in rats leads to the movement of profilin 
into dendritic spines in the LA (Lamprecht et al., 2006a). Profilin-
containing spines were shown to be larger compared to spines 
devoid of profilin. A greater proportion of profilin-containing 
spines with enlarged PSDs could contribute to the enhancement 

(Arber et al., 1998; Yang et al., 1998; Sumi et al., 1999). Indeed, in 
LIMK-1 knockout mice, spine-dendrite F-actin levels were reduced 
compared to wild type mice (Meng et al., 2002). Furthermore, the 
knockout mice exhibited significant abnormalities in spine and 
axonal morphology. In addition, hippocampal long-term poten-
tiation (LTP) is enhanced indicating that synaptic function was 
altered. The LIMK-1 knockout mice also showed enhanced cued 
fear conditioning LTM. These results indicate that the regulation of 
actin polymerization by the LIMK pathway is essential for normal 
fear memory formation. The LIMK effector cofilin is also involved 
in fear conditioning. Mice in which n-cofilin was removed from 
principal neurons of the postnatal forebrain are impaired in long- 
and short-term fear memory (Rust et al., 2010).

Figure 1 | Actin cytoskeleton and its regulatory proteins are involved in 
fear memory formation. Fear conditioning memory formation depends on 
the activation of glutamate receptors, calcium channels, receptors tyrosine 
kinases such as Eph receptors and adhesion molecules. Activation of these 
receptors and channels during or after fear learning may lead to regulation of 

intracellular signaling cascades that affect actin dynamics and cellular 
processes such as neuronal morphogenesis. Among these regulated 
molecules are the Rho, Rac, and CDC42 GTPases and their effectors and 
actin-binding proteins such as profilin shown to be involved in fear 
memory formation.
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Cumulatively, the aforementioned studies show that actin regu-
latory proteins are involved in fear memory formation. Modulation 
of the actin cytoskeleton by these proteins may serve as a signaling 
connection between synaptic activation induced by learning and 
cellular changes underlying fear memory formation.

To further elucidate possible roles of actin cytoskeleton in fear 
memory formation its roles in synaptic morphology, transmission 
and plasticity in amygdala and hippocampus are discussed.

Actin cytoskeleton in synAptic trAnsmission
Alteration of synaptic efficacy either by affecting synaptic release 
of neurotransmitters and/or the level of synaptic receptors for neu-
rotransmitters is associated with memory formation and synaptic 
plasticity. Changes in synaptic efficacy are induced by fear learning. 
For example, it was shown that fear-conditioned animals exhibit 
a presynaptic facilitation of AMPA receptor-mediated transmis-
sion in LA neurons (McKernan and Shinnick-Gallagher, 1997) and 
conditioned fear is accompanied by the enhancement in transmit-
ter release at cortico-amygdala synapses (Tsvetkov et al., 2002). At 
the postsynapse fear conditioning drives AMPA receptors into the 
synapses of neurons in the LA, incorporation process that is needed 
for fear conditioning memory formation (Rumpel et al., 2005; Yeh 
et al., 2006; Nedelescu et al., 2010).

Actin cytoskeleton is found in pre- and post-synapse and is 
involved in the regulation of synaptic transmission in these sites and 
may mediate changes in synaptic efficacy following fear condition-
ing. In the presynapse actin cytoskeleton contacts synaptic vesicle 
through short strands of synapsin, a phosphoprotein associated 
with synaptic vesicle membrane (e.g., Landis et al., 1988; Hirokawa 
et al., 1989; Doussau and Augustine, 2000). It is possible that actin 
regulates the availability of the vesicle in the reserve pool (RP) by 
forming a barrier (e.g., Wang et al., 1996) or may serve as a scaf-
fold protein to retain synapsin in presynapse, thereby indirectly 
influencing neurotransmission (Sankaranarayanan et al., 2003). 
Neuronal stimulation may redistribute synapsin enabling access to 
the RP of vesicles (Greengard et al., 1994; Chi et al., 2001, 2003). 
Actin may also promote vesicle delivery to the readily releasable 
pool (RRP) by providing cytoskeletal routes of vesicle to the RRP 
(Prekeris and Terrian, 1997; Evans et al., 1998; Watanabe et al., 
2005). In addition, actin may be involved in the endocytosis of vesi-
cle at the presynapse, possibly by forming a link with dynamin or 
by promoting the transport of endocytosed vesicles to the internal 
RP cluster (Shupliakov et al., 2002; Bloom et al., 2003; Engqvist-
Goldstein and Drubin, 2003). Synaptic vesicles endocytosed at one 
bouton can be recruited into the functional pool of nearby boutons 
where they undergo exocytosis (Darcy et al., 2006). Such distribu-
tion of vesicles between nearby boutons requires actin turnover 
(Darcy et al., 2006).

The postsynaptic actin cytoskeleton may also contribute to 
synaptic transmission as it is involved in the regulation of gluta-
mate and GABA receptors clustering and trafficking and thereby 
in the postsynaptic response to neurotransmitters. F-actin depo-
lymerization reduces the number of AMPA and NMDA receptors 
clusters at excitatory synapses (Allison et al., 1998). Actin also medi-
ates glutamate receptor trafficking via myosins, the main actin- 
dependent motor proteins. Myosin Va mediates translocation of 
GluR1-containing AMPA receptor (AMPAR) from the dendritic 

of associatively induced synaptic responses in LA following fear 
learning. Mice with knockdown of one of the profilin isoforms, 
profilin2, are hyperactive and show increased novelty-seeking 
behavior (Pilo Boyl et al., 2007). Freezing after fear conditioning 
is similar in control and knockout mice when number of freez-
ings, but not time of freezing, is measured during LTM test (Pilo 
Boyl et al., 2007).

Myosin light chain kinase (MLCK) is a calcium/calmodulin-
dependent protein kinase that phosphorylates the myosin regula-
tory light chain (RLC), leading to contraction of the actomyosin 
filaments (Kamm and Stull, 2001; Somlyo and Somlyo, 2003). 
MLCK is involved in regulating cellular events related to synaptic 
transmission, such as neurotransmitter release (Mochida et al., 
1994; Ryan, 1999; Polo-Parada et al., 2001), N-methyl-d-aspartate 
receptor activity (Lei et al., 2001) and potassium channel function 
(Akasu et al., 1993). In addition, MLCK participates in neural 
morphogenesis, including the regulation of growth cone motility 
(Gallo et al., 2002; Zhou et al., 2002) and dendritic branching 
(Ramakers et al., 2001). MLCK is present in cells throughout the 
LA and is localized to dendritic shafts and spines that are post-
synaptic to the projections from the auditory thalamus to lateral 
nucleus of the amygdala, a pathway specifically implicated in fear 
learning (Lamprecht et al., 2006b). Inhibition of MLCK in LA 
leads to the enhancement of fear memory formation but has no 
effect on retrieval of fear memory (Lamprecht et al., 2006b). In 
addition, inhibition of myosin light chain kinase enhances LTP in 
the auditory thalamic pathway to the LA (Lamprecht et al., 2006b). 
MLCK inhibition immediately after fear conditioning training has 
no effect on fear memory formation. The short time window of 
involvement of MLCK in fear conditioning is consistent with its 
ability to rapidly regulate synaptic transmission (Ryan, 1999; Lei 
et al., 2001). In addition, anatomical findings showing that MLCK 
is located in LA presynaptic terminals and in postsynaptic densi-
ties suggest that MLCK might be involved in regulating events in 
these sites such as vesicle release (Ryan, 1999) or receptor activity 
(Lei et al., 2001). Moreover, the observation that MLCK inhibi-
tion does not affect fear memory retrieval implies that MLCK 
does not regulate transmission during memory activation, but 
only during acquisition. Consistent with this view is the observa-
tion that application of ML-7 (an MLCK inhibitor) to amygdala 
slices has no effect on basal transmission but rather specifically 
on the induction of associative LTP. These findings showing that 
the inhibition of MLCK enhances conditioning and the synaptic 
plasticity underlying conditioning indicate that MLCK normally 
inhibits fear learning.

Other proteins that are involved in actin polymerization and 
some in spine morphology have been implicated in fear memory 
formation such as beta-adducin shown to be essential for contex-
tual and cued fear conditioning (Rabenstein et al., 2005), drebrin 
A needed for context-dependent freezing after fear conditioning 
(Kojima et al., 2010), Ndr which expression is increased in amygdala 
6 h after Pavlovian fear conditioning training (Stork et al., 2004), 
neurabin needed for contextual fear memory and hippocampal 
LTP but not auditory fear memory and LTD (Wu et al., 2008) and 
p21-activated kinase which is not needed for normal short-term 
contextual fear conditioning but is needed for normal consolida-
tion/retention of fear memory (Hayashi et al., 2004).
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and Pasquale, 2005; Tada and Sheng, 2006; Schubert and Dotti, 
2007; Honkura et al., 2008; Hotulainen and Hoogenraad, 2010). 
In addition, actin plays a role in stabilizing postsynaptic proteins 
(Allison et al., 1998; Kuriu et al., 2006; Renner et al., 2009) and in 
modulating spine head structure in response to synaptic signaling 
(Fischer et al., 2000; Star et al., 2002; Okamoto et al., 2004).

Alteration in axonal morphology is also implicated in mem-
ory formation and synaptic plasticity (Bailey and Kandel, 1993; 
Lamprecht and LeDoux, 2004). Actin polymerization mediates 
morphological changes involved in axonal growth, guidance, 
shape, collateral branching, branch retraction, and regeneration 
(Luo, 2002; Letourneau, 2009).

Additional research is warranted to elucidate whether actin is 
involved in neuronal morphogenesis seen in amygdala and hip-
pocampus following fear memory formation and whether such 
changes are essential for memory formation. Some supporting 
evidence comes from studies showing that interference with actin 
regulatory proteins activity impairs fear memory formation and 
spine and axonal morphology (e.g., LIMK-1, Meng et al., 2002).

the roles of Actin cytoskeleton in synAptic 
plAsticity
As mentioned above actin cytoskeleton plays key roles in modulat-
ing synaptic transmission and neuronal morphogenesis, cellular 
processes believed to underlie synaptic plasticity (e.g., Bailey and 
Kandel, 1993; Lamprecht and LeDoux, 2004). The role of actin 
cytoskeleton in synaptic plasticity was studied mainly by elucidat-
ing its involvement in LTP or LTD, physiological models of mem-
ory (e.g., Bliss and Collingridge, 1993; Malenka and Nicoll, 1999; 
Martin et al., 2000). Findings suggest that LTP occur in the LA and 
hippocampus during fear conditioning. LTP induction at thalamic 
auditory inputs to the LA enhances auditory-induced responses in 
the LA in a manner similar to the increase of CS-evoked responses 
observed during auditory fear conditioning (Rogan and LeDoux, 
1995). Fear conditioning-altered auditory CS-evoked responses 
in LA changes in conjunction with conditioned fear responses 
(Rogan et al., 1997). Thalamic inputs or cortical inputs to the LA 
were enhanced in slices from trained animals compared to naive 
or unpaired animal groups (McKernan and Shinnick-Gallagher, 
1997). Moreover, fear conditioning inhibits the induction of LTP 
at cortical inputs suggesting that LA synapses that have already 
undergone LTP by training are less capable of showing additional 
LTP (Tsvetkov et al., 2002; Schroeder and Shinnick-Gallagher, 2004; 
and Schroeder and Shinnick-Gallagher, 2005). It was shown that 
contextual fear conditioning increased synaptic response in hip-
pocampal CA1 (e.g., Sacchetti et al., 2001) and that contextual fear 
conditioning modified the ability to induce LTP in hippocampus 
(Sacchetti et al., 2002).

To study the roles of actin in LTP Okamoto et al. (2004) used the 
fluorescence resonance energy transfer (FRET) technique to show 
that in rat hippocampal dendritic spines LTP induction led to per-
sistent shift of F-actin/G-actin equilibrium toward F-actin within 
seconds of a tetanic stimulus. In the dentate gyrus, LTP increased 
F-actin content in dendritic spines lasting up to 5 weeks (Fukazawa 
et al., 2003). The increase in F-actin correlates with a stable increase 
in the size of the spine head and inhibition of actin polymerization 
impaired LTP-induced spine head enlargement (Matsuzaki et al., 

shaft into spines and is required for LTP (Correia et al., 2008). 
Myosin Vb is also involved in AMPAR trafficking (Lisé et al., 2006). 
Actin regulatory and associated proteins also mediate receptor traf-
ficking. For example, ADF/cofilin-mediated actin dynamics regu-
lates AMPAR receptor trafficking during synaptic potentiation (Gu 
et al., 2010). The reversion induced LIM protein (RIL) is involved 
in actin-dependent trafficking of GluR1 (Schulz et al., 2004) and 
the actin adaptor protein 4.1N stabilizes the surface expression 
of GluR1 (Shen et al., 2000). Actin also mediates AMPAR inter-
nalization. AMPAR internalization can be induced by the actin 
assembly inhibitor latrunculin A, and this process is blocked by 
jasplakinolide, a drug which stabilizes actin filaments (Zhou et al., 
2001) and myosin VI plays a role in the clathrin-mediated endo-
cytosis of AMPARs (Osterweil et al., 2005). Actin cytoskeleton can 
also affect inhibitory transmission by mediating GABA receptor 
trafficking to the synapse (e.g., Graziane et al., 2009).

Taken together, the aforementioned studies show that actin 
cytoskeleton is involved in regulating synaptic transmission by 
affecting pre- and post-synapse molecular and cellular events that 
are also involved in synaptic plasticity and fear memory forma-
tion. Additional research is warranted to elucidate whether actin 
cytoskeleton is needed for presynaptic or postsynaptic changes 
during and following fear conditioning training.

Actin cytoskeleton in synAptic morphogenesis
It has been shown that alteration in neuronal morphology is associ-
ated with memory formation (Bailey and Kandel, 1993; Lamprecht 
and LeDoux, 2004) and may serve to modulate neuronal connectiv-
ity needed to form or alter memory. Most excitatory synapses in the 
brain terminate on dendritic spines, which have been the focus of 
recent work in the mammalian brain. Dendritic spines receive the 
majority of excitatory synaptic inputs in the brain, compartmen-
talize local synaptic signaling pathways, and restrict the diffusion 
of postsynaptic molecules (Nimchinsky et al., 2002; Lamprecht 
and LeDoux, 2004; Newpher and Ehlers, 2009). Modulation of 
the number of dendritic spines and/or their morphology has been 
proposed to contribute to alterations in excitatory synaptic trans-
mission during learning (Lamprecht and LeDoux, 2004). Changes 
in number and shape of dendritic spines where observed follow-
ing fear conditioning. For example, contextual fear conditioning 
leads to a time-dependent increase in dendritic spine density in the 
CA1 hippocampal region and the anterior cingulate cortex (Restivo 
et al., 2009; Vetere et al., 2011) and auditory fear conditioning leads 
to an increase in spinophilin-immunoreactive dendritic spines in 
the LA (Radley et al., 2006). Postsynaptic density (PSD) area on 
a smooth endoplasmic reticulum (sER)-free spines increases with 
fear conditioning while the spines head volume of these spines 
decreases (Ostroff et al., 2010).

Actin cytoskeleton is involved in neuronal morphogenesis in 
postsynaptic dendritic spines. The base, neck, and head of mature 
spine consist of a mixture of branched and linear actin filaments. 
The neck contains both linear and branched filaments, whereas 
branched actin filament network is a dominant feature of spine 
head (Korobova and Svitkina, 2010). The actin cytoskeleton is 
intimately involved in the formation and elimination, stability, 
motility, and morphology of dendritic spines (e.g., Halpain et al., 
1998; Matus, 2000; Korkotian and Segal, 2001; Luo, 2002; Ethell 
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