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scored on the basis of specific behaviors that correspond to different 
brain regions impacted by seizure activity. Stages from 1 to 3 are 
characterized by behavioral signs of focal seizure activity restricted 
to the temporal lobe (hippocampal formation, entorhinal cortex, 
and amygdala): immobility, rigid posture, forelimb and/or tail 
extension, repetitive movements, and head bobbing. When activ-
ity generalizes and spreads to cerebral hemispheres, isolated limbic 
motor seizures (forelimb clonus with rearing and falling; stage 4) 
or continuous convulsive activity (status epilepticus, stages 5–6: 
continuous rearing and falling, whole-body tonic–clonic convul-
sions) occur. Electroencephalographic (EEG) and metabolic map-
ping studies confirmed these behavioral observations. EEG analysis 
of experimentally induced limbic seizures showed that epileptic 
activity sequentially appears in forebrain areas, starting from the 
hippocampus and then spreading to the amygdala, and cerebral 
cortex (Lothman et al., 1981; Turski et al., 1989). Consistent with 
these results, glucose utilization studies in rodents at different times 
after limbic seizure induction revealed a progressive increase in 
several forebrain areas, starting in the hippocampus, amygdala, 
and other limbic areas and then diffusing to cerebral cortical areas 
(Lothman and Collins, 1981; Clifford et al., 1987).

In the past 25 years, a large series of studies addressed the cru-
cial issue of how neurons transduce pathological electrical activity 
from their membrane to the nucleus, resulting in both short- and 
long-term rearrangements that modify neuronal connectivity in the 
epileptic brain and, ultimately, brain function, and behavior. Many 
of these mechanisms are now well characterized, whereas others still 
remain to be clearly understood. In the following sections, we will 
describe some of the major signaling pathways involved in short- 
and long-term cellular responses to seizure activity that are thought 
to underlie acute and chronic behaviors in the epileptic brain.

Behavioral manifestations of seizures and epilepsy
Epilepsy is one of the most common neurological disorders, char-
acterized by the repeated occurrence of sudden and transitory epi-
sodes of motor, sensory, autonomic, and psychic origin, known as 
seizures. Seizures typically arise in restricted regions of the brain and 
may remain confined to these areas (“focal” or “partial” seizures) or 
spread to the whole cerebral hemispheres (“generalized” seizures). 
The behavioral outcome of seizure events depends on the brain 
regions that are affected by overactivity. This is clearly exemplified 
by the behavioral manifestations of temporal lobe epilepsy (TLE), 
which represents one of the most common forms of human epi-
lepsy. In TLE, focal seizures arise in a restricted part of the limbic 
system (temporal lobe: hippocampus, parahippocampal gyrus, and 
amygdala). If paroxysmal activity remains confined to the area of 
onset (“simple partial” seizure), the seizure may be characterized by 
auditory, gustatory, olfactory, visual, or somatosensory hallucina-
tions (auras), accompanied by psychic sensations such as euphoria, 
fear, and anger. The seizure may also spread to a larger portion of 
the temporal lobe (“complex partial” seizure), resulting in impaired 
consciousness, motionless staring, motor automatisms of the hands 
or mouth, altered speech, and other unusual behaviors. Finally, par-
tial seizures arising in the temporal lobe may subsequently spread to 
the whole brain (“secondarily generalized tonic–clonic” seizures or 
“grand mal” seizures). These seizures begin with symptoms of a par-
tial seizure followed by whole-body convulsions (Berg et al., 2010).

Temporal lobe epilepsy can be reproduced in laboratory animals 
(typically rodents) by the systemic or intracerebral administration 
of powerful convulsant agents such as glutamatergic (kainic acid) or 
cholinergic (pilocarpine) agonists (Pitkänen et al., 2005). According 
to the classical scale originally proposed by Racine (1972), experi-
mental seizures evoked in the temporal lobe in rodents can be 
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the acute cellular response to seizures: activation 
of immediate early genes
The first demonstration that pathological overactivity can modify 
gene expression in the brain came from the pioneering studies by 
J. I. Morgan and T. Curran, who showed that metrazole-induced 
seizures markedly induce c-fos mRNA expression in several areas 
of the rodent brain (Morgan et al., 1987). These authors first intro-
duced the concept that neurons largely use the rapid activation 
of “immediate early genes” (IEGs; usually transcription factors, 
such as Fos and Jun) to couple acute and long-term responses to 
physiological as well as pathological stimuli (Morgan and Curran, 
1989, 1991a). Induction of activity-regulated transcription factors 
is a general phenomenon occurring in neurons after acute seizures 
(Morgan and Curran, 1991b; Herrera and Robertson, 1996; Hughes 
et al., 1999). However, c-fos certainly remains the prototypical and 
well characterized activity-dependent transcription factor, and 
its induction is widely considered a suitable marker of neuronal 
activity. As originally demonstrated using fos-lacZ transgenic mice, 
seizures induce c-fos mRNA transcription in defined neuronal pop-
ulations at different times (Smeyne et al., 1992). These observations 
have been confirmed by several studies using c-fos mRNA in situ 
hybridization or c-Fos immunostaining on rodent brain sections as 
a way to perform activity mapping studies after seizures. A precise 
correlation exists between the pattern of c-fos induction and the 
progression of seizures from focal to generalized. Focal epileptic 
activity stimulates c-fos mRNA and c-Fos protein induction only 
in a few limbic areas, typically initiating in granule cell layer of 
the dentate gyrus and then spreading to CA3 and CA1 pyramidal 
layers. Then, when activity generalizes and limbic motor seizures 
and status epilepticus occur, a widespread c-fos mRNA and c-Fos 
protein expression is detected throughout the whole cerebral cortex 
and several other brain areas (Barone et al., 1993; Willoughby et al., 
1997; Bozzi et al., 2000; Tripathi et al., 2008). More recent findings 
suggest that the increased level of phosphorylated ERK (pERK) 
could be one of the earliest immunohistochemical indicators of 
neurons that are activated at the time of a spontaneous seizure 
(Houser et al., 2008). In spontaneously epileptic animals, a marked 
increase in pERK labeling occurred at the time of spontaneous sei-
zures and was evident in large populations of neurons at very short 
intervals (as early as 2 min) after detection of a behavioral seizure.

The intracellular signaling cascades involved in IEGs activa-
tion in both physiological and pathological conditions have been 
extensively investigated in neurons. So far, the pathways involved 
in c-fos induction remain the best characterized and can be briefly 
summarized as a prototypical example of activity-dependent 
neuronal gene transcription. Neuronal depolarization leads to 
increased intracellular levels of the second messengers cAMP 
(typically, following neurotransmitter/neuromodulator binding 
to G-protein coupled receptors) and Ca2+ (e.g., due to ion channel 
opening following glutamate binding to glutamate receptors). Both 
these two second messengers activate intracellular kinases [protein 
kinase A and extracellular-regulated kinases (ERK)] whose activ-
ity converges on the phosphorylation of the transcription factor 
CREB (cAMP response element binding protein, constitutively 
present in the nucleus). In turn, CREB phosphorylation activates 
c-fos mRNA transcription. c-fos mRNA is then translated into the 
c-Fos protein, that acts as a transcription factor for a wide variety 

of  neuron-specific genes (reviewed in West et al., 2002; Flavell and 
Greenberg, 2008). This mechanism is rapid, and allows neurons to 
fast couple depolarizing stimuli to a wide variety of intracellular 
long-lasting responses, including the induction of genes involved 
in synaptic plasticity and cell death (see below).

Intracellular cascades activated by seizures are largely overlap-
ping those involved in synaptic plasticity, and more specifically in 
long-term memory (that requires IEGs induction and new protein 
synthesis). These cascades have been widely studied in the hip-
pocampus, that is crucially involved in learning and memory, but is 
also one of the most epileptogenic brain areas. From these studies it 
emerges that hippocampal neurons use the same signaling pathways 
to respond to both physiological and pathological stimuli. However, 
these pathways are harmful only when activated by seizures and not 
physiological neuronal activity. Different types of activity pattern 
might elicit physiological or pathological responses of hippocampal 
neurons. For example, only epileptogenic stimuli (such as kainic 
acid and pilocarpine), but not other types of electrical stimula-
tion, are able to rapidly (3 h) induce dendritic accumulation of 
BDNF mRNA and protein in hippocampal neurons (Tongiorgi 
et al., 2004), a change that is thought to contribute to the pro-
epileptogenic action of BDNF (Simonato et al., 2006).

signaling pathways acutely induced By seizures: the 
role of neuromodulators
Seizures have been traditionally characterized as an imbalance 
between excitatory (glutamatergic) and inhibitory (GABAergic) 
transmission. The role of glutamate, GABA, and their respective 
signaling pathways in seizures and epilepsy has been extensively 
addressed in the literature (see for example McNamara et al., 
2006; Ben-Ari et al., 2007) and will not be further reviewed here. 
Instead, we focus on the role that neuromodulatory systems have 
been shown to regulate seizure activity. The activities of dopamine, 
noradrenaline, and serotonin systems in modulating seizure thresh-
old have been widely investigated, and all these neuromodulators 
have been shown to positively or negatively regulate the genera-
tion of seizures, depending on the receptors involved. However, 
the nature of the coupling of their receptors to intracellular signal 
transduction and, in particular, the induction of IEGs is still being 
investigated. Here, we describe the current state of knowledge of 
cell signaling pathways activated by neuromodulators and involved 
in seizure onset and propagation.

catecholamines: dopamine and noradrenaline
The role of catecholamines (dopamine and noradrenaline) in the 
control of seizure onset and propagation has been widely addressed 
in experimental, clinical, and therapeutic studies (Starr, 1993, 1996; 
Weinshenker and Szot, 2002; Giorgi et al., 2004). However, the topic 
has received very little attention regarding the underlying signal-
ing pathways activated by seizures. No data are available on the 
signaling cascades downstream of noradrenaline receptors during 
seizures, with the exception of a recent study addressing the role of 
noradrenergic neurons of the locus coeruleus (LC) in limbic seizure 
activity. LC neurons densely innervate limbic areas of the brain, 
greatly contributing to control seizure activity. LC neurons play an 
important role in determining IEG expression following seizures. 
Indeed, LC lesion markedly reduces seizure-induced Fos expression 
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(PP2A), and β-arrestin 2. Activation of this pathway following 
 binding of dopamine to D2R results in dephosphorylation of Akt 
(inactivation), followed by dephosphorylation (activation) of glyco-
gen synthase kinase 3β (GSK-3β; Beaulieu et al., 2005, 2007). Similar 
activation of GSK-3β was observed in the hippocampus following KA 
administration in D2R knockout (D2R−/−) mice (Tripathi et al., 2010), 
suggesting that upregulation of GSK-3β activity might contribute 
to increased susceptibility to seizure-induced cell death observed 
in these mice. Indeed, activation of GSK-3β has been implicated in 
neuronal cell death (Kaytor and Orr, 2002). Importantly, GSK-3β 
upregulation was independent of any change in Akt in D2R−/− mice 
following seizures (Tripathi et al., 2010), implicating that alternative 
pathways might contribute to modulate GSK-3β in the hippocam-
pus during epileptic activity. p38MAPK and Wnt pathways have 
both been implicated as potential alternative pathways in regulat-
ing GSK-3β activity (Thornton et al., 2008; Inestrosa and Arenas, 
2010), but require further investigation in the context of seizures.

In addition to its direct role on glutamatergic excitation (see 
above), ERK signaling is also believed to play an integral role in 
D1- and D2-type receptor signaling. Upregulation of ERK and 
increased phosphorylation of the ribosomal protein S6 and histone 
H3 (two downstream targets of ERK) were detected in the granule 
cell layer of the dentate gyrus, in response to brief seizures evoked 
by D1 specific agonists; these effects were prevented by genetic 
inactivation of D1 receptor, or by pharmacological inhibition of 
ERK (Gangarossa et al., 2011). Importantly, D1 receptor-mediated 
ERK upregulation disappeared within 60 min and correlated with 
seizure activity (Gangarossa et al., 2011). This is in contrast to kainic 
acid or pilocarpine-induced ERK upregulation, which can persist 
for hours (Kim et al., 1994; Berkeley et al., 2002). Thus, brief or 
long-lasting ERK activation in selective epileptogenic areas of the 
brain might contribute to activate signaling pathways in response 
to different seizure-promoting stimuli, as well as different types of 
seizure behaviors. Spontaneous chronic seizures following pilocar-
pine treatment rapidly induce ERK phosphorylation in the dentate 
gyrus specifically in a subpopulation of cells in the subgranular 
zone, that were identified as proliferating radial glia-like neural 
precursors (Li et al., 2010b). The functional significance of ERK 
activation, and its link with the detrimental or beneficial effects of 
seizure-induced neurogenesis (Kokaia, 2011), remain to be clarified.

Seizure-induced ERK activation seems to be controlled also by 
D2R-dependent pathways. Following kainic acid treatment, more 
rapid and longer-lasting ERK phosphorylation is detected in the 
hippocampus of D2R−/− mice, as compared to wild-type controls 
(Yuri Bozzi, unpublished observations). Downstream of ERK, the 
induction of IEGs is a critical effector step and has been extensively 
studied in seizure models (see above). D1-type receptor agonists 
increase the levels of Zif268 and Arc/Arg3.1 (two IEGs involved in 
transcriptional regulation and synaptic plasticity) in the dentate 
gyrus, with a time course that parallels that of ERK phosphoryla-
tion (Gangarossa et al., 2011).

Studies performed in D2R−/− mice confirm that dopaminergic 
innervation to the hippocampus plays a crucial role in seizure-
induced IEGs induction. Experimentally induced seizures in these 
mice result in a more prominent upregulation of c-fos and c-jun 
mRNAs in the hippocampus, as compared to wild-type controls 
(Bozzi et al., 2000). As observed following  administration of D1 

in the hippocampus, indicating that noradrenergic inputs to the 
limbic system positively control IEG transcription during seizures 
(Giorgi et al., 2008).

More studies instead investigated the signaling pathways down-
stream of dopamine receptors that might contribute to limbic 
seizure onset and spread. Dopamine acts through two different 
types of G-protein coupled receptors, named D1-like and D2-like 
receptors. Activation of D1-like (D1 and D5) receptors results 
in reduction of seizure threshold and increased seizure severity 
(DeNinno et al., 1991). Administration of a sub-threshold dose 
of pilocarpine in the presence of D1 receptor agonists has been 
shown to induce seizures (Starr and Starr, 1993). Conversely, the 
effect of D2-like (including D2, D3, and D4) receptors on seizure 
modulation is predominantly inhibitory. Administration of D2-like 
receptor agonists results in lower seizure activity, whereas block-
ade or genetic inactivation of these receptors has pro-convulsant 
effects (Starr, 1993, 1996; Bozzi et al., 2000; An et al., 2004; Bozzi 
and Borrelli, 2002, 2006).

The canonical pathway of dopamine receptor activity in neurons 
involves modulation of adenylate cyclase (AC) to regulate cAMP pro-
duction and subsequent activation of protein kinase A (PKA). D1-like 
receptors are coupled to Gs/olf proteins and stimulate AC, leading to 
increased levels of the second messenger cAMP. Conversely, D2-like 
receptors are coupled to Gi/o proteins and inhibit AC, decreasing 
cAMP production (Callier et al., 2003). Pharmacological and targeted 
gene knockout studies provided some insight into the profile of these 
pathways explicitly in seizures. It appears that specific receptor cou-
pling to AC may be critical in seizure induction by D1-like receptors 
(O’Sullivan et al., 2005). Stimulation of phospholipase C (PLC) sign-
aling, however, does not appear to have any effect on seizure threshold 
(Clifford et al., 1999) and is associated with more subtle behaviors. 
Dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-
32) has been identified as one of the critical downstream targets 
of dopamine and PKA. PKA-catalyzed phosphorylation activates 
DARPP-32, converting it into an inhibitor of protein phosphatase-1 
(PP-1). Specifically, casein kinase 1 (CK1) promotes the activation 
of DARPP-32 by reducing calcineurin-dependent dephosphoryla-
tion at the PKA site. Phosphorylated DARPP-32, by inhibiting PP-1, 
acts together with other protein kinases (mainly PKA and PKC) to 
increase the level of phosphorylation of a number of downstream 
effector proteins, including GABA and glutamate receptors, Ca2+ and 
Na+ channels, and the transcription factor CREB (Greengard et al., 
1999; Greengard, 2001). DARPP-32 phosphorylation was observed 
in mice treated with D1-like receptor agonists and this elevation 
correlated with seizure behavior (O’Sullivan et al., 2008). The crucial 
role of DARPP-32 in mediating dopaminergic control of seizures was 
highlighted by the observation that seizure behaviors were absent or 
greatly reduced in DARPP-32 knockout mice (O’Sullivan et al., 2008).

As outlined previously, D2-like receptor stimulation appears to 
have an antagonistic effect to D1-like stimulation. Also acting on 
AC, it can inhibit the activity of cAMP and reduce PKA activation 
(Missale et al., 1998). Moreover, D2 receptor (D2R) activation has 
been shown to downregulate DARPP-32 activity (Nishi et al., 1997). 
Recent evidence, however, suggests a role of an alternative pathway in 
D2R-modulated seizure behavior. Studies in the  striatum  suggested 
that a cAMP-independent pathway involves the formation of a 
 signaling complex composed of D2R, Akt, protein  phosphatase-2A 

Bozzi et al. Seizure-induced signaling pathways

Frontiers in Behavioral Neuroscience www.frontiersin.org August 2011 | Volume 5 | Article 45 | 3

http://www.frontiersin.org/Behavioral_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Figure 1 summarizes the major signaling pathways downstream 
of dopamine and 5-HT receptors in the early response to seizures.

seizure-induced cell death: intrinsic and extrinsic 
pathways
Studies performed in both experimental models and findings in humans 
support the notion that seizures can be damaging to the brain. In par-
ticular, if seizures are prolonged (status epilepticus) or repeatedly evoked 
they can cause neuronal death, particularly within vulnerable brain 

 agonists in wild-type mice (Gangarossa et al., 2011),  seizure-induced 
IEGs upregulation in D2R−/− mice was transient in the dentate gyrus 
(Bozzi et al., 2000), confirming the critical role of this structure in 
mediating the first steps of dopamine-dependent control of hip-
pocampal activity during seizures.

serotonin
Serotonin (5-hydroxytryptamine, 5-HT) acts through a family of 
predominantly G-protein coupled receptors to modulate neuronal 
excitability (Barnes and Sharp, 1999; Hannon and Hoyer, 2008). 
Activation of 5-HT receptors by administration of 5-HT agonists 
or reuptake inhibitors can inhibit focal and generalized seizures, 
while destruction of serotonergic terminals and depletion of brain 
5-HT results in reduction of seizure threshold and increased neu-
ronal excitability in experimental models (Bagdy et al., 2007). More 
recently, increased threshold to kainic acid-induced seizures was 
observed in mice with genetically increased 5-HT levels (Tripathi 
et al., 2008).

Despite the well established role of 5-HT in seizure modulation, 
the receptor subtypes and signaling pathways through which 5-HT 
exerts its effect are not well characterized. Fourteen mammalian 
5-HT receptor subtypes are currently recognized, and these have 
been classified into seven receptor families on the basis of their 
structural, functional and, to some extent, pharmacological char-
acteristics (Barnes and Sharp, 1999; Hannon and Hoyer, 2008). 
Among these receptors, the 5-HT

1A
 and 5-HT

2C
 subtypes, which 

are expressed in epileptogenic brain areas (mainly, cerebral cortex 
and/or hippocampus), appear to be the most relevant in epilepsy 
(Bagdy et al., 2007). For example, increased seizure severity is 
observed in mice with targeted inactivation of the 5-HT

1A
 or 5-HT

2C 

genes (Tecott et al., 1995; Brennan et al., 1997; Sarnyai et al., 2000). 
However, it must be noted that pharmacological studies using the 
5-HT

1
 or 5-HT

2
 specific agonist/antagonists failed to give a clear 

evidence of the general role played by these receptors in seizure 
modulation: contrasting results were obtained depending on the 
experimental seizure models used to test the anti- or pro-convulsant 
effect of different ligands. A detailed description of these findings is 
beyond the scope of this review and the reader is referred to more 
comprehensive previous studies (Bagdy et al., 2007).

Similar to dopamine, most of 5-HT receptors act on the AC/
cAMP/PKA pathway. The only exceptions are 5-HT

2
 receptors (that 

modulate PLC) and the 5-HT
3A

 receptor (a ligand-gated ion chan-
nel; Bockaert et al., 2006; Hannon and Hoyer, 2008). 5-HT recep-
tor signaling modulates IEGs induction in response to excitatory 
glutamatergic stimuli, such as those resulting from seizure activity. 
For example, the induction of Arc/Arg3.1 and c-fos in cortical neu-
ronal populations following treatment with DOI (a 5-HT

2
 receptor 

agonist) is critically dependent on glutamate receptor activation 
(Pei et al., 2004). As regarding the neuromodulatory role of 5-HT 
on intracellular signaling pathways acutely induced by seizures, it 
is interesting to note that activation of the 5-HT

2
/PLC pathway 

leads to phosphorylation of DARPP-32 (Svenningsson et al., 2002). 
The observation that pharmacological and genetic manipulations 
of 5-HT

2
 receptors modulate seizure activity (see above; Bagdy 

et al., 2007) suggests that DARPP-32 may act as a converging point 
of the neuromodulatory action of both dopamine and 5-HT in 
 seizure-induced signaling cascades.

FiguRE 1 | Signaling pathways acutely activated in hippocampal 
neurons following seizures. Pathways downstream of glutamate, serotonin 
and dopamine receptors are illustrated. Seizures induce massive influx of Ca2+ 
through NMDA receptors and voltage-gated Ca2+ channels (in green), leading 
to CREB phosphorylation via ERK and calmodulin-dependent signaling, 
respectively (West et al., 2002). Serotonin and dopamine signaling modulate 
seizure-induced CREB phosphorylation via the activation of DARPP-32 and 
ERK1/2. Once phosphorylated, CREB promotes the transcription of 
activity-dependent genes such as BDNF and the IEGs fos and jun. The 
sustained induction of jun has been shown to switch on apoptotic cascades, 
whereas the pro-apoptotic role of fos induction has been questioned. 
Dendritic localization of BDNF mRNA and protein may also contribute to 
long-term excitability. The proposed scheme is a general (though not 
complete) summary of the intracellular pathways induced by seizures in the 
hippocampus. All the reported serotonin and dopamine receptor subtypes are 
expressed in the hippocampus, together with their signaling proteins 
(Meador-Woodruff et al., 1991; Perez and Lewis, 1992; Hannon and Hoyer, 
2008). However, important differences may occur in different types of 
hippocampal neurons (e.g., dentate granule cells, pyramidal neurons), due to 
the different expression levels of these proteins. Abbreviations: AC, adenylate 
cyclase; CaM, calmodulin; CK1, casein kinase 1; DARPP-32, dopamine and 
cAMP-regulated phosphoprotein of 32 kDa; D1R and D2R, dopamine 
receptors (D1 and D2 subtypes); ERK, extracellular-regulated kinase; GSK-3β, 
glycogen synthase kinase 3β; IEGs, immediate early genes; JNK, Jun-terminal 
kinase; NMDA, NMDA glutamate receptors; PKA, protein kinase A; PKC, 
protein kinase C; PLC, phospholipase C; PP-1, protein phosphatase 1; 5-HT, 
serotonin receptors. Question marks indicate that some pathways have been 
proposed but not clearly demonstrated.
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cytochrome c binds the apoptotic protease activating factor 1 
(Apaf-1) which recruits caspase-9, a long pro-domain- containing 
member of the caspase family of cysteinyl aspartate-specific pro-
teases. This forms the so-called apoptosome which processes 
downstream effector caspases such as caspase-3, culminating in 
cleavage of various structural and other proteins and, finally, cell 
death. The extrinsic pathway is activated when cytokines such as 
Fas ligand bind surface-expressed death receptors of the tumor 
necrosis factor (TNF) superfamily (Ashkenazi and Dixit, 1998). 
Upon binding, receptors recruit intracellular adaptor proteins such 
as Fas-associated death domain protein (Fadd) which can activate 
caspase-8, followed by effector caspases (Wilson et al., 2009).

Apoptosis-inducing factor (AIF) is a critical mediator of caspase-
independent apoptosis. AIF is released from mitochondria where-
upon it translocates to the nucleus and mediates large scale DNA 
fragmentation and nuclear condensation (Hangen et al., 2010). AIF 
release is triggered by various insults including excitotoxicity and 
AIF can be blocked in some models by Bcl-2 (Susin et al., 1999).

Bcl-2 family
Control over MOMP and the downstream caspase-dependent and, 
possibly, AIF/caspase-independent cell death process, rests with the 
Bcl-2 family proteins. The family is characterized by the presence of 
one or more Bcl-2 homology (BH) domains and is divided into anti-
apoptotic members, including Bcl-2 and Bcl-XL, and pro-apoptotic 
members. Within the pro-apoptotic family there are the multi-BH 
domain proteins, Bax and Bak, and the BH3-only subgroup. BH3-
only proteins are the sentinels of cell stress. At least 10 members have 
been identified which share homology within the short BH3 domain 
but are otherwise structurally unrelated (Youle and Strasser, 2008). 
Some members are constitutively expressed in cells, requiring release 
from chaperones or post-translational modification to become 
active. Others are not normally present and require transcriptional 
upregulation. Two non-mutually exclusive mechanisms have been 
proposed for how BH3-only proteins promote MOMP. First, BH3-
only proteins bind to anti-apoptotic members thereby neutralizing 
them. This displaces and allows activation of the multi-BH domain 
proteins Bax/Bak to trigger MOMP. A second mechanism is the direct 
activator model whereby BH3-only proteins directly activate Bax/
Bak by binding and promoting their integration into mitochondria 
(Youle and Strasser, 2008; Chipuk et al., 2010). There is a hierarchy 
among BH3-only proteins with so-called “weak” members such as 
Bad having restricted affinity for only few anti-apoptotic Bcl-2 fam-
ily proteins and unable to directly activate Bax/Bak, whereas potent 
members of the BH3-only family including Bim, Bid, and probably 
Puma can avidly bind all anti-apoptotic Bcl-2 family proteins and 
directly activate Bax/Bak (Youle and Strasser, 2008; Chipuk et al., 
2010). Activation of pro-apoptotic Bcl-2 family proteins, in particular 
Bax and Bid, may also directly cause mitochondrial fragmentation 
that contributes to cell death (Youle and Karbowski, 2005).

induction of apoptosis-associated signaling 
pathways after acute seizures
There is substantial evidence that prolonged or repeated sei-
zures activate apoptosis-associated signaling in vivo (Engel and 
Henshall, 2009). Within a few hours of status epilepticus there is 
release of cytochrome c and other pro-apoptogenic molecules from 

regions such as the hippocampus. Cell death is a common  pathologic 
feature of insults to the brain which trigger a chronic epileptic condition 
(Pitkanen and Sutula, 2002). The main mechanism by which neurons 
die after seizures is excitotoxicity due to prolonged over-activation of 
ionotropic glutamate receptors (Choi, 1988; Meldrum, 1991; Fujikawa, 
2005). An appreciation of the complex molecular pathways lying down-
stream of glutamate receptor over-activation has emerged, alongside 
evidence that glutamate receptor antagonists do not block all cell death 
after seizures (Bengzon et al., 1997).

Several studies have addressed the role of IEGs in seizure-induced 
cell death (Herdegen and Leah, 1998). The prolonged activation of the 
IEGs c-fos and c-jun after acute seizures was originally proposed as one 
of the crucial steps that trigger long-term neuronal death (Smeyne 
et al., 1993; Kasof et al., 1995; Kondo et al., 1997). In physiological con-
ditions, IEGs are essential for normal neuronal responses to excitation 
in the brain. The protein products of fos/jun contribute to assembly of 
the AP-1 transcription factor, whose activation regulates the expres-
sion of a wide number of “synaptic” genes, including neurotrophic 
factors (Sheng and Greenberg, 1990). Indeed, loss of c-fos in mice 
markedly reduces activity-dependent structural plasticity (mossy fiber 
sprouting; Watanabe et al., 1996). This suggests that such a “fos-less 
phenotype” might be due to altered seizure-induced transcriptional 
activation of genes involved in synaptic plasticity (Watanabe et al., 
1996). However, the role of c-fos as a promoting agent of seizure-
induced neuronal cell death has been questioned by the observation 
that conditional mutant mice lacking c-fos in the hippocampus display 
increased susceptibility to seizure-dependent neuronal loss (Zhang 
et al., 2002). Conversely, the pro-apoptotic activity of c-jun activa-
tion has been confirmed in several experimental models. Increased 
levels of both c-jun mRNA and Jun phosphorylation are observed 
in epileptogenic areas after seizures (Huges et al., 1999; Raivich and 
Behrens, 2006). Phosphorylation of Jun is mediated by the c-Jun 
N-terminal kinase (JNK) and results in the subsequent activation of 
Jun transcriptional activity, that triggers apoptotic neuronal cell death 
after seizures (Herdegen et al., 1998; Behrens et al., 1999; Mielke et al., 
1999; Schauwecker, 2000; Spigolon et al., 2010) and other traumatic 
insults (Yuan and Yankner, 2000). Accordingly, mice lacking the Jun-
terminal kinase Jnk3 are protected against seizure-induced apoptosis 
in the hippocampus (Yang et al., 1997).

Apoptosis-associated signaling pathways are important compo-
nents of the molecular response to seizures (Engel and Henshall, 
2009). Complex intracellular and intercellular cell death-regulatory 
pathways are increasingly recognized as important contributors to 
seizure-induced neuronal death. Here, we review the latest findings 
on apoptosis-associated signaling pathways, in particular the role 
of Bcl-2 family proteins, as critical components of the molecular 
response to seizures.

Apoptosis is a form of programmed cell death that is orches-
trated by evolutionarily-conserved signaling pathways. Two main 
pathways have been identified. The intrinsic pathway is activated 
by various intracellular stressors such as DNA damage, perturbed 
intracellular organelle function (for example, prolonged endoplas-
mic reticulum stress), and loss of calcium homeostasis (Orrenius 
et al., 2003; Xu et al., 2005). Ultimately, this results in mitochondrial 
outer membrane permeabilization (MOMP) and release of apop-
togenic molecules from mitochondria, in particular cytochrome c. 
Having transited from the inter-membrane space to the  cytoplasm, 
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consequence of seizures in vivo (Henshall et al., 1999; Lan et al., 
2000), but other stimuli including raised intracellular calcium could 
be responsible (Sedarous et al., 2003).

Bim has several transcriptional control mechanisms (Biswas et al., 
2007; Puthalakath et al., 2007; Concannon et al., 2010). The FoxO1/3a 
transcription factors were the first to be linked to Bim regulation 
after status epilepticus (Shinoda et al., 2004), but more recent work 
has implicated c-Jun N-terminal kinase (JNK; Murphy et al., 2010). 
Indeed, in vivo injection of the JNK inhibitor SP600125 fully blocked 
Bim induction after status epilepticus in mice (Murphy et al., 2010). 
Activation of JNK itself may occur via stimulation of the KA receptor 
subunit GluR6 recruiting post-synaptic density protein 95 (PSD-95) 
and mixed lineage kinases, which activate JNK (Savinainen et al., 
2001; Li et al., 2010a). This signaling scaffold also mediates the deg-
radation of Bcl-2 after seizures (Zhang et al., 2011). JNK can also be 
activated downstream of TNF receptor 1 and endoplasmic reticu-
lum stress (Yang et al., 2006), which are both early events following 
seizures (Shinoda et al., 2003; Murphy et al., 2010). Last, in vitro 
data show the adenosine monophosphate-activated protein kinase 
(AMPK) mediates Bim-induced neuronal death during excitotoxicity 
(Concannon et al., 2010), although this has not been explored in vivo.

Caspase-8 has been implicated in the mechanism of Bid acti-
vation after seizures on the basis that caspase-8 pseudosubstrate 
inhibitors reduced Bid cleavage (Henshall et al., 2001b; Li et al., 
2006). Whether this is downstream of death receptors is unknown. 
Bid can also be activated by calpain (Mandic et al., 2002) and in 
some models cleavage of Bid may not be needed for mitochondrial 
translocation and neuronal apoptosis (Konig et al., 2007).

In vivo evidence that BH3-only proteins regulate neuronal death after 
seizures
Seizure-induced neuronal death has recently been studied in ani-
mals lacking each of the potently pro-apoptotic BH3-only pro-
teins (Engel et al., 2011). Mice deficient in Puma are the most 
protected against seizure-induced neuronal death, with seizure-
damage reduced by over 70% (Engel et al., 2010c). Puma-deficient 
mice were also protected when the severity of status epilepticus was 
increased to produce a stronger necrotic component (Engel et al., 
2010b). Seizure-damage in the hippocampus of Bim-deficient mice 
was reduced by ∼45% in the same model (Murphy et al., 2010). In 
another study, however, bim−/− mice were not protected against 
intra-hippocampal KA-induced damage (Theofilas et al., 2009).

Seizure-induced hippocampal damage in Bid-deficient mice was 
not different to wild-type animals (Engel et al., 2010a). This was sur-
prising because Bid-deficient mice were protected against stroke and 
traumatic brain injury, and bid−/− neurons are protected in vitro from 
glutamate excitotoxicity (Plesnila et al., 2001; Bermpohl et al., 2006). 
Of note, Puma-deficient mice are not protected against ischemic brain 
damage (Kuroki et al., 2009). This suggests there are differences in 
the contributions of BH3-only proteins to the patho-mechanisms of 
seizure versus ischemic damage as well as gaps between the relatedness 
of in vitro and in vivo models (Engel et al., 2011).

Bcl-2 family proteins in experimental epilepsy
Activation of apoptosis-associated signaling pathways also extends 
into the period of epileptogenesis and chronic recurrent seizures 
(i.e., epilepsy). Indeed, recent transcriptome profiling of rat brain 

 mitochondria and an ensuing caspase cascade, and neuronal death 
can be interrupted using caspase inhibitors (Henshall et al., 2000a, 
2001a,b; Viswanath et al., 2000; Narkilahti et al., 2003a; Li et al., 
2006; Manno et al., 2007; Murphy et al., 2007).

Seizures also activate caspase-independent apoptosis pathways in 
the brain (Cheung et al., 2005; Takano et al., 2005; Engel et al., 2010a; 
Zhao et al., 2010). Here, calpains are thought to be critical. There are 
over 60 known calpain substrates and calpain is viewed as a critical 
coordinator of calcium-dependent signaling pathways underlying neu-
ronal death (Vosler et al., 2008). Calpain inhibitors have proven to be 
effective neuroprotectants in models of status epilepticus (Araujo et al., 
2008; Wang et al., 2008). Recently, calpain I (μ-calpain) was shown to 
be responsible for triggering AIF release during excitotoxicity (Cao 
et al., 2007). Thus, calpain and AIF may be particularly important for 
neuronal death in seizure models in which caspases are not activated 
(Fujikawa et al., 2007; Wang et al., 2008; Zhao et al., 2010).

Bcl-2 family proteins in seizure-induced neuronal death
In vivo delivery of Bcl-XL or Bcl-2 in rodents can prevent neuronal 
death following excitotoxin administration in vivo (Lawrence et al., 
1996; Ju et al., 2008). Also, mice lacking another anti-apoptotic 
member Bcl-w were found to be more vulnerable to seizures and 
to develop significantly more hippocampal damage after status 
epilepticus (Murphy et al., 2007). Thus, anti-apoptotic Bcl-2 fam-
ily members protect against seizure-induced neuronal death in 
animal models.

Among the multi-BH domain proteins, Bax has been shown to 
accumulate at mitochondria after seizures (Henshall et al., 2002) 
but we await in vivo functional studies. Some in vitro data support 
a role for Bax in glutamate-induced neuronal death (Xiang et al., 
1998), but other studies have reported bax-deficient neurons are 
equally vulnerable to excitotoxicity (Dargusch et al., 2001; Cheung 
et al., 2005). Bak does not appear to promote neuronal death in 
adult brain (Fannjiang et al., 2003) and there are no in vivo data 
on the third multi-BH domain member, Bok.

At least six members of the BH3-only subfamily have been stud-
ied in seizure models, including each of the potently pro-apoptotic 
BH3-only subgroup (Engel et al., 2011). Bid is rapidly cleaved to its 
more active form after seizures (Henshall et al., 2001b; Li et al., 2006; 
Engel et al., 2010a). Bim and Puma are both up-regulated after sei-
zures, accumulate in the hippocampus and bind anti-apoptotic Bcl-2 
family proteins (Shinoda et al., 2004; Engel et al., 2010c; Murphy 
et al., 2010). Among the less potent members, there is evidence for 
activation of Bad after seizures (Henshall et al., 2002; Noh et al., 
2006) while two other BH3-only proteins examined, Noxa and Hrk, 
were not induced (Korhonen et al., 2003; Engel et al., 2010c).

Signaling pathways linking seizures to activation of BH3-only 
proteins
How are the various BH3-only proteins activated by seizures? 
For Bad, the trigger is thought to be dephosphorylation by the 
calcium-regulated phosphatase calcineurin (Henshall et al., 2002). 
Puma upregulation after seizures is largely p53-mediated. Indeed, 
pharmacologic inhibition of p53 prevents Puma induction after 
status epilepticus and Puma is not up-regulated after seizures in 
p53-deficient mice (Engel et al., 2010c). The trigger for p53 accu-
mulation after seizures may be DNA damage, which is an early 
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plasticity (D’amelio et al., 2010). Most recently, Bad, Bax, and caspase-3 
have been proposed in long-term depression of synaptic transmission 
(Li et al., 2010c; Jiao and Li, 2011). These non-cell death functions 
are almost certainly of relevance to epilepsy. Only a single study has 
explored the effects of caspase inhibition on epilepsy, however, and 
results were negative (Narkilahti et al., 2003a). Nevertheless, if caspases 
and certain Bcl-2 family proteins influence the post-insult remodeling 
process and exert direct influences on excitability then they represent 
therapeutic targets of interest long-after the initial precipitating injury.

Other apoptosis-associated molecules have neuromodulatory 
effects. TNFα is known to promote AMPA receptor function 
(Stellwagen and Malenka, 2006) and Bcl-w has been associated 
with GABA receptor signaling (Murphy et al., 2007). It is likely fur-
ther non-cell death functions will emerge for apoptosis-associated 
signaling molecules.

Taken together, studies on apoptosis-associated signaling in epi-
lepsy have revealed a widespread role which spans contributions to 
early as well as late cell death and a variety of non-cell death-regu-
latory functions including seizure thresholds and processes which 
may impact on epileptogenesis and the chronic epileptic state.

The intracellular pathways involved in long-term neuronal cell 
death after seizures are illustrated in Figure 2.

found changes to apoptosis-associated genes were associated with 
all stages of epileptogenesis (Okamoto et al., 2010). We know little, 
however, about the role of Bcl-2 family proteins in epilepsy develop-
ment. Puma-deficient mice were found to develop fewer epileptic 
seizures than wild-type animals after status epilepticus (Engel et al., 
2010c), but there are no data on Puma levels in wild-type epileptic 
mice. Also, the influence of Puma deficiency on epileptogenesis is 
complicated by the neuroprotection afforded by its absence during 
the initial precipitating injury. Studies of brief evoked seizures, which 
model some aspects of epileptic seizures, show expression changes 
for a small number of Bcl-2 family proteins but functional studies are 
needed to determine whether they are active during the process of 
epileptogenesis or after epileptic seizures (Engel and Henshall, 2009).

Bcl-2 family proteins in human epilepsy
The expression of several members of the Bcl-2 family has been 
examined in human hippocampus and neocortex samples resected 
from patients with TLE (Engel and Henshall, 2009). Overall, the 
patterns favor an adapted, anti-apoptotic state which may function 
to limit seizure-induced neuronal death; Bcl-2, Bcl-w, and Bcl-XL 
are all expressed at higher levels in TLE samples than controls and 
levels of Bim are lower (Henshall et al., 2000b; Shinoda et al., 2004; 
Murphy et al., 2007; Engel and Henshall, 2009). Modest upregula-
tion of Bax has been reported in some TLE studies while no changes 
have been reported for Bad or Bid (Engel and Henshall, 2009). Bcl-2, 
Bcl-XL, and Bax may also be aberrantly expressed in focal cortical 
dysplasia, another common cause of pharmacoresistant epilepsy 
(Chamberlain and Prayson, 2008).

other apoptosis-associated signaling pathways during 
epileptogenesis and in chronic epilepsy
Several other apoptosis-associated genes have been examined dur-
ing epileptogenesis and in chronic epilepsy. Immunohistochemistry 
and enzyme assays show caspase-3 is active several days and even 
a week after status epilepticus (Narkilahti et al., 2003b; Weise et al., 
2005). Other caspases have similarly been found to be cleaved and/
or active during epileptogenesis and in epileptic brain in experi-
mental models (Engel and Henshall, 2009). Over-expression and 
cleavage of caspases-1, 2, 3, 6, 7, and 9 have also been identified in 
resected human TLE tissue (Engel and Henshall, 2009).

non-cell death functions of apoptosis-associated signaling 
molecules
It is recognized that several proteins involved in apoptosis have non-
cell death-related biological functions (Galluzzi et al., 2008; Lamb and 
Hardwick, 2010). Caspase-1, a member of the non-apoptotic subgroup, 
is the enzyme responsible for interleukin-1β (IL-1β) production. An 
inflammatory cytokine, IL-1β is pro-convulsive, prolonging seizures, 
while inhibitors of IL-1β and caspase-1 have potent anti-convulsive 
effects (Vezzani et al., 2010). A role for caspase activation has also 
been demonstrated in microglial activation (Burguillos et al., 2011). 
Apoptotic caspases, including caspases-2 and 6, have been found 
to localize to the dendritic fields of the hippocampus in the wake 
of experimental status epilepticus (Narkilahti and Pitkanen, 2005; 
Narkilahti et al., 2007). Similar patterns of staining for caspases-2, 
3, and 9 have been found in hippocampal tissue from TLE patients. 
This likely reflects roles for caspases in dendritic pruning and synaptic 

FiguRE 2 | Apoptosis-associated signaling pathways activated in 
neurons by seizures. Signaling pathways downstream of glutamate and Fas 
(death) receptors turn on BH3-only proteins of the Bcl-2 family, culminating in 
mitochondrial dysfunction and caspase-dependent and -independent cell 
death. The list is not complete and represents only some of the major 
pathways. Abbreviations: AIF, apoptosis-inducing factor; casp8, caspase-8; ER, 
endoplasmic reticulum; Fadd, Fas-associated death domain protein; FasR, Fas 
death receptor; JNK, Jun-terminal kinase; KA and NMDA, glutamate receptor 
subtypes; ROS, reactive oxygen species.
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conclusion
The activation of cell signaling pathways in response to acute 
seizures has detrimental long-term effects. Upregulation of IEGs 
induced by pathological overactivity results in plastic changes that 
alter synaptic functions and neuronal connectivity in susceptible 
brain areas. IEGs induction after seizures has been described to 
lead to neuronal death in several regions of the brain, includ-
ing the hippocampus and the limbic system. These structures are 
among the most epileptogenic areas of the brain, and are crucially 
involved in learning and memory processes. In addition, stud-
ies on apoptosis-associated signaling in epilepsy have revealed a 
widespread role which spans contributions to early as well as late 
cell death and a variety of non-cell death-regulatory functions 
including seizure thresholds and processes which may impact on 
epileptogenesis and the chronic epileptic state. Thus, the activa-
tion of cell signaling pathways after seizures (markedly depending 
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