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Stress has deleterious effects on brain, body, and behavior in humans and animals alike.
The present work investigated how 30-min acute photic stress exposure impacts on spa-
tial information processing in the main sub-regions of the dorsal hippocampal formation
[CA1, CA3, and dentate gyrus (DG)], a brain structure prominently implicated in memory
and spatial representation. Recordings were performed from spatially tuned hippocampal
and DG cells in rats while animals foraged in a square arena for food.The stress procedure
induced a decrease in firing frequencies in CA1 and CA3 place cells while sparing locational
characteristics. In contrast to the CA1–CA3 network, acute stress failed to induce major
changes in the DG neuronal population.These data demonstrate a clear dissociation of the
effects of stress on the main hippocampal sub-regions. Our findings further support the
notion of decreased hippocampal excitability arising from behavioral stress in areas CA1
and CA3, but not in DG.
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INTRODUCTION
The hippocampus has received a huge amount of attention due
to its particular involvement in several memory processes such as
the episodic and spatial memory. In addition, it is widely accepted
that the hippocampus plays a critical role in the stress response.
The amygdala, a central stress regulating structure (LeDoux, 1994;
Cahill and McGaugh, 1998; Roozendaal et al., 1998; McGaugh,
2000; Kim et al., 2005), projects directly (Cahill and McGaugh,
1998) and indirectly (through the entorhinal cortex, McDonald
and Mascagni, 1997) to the hippocampus. The hippocampus is
also subject to mainly mineralocorticoid receptor (MRs) and glu-
cocorticoid receptor (GRs) activation as part of the HPA axis
activation (de Kloet et al., 2005). The extent of this regulation
appears to be critically dependent in a time- and dose-dependent
manner (Schwabe et al., 2010).

Virtually all of the electrophysiological studies on the stress
response published so far have focused on in vitro studies or
in vivo studies of anesthetized rats (e.g., Karst, 2000; Kole et al.,
2001; Alfarez et al., 2002; Karst et al., 2005; Van Gemert and
Joels, 2006; Wiegert et al., 2006). It is however, imperative to
study neuronal activity during natural behaviors to get a better
understanding of how stress shapes hippocampal function and
to interpret the underlying deficits and responses observed dur-
ing behavioral tasks under the influence of stress. Thus we use
hippocampal place cells of the three main sub-regions of the hip-
pocampus to study the effects on this crucial network in a period
of stress recovery. The hippocampus is a key structure involved
in spatial information processing as suggested by the presence of
a large population of place cells (O’Keefe and Dostrovsky, 1971;
O’Keefe and Nadel, 1978). Such cells are active when the animal
occupies specific locations in particular environments (O’Keefe
and Conway, 1978; Muller et al., 1987). Place cells are therefore

functionally characterized by a location-specific firing which is
referred to as a “firing field” or “place field.”

Hippocampal place fields in young rats can be stable for months
when recorded in a familiar environment (Thompson and Best,
1990); however, small changes in sensory or cognitive inputs can
trigger a completely different place field representation (Muller
and Kubie, 1987; Leutgeb et al., 2005). These changes of place cell
activity constitute a “remapping” and can be of two distinct types
(Colgin et al., 2008): (i) “rate remapping” occurs when animals
are trained and tested in the same location using different-shaped
or colored enclosures; in this case, place fields are stable in loca-
tion but display rate differences across conditions (Leutgeb et al.,
2005); or (ii) “global remapping,” when animals are placed in two
different testing rooms, whether the enclosure is similar or not
(Muller and Kubie, 1987); place fields in this situation change
their firing activity along with their spatial location. Hippocam-
pal sub-regions [i.e., CA1, CA3, and dentate gyrus (DG)] appear
to be differently affected by the rate remapping process (Leut-
geb et al., 2004, 2005, 2007). When taking into account rate and
population vectors differences, DG cells activity shows profound
changes, far more important than the ones observed in CA3, which
is itself more affected by rate remapping than CA1. This process
is thought to underlie the mechanism for encoding episodic-like
memories about events that have previously occurred within a spe-
cific context (Leutgeb et al., 2006; Colgin et al., 2008). Kim et al.
(2007) tested the idea of how acute stress affects those remap-
ping processes in the CA1 region. A 2-h audiogenic stress protocol
induced higher firing rate changes than during control condi-
tions using a rate remapping protocol in CA1 place cells. Based
on those results the authors suggest that acute stress may impair
spatial memory processes via rate remapping processes in the hip-
pocampal formation. In order to test whether other sub-regions
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implicated in rate remapping are affected by acute stress and to bet-
ter understand the underlying processes we recorded CA1, CA3,
and DG place cells in a stable environment where a prior stressor
had been applied for 30 min 1 h previously. This allows us to inves-
tigate in a more sophisticated way hippocampal dynamics during
the post-stress phase which is important for learning and memory
processes.

MATERIALS AND METHODS
ANIMALS
A total of nine (4–6 months) male Wistar rats (B&K, UK) weigh-
ing between 420 and 530 g were used. Upon arrival, animals were
housed individually and handled by the experimenter daily for a
week before being trained in the pellet-chasing task (see below).
Rats were food-deprived to 90% of their ad libitum body weight
and kept in a temperature controlled laminar airflow unit and
maintained on a 12-h light/dark cycle (lights on from 08:00 to
20:00 hours). Experiments were carried out in strict accordance
with regulations laid out by LAST Ireland and were compliant
with the European Union directives on animal experimentation
(86/609/EEC).

RECORDING AND ANALYSIS
Detailed descriptions of the surgical protocol and recording tech-
niques can be found elsewhere (Brotons-Mas et al., 2010; Tsanov
et al.,2011). Briefly, rats were implanted with tetrodes of either four
or eight bundles of platinum–iridium wires (California Fine Wire
Ltd., USA) mounted onto small driveable microdrives (Axona Ltd.,
UK) at the following coordinates: 3.5–3.7 mm posterior to bregma,

2.3–2.8 mm lateral to the midline and depth varied depending on
structure from 1.5 to 3.2 mm from the dura (see Figure 1; Paxi-
nos and Watson, 1998). Tetrodes were implanted at the identified
coordinates and then lowered through the layers. The coordinates
were chosen to optimize the passage of the electrodes through
all the layers. Based on the daily record of the electrode position
and post mortem histological verification each recording could be
located along the tetrode trace. Rats were allowed at least 1 week
of recovery post-surgery. The 16-min long recordings took place
in a square-shaped arena (64 cm × 64 cm × 25 cm) located in the
center of the room with multiple large visual cues made accessi-
ble to allow the animals to orient themselves in the environment.
20 mg food pellets (TestDiet™, 5TUL formula) were thrown in
the arena at random locations ca. every 20 s. During the weeks
of recordings animals were allowed 20 g of food daily. Unit iden-
tification was based on several criteria. First, neurons had to be
active in both conditions and had to present same waveform char-
acteristics (amplitude, height, and duration) in those conditions.
Further, they had to present at least a maximum firing frequency
of 1 Hz and a spatial selectivity of >3, in one of the two sessions.
Furthermore, to be kept, units had to demonstrate a clean refrac-
tory period (<2 ms) in the autocorrelation. Once well-defined
neuronal signals from the respective subareas were isolated and
the rats explored the arena sufficiently (rats had to explore at least
90% of all bins in either session to be included in analysis to
allow reliable calculation of spatial characteristics), the stress pro-
tocol was initiated. The acute stress protocol consisted of 30 min
photic exposure, using bright light (ca. 120 cd) on top of a small
bucket in a separate room. This stress protocol has consistently

FIGURE 1 | Schematic drawings of the implantation sites; cells were recorded from pyramidal cell layers of the hippocampus, in particular, CA1, CA3,

and the granule cell layer of the DG. Dotted lines represent the dense neuronal layers of each structure. The gray shaded areas represent the main granule
cell layer of the dentate gyrus.
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induced stress responses and spatial memory deficits (Commins
and O’Mara, 2000) as well as drastic performance decreases in
spatial memory in Wistar rats (unpublished data). Thus in our
lab it has been utilized as a reliable inducer of a systemic behav-
ioral stress response. Rats were then allowed 30 min of rest in
the bucket with lights turned off, before recording in the pellet-
chasing task for a second time (stress condition). Animals were
never stressed twice within a 3-day period in order to decrease the
possibility of adaption to the stressor and to prevent chronic stress
induction. On average, each animal was exposed to the photic
stressor a total of approximately 7.5 times. The spatial specificity
(or spatial information content) is expressed in bits per spike and
calculated according to Skaggs et al. (1996). Similar to Hollup
et al. (2001), place field size is computed as the region of the
arena in which the firing rate of the place cell is above 20% of
the maximum firing frequency. A place field was identified if nine
neighboring pixels (sharing a side) were above 20% of the peak
firing rate. Place field size was represented in number of pixels.
The spatial selectivity of a firing field (ratio of maximal signal
to noise) was calculated by dividing the firing rate of the cell in
the bin with the maximum average rate by its mean firing over
the entire apparatus (Skaggs et al., 1996). Average frequency is
the total number of spikes divided by the total recording time
and is expressed in Hz. Neuronal units of the second recording
were matched based on their spike amplitude, height, and spike
duration with the respective units from the control recording. The
burst index was calculated by acquiring first the number of spikes
within a burst (minimum of two consecutive spikes in 6 ms). The
number of bursts were then detected, and multiplied by the aver-
age number of spikes within a burst. A ratio was then calculated
between this number and the overall number of spikes within the
recording. Exploration was assessed by comparing the occupancy
of bins and the number of visits per bin between the two recording
conditions. Data was tested for normality (normal quantile plot).
If the test returned a non-normal character of the distribution,
a Wilcoxon-signed rank test (Z values provided in the section
Results) was performed, otherwise a parametric paired t -test (t
values provided) was used.

If no more hippocampal neurons could be recorded or the
headstage and the ground wire were irreparably damaged, rats
were sacrificed and their brains collected for electrode position
verification. Brains were collected and stored in a 4% PFA solu-
tion (Sigma, UK). In short, brains were embedded in paraffin, and
the target region was microtome sliced into 20 μm sections. There-
after, brain sections were stained with a standard hematoxylin and
eosin staining protocol to allow cellular identification. Tetrode
tracks were verified by visual inspection of the experimenter under
a standard microscope (Leica, GER) fitted with a 5× and a 20×
lens (Leica, GER).

RESULTS
In total, 138 well-defined place cells were recorded in 9 animals,
with 99 of those cells fulfilling the matching criteria required to
analyze cell activity in both (control and stress) recording con-
ditions. Out of those 99 cells, 34 were recorded from the CA1
region, 18 from CA3, and 47 from DG (main summary of effects
in Figure 2, examples presented in Figure 3).

FIGURE 2 | Summary of the effects of acute photic stress on CA1, CA3,

and DG cells; CA1 and CA3 cells generally experience a significant

decrease in firing activity whereas spatial characteristics are mainly

unchanged. In contrast, DG cells do not experience a change in firing rate
after stress. Black bars represent mean sample values of control sessions
and gray bars represent mean sample values of stress sessions. The size of
place fields was defined by the firing frequency above 20% of the
maximum firing frequency. In total 99 cell pairs (control/stress) were
recorded. nCA1 = 34, nCA3 = 18, nDG = 47 *p < 0.05, **p < 0.01, ‡ Spatial
information content in bits per spike.

Strikingly, maximum firing rate was significantly decreased
(Wilcoxon-signed rank test) for both CA1 (Z 33 = −2.85,
p = 0.004) and CA3 place cells (Z 17 = −2.04, p = 0.041), but
not for DG place cells (Z 46 = −1.75, n.s.). Similarly, there
was a significant decrease in average firing rate for CA3 units
(Z 17 = −1.96, p = 0.049) and a marginal decrease for CA1 units
(Z 33 = −1.88, p = 0.06), but not significant differences for DG
units (Z 46 = −1.64, n.s.). Burst analysis of both CA1 and CA3
cells revealed a highly significant decrease in overall burst activ-
ity between control and stress sessions. The mean value for the
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FIGURE 3 | Examples of firing characteristics of hippocampal and

subicular neurons. The first column of each subregion depicts the
smoothed color coded map showing the firing rate per pixel scaled to the
maximum firing rate within the environment at the top left. Dark blue
denotes the lowest firing category and red indicates the highest firing
category. Color steps are in 20% of the maximum firing rate. The second

column shows the corresponding path trajectories and the
corresponding spikes of the neurons in red. The third column depicts the
cell signal of the most prominent channel where time is plotted on the
x -axis and spike amplitude is plotted on the y -axis. Two consecutive rows
always show the same cell in both the control (firing rate in red) and
stress condition (black).

burst index within control sessions was 0.224 (SEM ± 0.042),
whereas it dropped significantly in the stress sessions to 0.083
(SEM ± 0.024; t 35 = 4.43, p < 0.001). In comparison, the burst
index for DG in control sessions was 0.127 (SEM ± 0.01), com-
pared with 0.108 (SEM ± 0.01) in the stress sessions (t 36 = −1.96,
n.s.). To exclude the possibility that repeated stress exposures influ-
enced firing rates, maximum and average firing rate changes from
early recordings were compared with later recordings. No signif-
icant differences were found between those groups for any of the
sub-regions (CA1: maximum firing rate t 20 = 0.94, n.s., average
firing rate t 20 = 0.65, n.s.; CA3: maximum firing rate t 12 = 0.18,
n.s., average firing rate t 12 = −0.34, n.s.; DG: maximum firing rate
t 44 = 0.37, n.s., average firing rate t 44 = −0.79, n.s.). In addition,
96 (CA1: N = 43; CA3: N = 20 and DG: N = 33) cells which were
sampled in the same recording environment and in two separate
sessions, from non-stressed Wistar rats in our database were ana-
lyzed for the change of firing characteristics (see Figure 4 for an
overview). As expected in non-stressed animals no network-wide
change in firing frequency was observed (average firing frequency:
CA1: Z 42 = −0.39, n.s.; CA3: Z 19 = −1.18, n.s.; DG: Z 32 = −0.31,
n.s.; maximum firing frequency: CA1: Z 42 = −0.02, n.s.; CA3:

Z 19 = −1.34, n.s.; DG: Z 32 = −0.71, n.s.). Although individual
neurons may change its firing frequency in one direction in naïve
rats no network-wide down- or up-regulation can be observed in
constant environmental recording conditions. This is supported by
our data from stressed animals were individual neurons go against
the trend of the network and show an increased firing pattern (see
an example in Figure 3, 11.1 –>16.3 Hz increase).

A striking characteristic of DG granule cells is that they
show, apart from their main spatial firing field, other specific
firing locations – so called subfields (Jung and McNaughton,
1993; Leutgeb et al., 2007). Detailed analysis revealed that as
expected the main firing fields did not change in their firing
characteristics (average firing frequency: t 46 = 1.23, n.s.). How-
ever, subfields appear to be affected. First, not all subfields
(∼45%) could be matched between the sessions based on their
preferred firing location. Secondly, subfields showed a marked
decrease in their average firing frequency in the stress session (all
subfields included: t 125 = 2.10, p = 0.037; matching subfields only:
t 85 = 1.93, p = 0.057).

Spatial firing characteristics were mainly unaffected in cells
recorded from stressed animals. The spatial information content
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was unaffected for both the CA1 (Z 33 = −1.07, n.s.) and CA3
regions (Z 17 = −1.35, n.s.), but showed a significant decrease
in DG units (Z 46 = −2.18, p = 0.029). Spatial selectivity was
unaffected in all three regions (CA1: Z 33 = −1.17, n.s.; CA3:
Z 17 = −0.4, n.s.; DG: Z 46 = −1.64, n.s.). The size of the place fields
was unaffected in CA1 (Z 33 = −0.98, n.s.) and DG (Z 46 = −1.64,
n.s.), but showed a decrease in CA3 (Z 17 = −3.15, p = 0.002;
see Table 1). As a measure of exploration we sought to calcu-
late the number of visited bins between sessions and this cri-
terion did not show any significant difference for the CA1 and
CA3 sub-regions. However a slight decrease for the DG popula-
tion was found (CA1: Z 33 = −0.63, n.s.; CA3: Z 17 = −1.90, n.s.;
DG: Z 46 = −3.04, p = 0.002). The number of passes for each bin
showed no significant change for any of the sub-regions (Repeated
measure ANOVA: 0–14 passes/bin which includes 99.9% of all data
DG: F = −2.42, p = n.s.; CA3: F = 4.054, n.s.; CA1: F = 0.47, n.s.).

DISCUSSION
Place cell firing activity decreased significantly in both the CA1
and CA3 subareas of the hippocampus after acute photic stress
whereas place cells within the DG generally did not display a
change in firing activity within a constant environmental setting.
No prominent changes in spatial characteristics of place cells were
observed. These results strongly support the notion that the hip-
pocampal network undergoes a generalized subregional decrease
in excitability and thus reduced processing capabilities after stress.
In addition, CA1 and CA3 place cells also showed a decrease in
their burst activity which provides further evidence that neuronal
excitability is decreased within the CA1–CA3 population of pyra-
midal neurons. The decreased size of CA3 place fields during stress

conditions appear to be a result of the decrease in neuronal fir-
ing which affects the generally bigger place fields of CA3 units
in a more profound way than the smaller place fields of CA1
place cells. In contrast, DG cells neither show an overall decreased
burst activity nor a general firing frequency decrease. However,
the decrease of subfield activity in stress recordings as compared
to stable mainfield firing rate is an interesting finding. But as the
number of spikes within those subfields normally account for only
a fraction of the neuronal discharge it might be the reason why
overall firing activity appears to be constant in the DG. The high
number of subfields which could not be correlated between ses-
sions might suggest a plasticity effect of those subfields and the
respective inputs after stress. The decrease in spatial information
index for DG units is apparently a result of a reduced exploration
pattern during stress recordings, as the change in path length
(r = 0.33, p = 0.02) or occupation of pixels (r = 0.39, p = 0.005)
does positively correlate with the change observed for spatial infor-
mation content between sessions. It is worth noting that although
we see a general decrease of firing activity, individual neurons
can increase their firing activity. This result might reflect differ-
ent inter-hippocampal networks processing as non-essential and
essential information are differently affected during this phase of
stress recovery (Schwabe et al., 2010).

Importantly, repeated exposures to photic stress did not affect
hippocampal unit activity. This is in accordance with another
study from our lab (unpublished observations) which has shown
that photic stress reliably activates the HPA axis after repeated
exposures without signs of stress adaption. In addition, chronic
stress effects can be excluded as rats were never stressed on con-
secutive days nor were the total number of exposures sufficient

FIGURE 4 | Comparison between neuronal firing frequency changes. Maximum and average firing frequency changes of cells between two consecutive
control sessions, as well as one control session and a successive stress session. *p < 0.05, **p < 0.01.

Table 1 | Main overview of spatial and firing characteristics of all three main sub-regions.

CA1 CA3 DG

Control Stress Control Stress Control Stress

Maximum firing rate (Hz) 7.64 ± 0.96** 5.06 ± 0.71 13.35 ± 2.17* 9.85 ± 1.45 7.37 ± 1.02 7.21 ± 1.23

Average firing rate (Hz) 0.72 ± 0.12 0.51 ± 0.09 1.94 ± 0.38* 1.22 ± 0.29 0.90 ± 0.22 0.87 ± 0.23

Size of place field
‡

14.1 ± 1.97 13.5 ± 1.36 26.83 ± 5.14* 21.18 ± 3.89 15.6 ± 1.67 16.9 ± 1.75

Spatial selectivity 15.4 ± 1.61 14.0 ± 1.41 11.28 ± 1.91 13.30 ± 2.53 15.1 ± 1.51 13.6 ± 1.69

Spatial information content
†

1.82 ± 0.15 1.67 ± 0.14 1.47 ± 0.25 1.51 ± 0.23 1.73 ± 0.11* 1.53 ± 0.11

Values presented as mean values ± SEM. *p < 0.05, **p < 0.01, ‡ size of place field expressed in pixels, † Spatial information content in bits per spike.
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to induce chronic stress effects (Joëls et al., 2004). Moreover, the
recording procedure per se (control) was neither stressful nor
painful for the rats and they were well accustomed to the recording
environment before the first stress session.

Our results suggest that firing decreases within area CA1 after
stress appear not to be mainly based on rate remapping processes.
If stress impairments act mainly via an impairment of rate remap-
ping processes, DG cells are expected to be more profoundly
affected, as those cells are regarded as the central mediators of
a rate remapping response, experiencing higher changes of firing
rates than CA1 and CA3 (Leutgeb et al., 2005, 2007). Hence, the
greater stress-induced decrease in firing rate observed in CA1 cells
in the study of Kim et al. (2007) during a rate remapping pro-
tocol might be a by-product of a systematic CA1/CA3 neuronal
“slowdown” response after stress, rather than being specific to rate
remapping process as defined by Leutgeb et al. (2007). Neverthe-
less, the possibility that in processes which require rate remapping,
stress has a higher impact under normal firing conditions cannot
be excluded as our protocol did not test for those circumstances; we
would assume that under more challenging conditions and thus
higher hippocampal involvement stress effects would be ampli-
fied. In that respect, a study specifically investigating rate or global
remapping processes after stress in the DG and/or CA3 and possi-
bly entorhinal cortex would be of further interest. In addition, the
difference in the nature of the stressor (audiogenic versus photic),
the duration of stress exposure (2 h versus 30 min) and the dif-
ference in strain of the animals between the two studies might
provide some additional explanation.

Our data indicate that acute photic stress alters only CA1
and CA3 place cell activity without an overall affect on the DG
granule cells in their firing capacity during freely moving explo-
ration in a constant environment. This observation is an important
translation from earlier in vitro and LTP studies (Foy et al., 1987;
Shors et al., 1989; Dubrovsky et al., 1993; Bramham et al., 1998;

Joëls et al., 2006), and to our knowledge is the first freely mov-
ing experiment studying all of these structures. The MR–GR
balance theory proposed by de Kloet et al. (2005) suggests that,
in a time-dependent manner, activation of membrane MRs (via
increased corticosterone) amplifies the initial stress response in
a feed-forward fashion, and at the same time initiates processes
allowing the containment of the initial stress reactions via mem-
brane and mainly genomic GR-mediated feedback. Hence, after
the early activation period, the normalization period helps to
recover from the stressful event, where corticosterone levels slowly
decrease and GR activation increase (de Kloet et al., 2005). During
this recovery period there is decreased LTP in CA1 and CA3, but
no effect on the DG was observed (Joëls and Krugers, 2007). In
summary, it thus appears plausible that decreased hippocampal
excitability (specifically CA1 and CA3) during the normalization
phase, affects a broader range of functional processes including
rate remapping. Those decreased functional hippocampal capa-
bilities within this time period then in turn may attenuate a broad
range of memory-associated processes where the hippocampus
plays a major role (Aggleton et al., 2010). In this respect, assum-
ing the temporal variable remains constant, memory processes
and thus behavioral tasks that rely at least partly on the hip-
pocampus will be negatively affected, where the brain is unable
to switch rapidly to a hippocampal-independent system to solve
the task or at least compensate for the hippocampal deficits.
However, this down-regulation of certain networks may be ben-
eficial in order to facilitate the storage of stress-related memories
(Joëls and Krugers, 2007). Thus, in future studies it will be cru-
cial to directly link the neuronal changes induced by a stress
exposure with the behavioral deficits or enhancements observed
in more challenging memory tasks than in pure exploratory
tasks.

Grant sponsor: Science Foundation Ireland; Grant number:
8AA G22112.
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