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The physiological role of synaptic zinc has remained largely enigmatic since its initial detec-
tion in hippocampal mossy fibers over 50 years ago. The past few years have witnessed
a number of studies highlighting the ability of zinc ions to regulate ion channels and intra-
cellular signaling pathways implicated in neuroplasticity, and others that shed some light
on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies
using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular
zinc is required for the formation of memories dependent on the hippocampus and the
amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A com-
mon theme emerging from this research is the activity-dependent regulation of the Erk1/2
mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms
in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in
cognition through its impact on neuronal signaling.
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INITIAL IDENTIFICATION OF VESICULAR ZINC IN SYNAPTIC
TERMINALS OF THE BRAIN
The first indication of the accumulation of zinc in nerve fibers
came from Maske (1955). He found that intravital injection of
the heavy metal chelator dithizone results in a band of bright red
staining – corresponding to metal: dithizonate – in the mossy
fiber region of the hippocampus. Subsequently, histochemical
methods were developed (i.e., Timm’s stain) to precipitate metal
cations in situ and visualize them by silver amplification (Timm,
1958; Danscher, 1981). When combined with electron microscopy,
these methods revealed the precise localization of metal ion stain-
ing within synaptic vesicles of the telencephalon (Figure 1A;
Haug, 1967; Perez-Clausell and Danscher, 1985). Suggesting the
involvement of zinc in the vesicular staining, autoradiographic
and analytical studies had shown high levels of zinc in the mossy
fiber region (Dencker and Tjalve, 1979; Frederickson et al., 1983).
Indeed, proton-induced X-ray emission spectroscopy identified
zinc as the main ion detected by the above histochemical tech-
niques in brain samples (Danscher et al., 1985). More recently,
membrane-permeable fluorophores with good selectivity for zinc
ions (such as TSQ, ZP-1, ZnAF-2, or ZnIC, to name a few)
have confirmed the abundance of zinc in synaptic terminal fields
(Figure 1B; Frederickson et al., 1987; Ueno et al., 2002; Woodroofe
et al., 2004; Komatsu et al., 2007).

Pre-synaptic zinc is observed in all the vertebrates that have
been examined (Frederickson, 1989). Also common between
species is the remarkable neuroanatomical distribution of pre-
synaptic zinc, which is greatly restricted to cortical and limbic
regions of the brain in a distinct laminar pattern (Figure 1C).
Vesicular zinc is also present in boutons of the olfactory bulb and
spinal cord (Friedman and Price, 1984; Birinyi et al., 2001; Dan-
scher et al., 2001). In contrast with the distribution of vesicular
zinc, absolute zinc levels are relatively even across the gray matter

(60–80 ppm; Frederickson et al., 1983). The apparent disparity
between absolute and pre-synaptic zinc levels stems from the fact
that about 80% of total zinc in brain is not amenable to histo-
chemical detection (Cole et al., 1999). This “invisible” pool of zinc
is found in all six classes of enzymes and in intracellular receptors,
where it is normally coordinated by four to six ligands, frequently
supplied by histidine and cysteine, in conserved binding motifs
(Vallee and Falchuk, 1993; Auld, 2001).

Zinc uptake into synaptic vesicles requires the zinc transporter
protein ZnT-3, which is exclusively sorted to clear synaptic vesicles
(Palmiter et al., 1996; Cole et al., 1999). Accordingly, zinc stain-
ing is excluded from dense core vesicles in pre-synaptic boutons
(Perez-Clausell and Danscher, 1985). Zinc staining of synaptic
vesicles is evenly distributed at various distances from the active
zone (Lavoie et al., 2007), suggesting that both ready-releasable
and reserve vesicle pools may contain vesicular zinc. In keeping
with this, all synaptic vesicles appear to stain for ZnT-3 in labeled
boutons (Wenzel et al., 1997). The fact that only a fraction of these
vesicles stains for zinc may reflect a sensitivity issue or a require-
ment for additional proteins to uptake zinc into vesicles (see next
section). In the telencephalon, all boutons stocked with vesicular
zinc (i.e., zincergic) establish asymmetric synapses that typically
involve dendritic spines (Perez-Clausell and Danscher, 1985). As
predicted from their ultrastructure, these zincergic boutons are
glutamatergic (Martinez-Guijarro et al., 1991; Beaulieu et al., 1992;
Sindreu et al., 2003) and are apposed to post-synaptic membranes
enriched in glutamate receptor subunits (Sindreu et al., 2003). In
contrast, zincergic boutons in the spinal cord often form symmet-
ric synapses immunoreactive to γ-aminobutyric acid (Danscher
et al., 2001). The zincergic MF terminals of the hippocampus rep-
resent a special case, as they are both glutamatergic and GABAergic
(Ruiz et al., 2004). A common observation in electron microscopy
studies is that only a fraction of excitatory synapses show vesicular
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FIGURE 1 | (A) Consecutive serial sections (A1–5) of an axospinous
synapse in CA1 stratum radiatum stained for vesicular zinc using the
Neo-Timm method and observed by electron microscopy. Arrows point
to silver granules of varying size detecting reactive zinc in vesicles.
Note the presence of zinc staining in four of five profiles. b, bouton; s,
spine. Scale bar, 200 nm. (B) Zinpyr-1 fluorescence in a fresh
hippocampal slice with major hippocampal connections indicated
by arrows. Reactive zinc is highest in stratum lucidum (luc) of CA3,

moderate in stratum radiatum (rad), and absent in stratum
lacunosum-moleculare (s.l-m.) of CA1. (C) Bright field image of a sagittal brain
section from a 5 month-old C57/BL6J mouse stained with the Neo-Timm
method. ob, olfactory bulb; cx, cortex; st, striatum; th, thalamus; hp,
hippocampus; am; amygdala; cb, cerebellum. (D,E) Beta-galactosidase
immunofluorescence (green) in dentate gyrus granule cells of a ZnT-3 KO (D)

and control (E) mouse, counterstained with Hoescht (blue). C. Sindreu,
unpublished observations.

zinc staining. Studies quantifying the incidence of vesicular zinc or
ZnT-3 among axospinous synapses are scarce, but measurements
in the CA1 region suggest that about half of Schaffer-collateral
synapses may be zincergic (Sindreu et al., 2003). This raises the
question as to whether zincergic boutons arise from a subset of
glutamatergic neurons or instead only a subset of boutons from
any given neuron may be zincergic. Retrograde tracing studies
strongly support the former possibility, as parent neurons of zin-
cergic boutons constitute a subpopulation of neurons in the brain,
and they are often interspersed with non-zincergic neurons of sim-
ilar morphology (Slomianka et al., 1990, 1997; Slomianka, 1992;
Brown and Dyck, 2004; Cunningham et al., 2007). The hippocam-
pal MFs are a notable exception to this rule: all giant terminals are
zincergic and hence all mature dentate gyrus granule cells may give
rise to zincergic terminals. This can be appreciated by the expres-
sion of a β-galactosidase reporter in virtually all granule cells when
driven by the ZnT-3 promoter (Figures 1D,E). Double-tracing
studies have further confirmed that the vast majority of zincergic
boutons emanate from pyramidal cells in the telencephalon (Miro-
Bernie et al., 2003). Interestingly, neuronal projections from or
to subcortical structures are largely devoid of pre-synaptic zinc.
Instead, zincergic projections selectively (and often reciprocally)
inter-connect cortical and limbic structures (Mandava et al., 1993;
Long et al., 1995; Christensen and Frederickson, 1998; Casanovas-
Aguilar et al., 2002). This suggests that the zincergic connectome
represents a subnetwork of intrinsic projections embedded in the
general cortical system.

From a cognitive perspective, the abundance of vesicular zinc
in synapses of the cortex, hippocampus, and amygdala suggests a
possible role in learning and memory. Indeed, these three struc-
tures have been strongly implicated in memory formation, storage,
and retrieval (Martin et al., 2000). Because activity-dependent
changes in synaptic strength are widely assumed to support mem-
ory (Neves et al., 2008), several studies have also examined the
effects of zinc on synaptic ion channels, receptors, and plastic-
ity. Comparatively less is known as to the role that zinc plays
on neuronal signal transduction, which controls the expression
of long-term synaptic plasticity and underlies memory consolida-
tion. At any level, a full understanding of the role that synaptic zinc
plays in learning and memory requires identification of the differ-
ent zinc reservoirs and mechanisms of zinc homeostasis operating
at synapses.

HOMEOSTASIS OF SYNAPTIC ZINC
Several lines of evidence indicate the existence of multiple trans-
membrane zinc gradients among the main constituents the
synapse (Figure 2).

PLASMA MEMBRANE
Using a carbonic anhydrase-based biosensor, the concentration of
loosely bound or free zinc (i.e., reactive zinc) was estimated to be 5–
20 nM in the extracellular brain fluid (Frederickson et al., 2006b).
Given that total zinc in the cerebrospinal fluid is about 150 nM
(Hershey et al., 1983), this value suggests that most extracellular
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FIGURE 2 | Schematic illustration of presumed relative concentrations

of reactive zinc in a central glutamatergic synapse. In this model,
relative zinc levels are orientatively coded by color intensity. V, synaptic
vesicle; M, mitochondrion; C, synaptic cleft; PSD, post-synaptic density.

zinc also is tightly bound. Establishing the concentration of cytoso-
lic reactive zinc in neurons has been hampered by the technical
limitations of using fluorescent indicators for intracellular zinc
measurements, as discussed elsewhere (Nolan and Lippard, 2009;
Vinkenborg et al., 2010). Attempts in cortical neuron cultures
using the dye mag-fura-5 suggested that cytosolic zinc may be
found at subnanomolar levels (Sensi et al., 1997). Similar estimates
have been obtained in non-neuronal cells with different indica-
tors: ∼0.6 nM Zn2+ in HT293 cells by using FluoZin-3 (Krezel
and Maret, 2006), and ∼0.4 nM Zn2+ in INS-1(832/13) β-cells by
using eCALWYs FRET-based sensors (Vinkenborg et al., 2009).
Together, the data suggest that the concentration of reactive zinc
may be an order of magnitude lower in the cytosol compared with
the extracellular brain space. This is noteworthy in view of the fact
that the total intracellular zinc concentration largely exceeds that
in the extracellular space (∼150 μM; Ehmann et al., 1984). Thus,
reactive zinc in the cytosol may represent less than 0.001% of total
cellular zinc. Attesting to the importance of controlling the levels
of cytosolic zinc, prolonged increases or reductions in intra- or
extracellular zinc can compromise neuronal viability (Canzoniero
et al., 1999; Bozym et al., 2010).

How circulating zinc, previously absorbed in the gastrointesti-
nal tract, enters the brain or CSF is poorly understood, although
it appears to involve active transport mechanisms (Takeda, 2000).
Likewise, the homeostatic mechanisms maintaining the zinc gra-
dient across the plasma membrane in neurons are poorly defined,
and currently none of the candidate proteins have been directly
localized to synapses. The principal mechanism for zinc extrusion
in neurons appears to be a secondary active transporter depen-
dent on the Na+ and Ca2+ electrochemical gradients (Ohana
et al., 2004; Qin et al., 2008), but the identity of this exchanger
remains elusive. Given that neuronal activity elicits voltage-gated
ion fluxes across the plasma membrane, such a zinc extrusion
mechanism could potentially be subject to activity-dependent reg-
ulation. The zinc transporter ZnT-1 of the Slc30a family was the
first plasma membrane protein found to regulate zinc extrusion
(Palmiter and Findley, 1995). ZnT-1 is expressed in neurons and

glia in several regions of the brain, including some that lack vesic-
ular zinc (Sekler et al., 2002), and its genetic deletion is embryonic
lethal (Andrews et al., 2004). Knock-down of ZnT-1 in cultured
neurons decreases the rate of zinc efflux (Qin et al., 2009), but it
is unclear if ZnT-1 affects the resting level of cytosolic zinc in the
presence of an inwardly directed zinc gradient. ZnT-1-dependent
zinc efflux is not affected by extracellular cations or ATP depletion,
and it may involve oligomerization or association with other pro-
teins (Palmiter and Findley, 1995). In addition, ZnT-1 suppresses
the influx of other divalent cations via voltage-gated calcium chan-
nels (Ohana et al., 2006; Levy et al., 2009), suggesting additional
roles besides zinc transport.

On the other hand, the ZIP-1 and -3 members of the Slc39a
protein family have been implicated in the tonic import of extra-
cellular zinc into neurons. ZIP-1 and -3 are highly expressed in
CA1 hippocampus, and pyramidal neurons from double-knock-
out mice show ∼ 50% reduction in the amount of extracellular zinc
uptake (Qian et al., 2011). Assuming that zinc extrusion mecha-
nisms are intact in this mutant mouse, the data indicate a major
contribution of ZIP-1 and -3 to neuronal zinc import. The mech-
anism of zinc transport by ZIP proteins is not fully understood,
although it was found to be energy-independent (Gaither and Eide,
2000). Evidence from the bacterial homolog ZIPB indicates that
ZIP proteins may act as non-saturable zinc channels allowing pas-
sive zinc entry down its concentration gradient (Lin et al., 2010).
ZIPB-dependent zinc entry increases with the proton concentra-
tion, in keeping with the effect of intracellular pH on neuronal
zinc import (Colvin, 2002). Intriguingly, earlier studies found that
uptake of Zn65 into the neuropil was energy-dependent (Howell
et al., 1984), implying that alternative or additional mechanisms
may import zinc at synapses.

There is also an interest in the role that the small Zn/Cu-binding
protein metallothionein-3 (i.e., MT-3) may play on cytosolic zinc
homeostasis. MT-3 has many remarkable biochemical properties
with regards to the binding and release of zinc (Maret, 2011), and
MT-3 over-expression confers resistance to zinc toxicity in vitro
(Palmiter, 1995). An elegant study showed that MT-3 may confer
neuroprotection from excitotoxicity by releasing zinc following
phosphorylation by PKC, leading to downstream gene expression
(Aras et al., 2009). However, MT-3 KO mice thrive under nor-
mal conditions and seem to respond normally to systemic zinc
overload (Erickson et al., 1997). Hence, the physiological role of
neuronal MT-3 in zinc homeostasis is unclear. A safety mechanism
that may help maintain the zinc gradient across the plasma mem-
brane is the sequestration of excess zinc into lysosomes. Thus, in
CA3 neurons, kainate-induced seizures trigger the accumulation
of zinc into lysosomes (Hwang et al., 2008) as well as the up-
regulation of the zinc importer ZIP-4 (Emmetsberger et al., 2010).
Suggesting a possible link between the two, endocytosis inhibitors
prevent the lysosomal degradation of surface ZIP-4 that occurs
during zinc overload (Mao et al., 2007).

POST-SYNAPTIC DENSITY
Biochemically isolated post-synaptic densities (PSD) contain a
high amount of zinc (∼4 nmol/mg protein) that supports the
structural organization of the PSD (Jan et al., 2002; Baron et al.,
2006). Recent data indicate that at least a fraction of this zinc might
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be reactive or exchangeable, as it can be detected in association with
Shank2/3 scaffold protein aggregates in dendritic spines with flu-
orescent zinc indicators (Grabrucker et al., 2011). In line with this,
the same study also showed that zinc chelators can quickly alter
the ultrastructural appearance of the PSD in cultured neurons.

SYNAPTIC VESICLES
Direct measurements of the concentration of reactive zinc in
synaptic vesicles are lacking, but simple calculations indicate
that it could easily reach high micromolar levels. A single zinc
atom would result in a concentration of ∼40 μM within a
0.64 × 10−5 μm3 synaptic vesicle, which is the average vesicle
volume in CA1 boutons (Schikorski and Stevens, 1997). The Neo-
Timm’s staining method has been claimed to be able to detect
as little as 3–4 zinc atoms (Danscher and Stoltenberg, 2006),
which would translate into a minimal concentration of ≥150 μM
vesicular zinc. Along these lines, a concentration of ∼1 mM vesic-
ular zinc was inferred by extrapolating from the amount of total
zinc found in the hilar region of the hippocampus (Frederick-
son et al., 1983). On balance, it appears that reactive zinc is
several-fold more concentrated within synaptic vesicles than in
the cytosol or the extracellular space. The different concentrations
likely account for the preferential labeling of synaptic vesicles with
zinc probes. Intra-vesicular pH may also affect zinc speciation,
releasing it from protein complexes therein and making it more
reactive to zinc probes (Vinkenborg et al., 2009). By compari-
son, the concentration of glutamate in synaptic vesicles ranges
from 60 to 210 mM (Clements, 1996). Interestingly, studies in
PC12 cells indicate a functional coupling between the vesicu-
lar uptake of zinc and glutamate; recombinant murine VGLUT-1
and ZnT-3 were targeted to the same population of synaptic-like
microvesicles and reciprocally facilitated their transport activi-
ties, perhaps through effects on the transvesicular electrochemical
gradient (Salazar et al., 2005). In keeping with current estimates
of the cytosolic zinc concentration, ZnT-3 enhanced VGLUT-1-
mediated glutamate uptake at low nanomolar zinc levels. Whether
ZnT-3 and VGLUT-1 cooperate in a similar manner in synaptic
vesicles of the brain has not been examined. However, destroy-
ing the vesicular proton gradient with the H+-ATPase inhibitor
concanamycin A, which prevents glutamate uptake, also reduces
pre-synaptic fluorescence of the zinc indicator Zinpyr-1 at puta-
tive single MFs (Ketterman and Li, 2008). Intriguingly, functional
differences between human and mouse ZnT-3 have been reported.
Thus, human, but not mouse, ZnT-3 tends to form dimmers that
promote vesicular targeting and stimulate zinc uptake (Salazar
et al., 2009).

The concentration of zinc in synaptic vesicles has led to the
natural hypothesis that zinc may be co-released with glutamate
into the synaptic cleft following vesicular exocytosis. Evidence
that neuronal depolarization increases the extracellular level of
elemental zinc, either in vivo or in vitro, and in parallel with glu-
tamate, is overwhelming (Howell et al., 1984; Charton et al., 1985;
Aniksztejn et al., 1987; Minami et al., 2002). However, no study
has yet confirmed the synaptic vesicle origin of this zinc by per-
forming similar experiments in ZnT-3 knock-out mice (which
lack any reactive zinc within synaptic vesicles; Cole et al., 1999;
Linkous et al., 2008). Other studies have addressed the issue of

vesicular zinc release by stimulating brain slices in the presence
of fluorescent zinc indicators. Thus, action potential-evoked zinc
exocytosis has been reported in CA3 and CA1 synapses by detect-
ing changes in FluoZin-3 fluorescence, an extracellular zinc dye
(Qian and Noebels, 2005, 2006; Carter et al., 2011). Importantly,
zinc release was found to be highly sensitive to changes in release
probability, dependent on vesicular exocytosis, and it was ablated
in ZnT-3 KO mice. These are remarkable observations consider-
ing the potential limitations of the approach (e.g., ex vivo zinc
depletion, inadequate metal contamination or temperature, small
fractional volume of the synaptic cleft, optical sensitivity, pertur-
bation of zinc kinetics by the indicator, etc.). Indeed, mixed results
have been obtained when using maximal stimulation to compen-
sate for low optical resolution (Li et al., 2001b; Kay, 2003; Datki
et al., 2007). The extracellular zinc increase associated with exocy-
tosis should be paralleled by a corresponding decrease in vesicular
zinc, and there are some zinc fluorescence measurements from
MFs suggesting that this is also the case (Ketterman and Li, 2008).
The results suggest a model where released zinc may diffuse into
the synaptic cleft, transiently increasing its extracellular concen-
tration in an activity-dependent manner. In keeping with this,
vesicular zinc release has been shown to modulate post-synaptic
receptors at the MF synapse (Vogt et al., 2000; Pan et al., 2011, see
section below). Even more strikingly, intracellular zinc increases
in post-synaptic neurons were recently reported following intense
axonal depolarization (Suh, 2009; Carter et al., 2011). Again, ZnT-
3 deletion abolished the post-synaptic zinc transient, suggesting
that vesicular zinc can be trans-synaptically mobilized under some
conditions. One intriguing observation from these experiments is
the slow decay of the extracellular zinc transient that is triggered
by exocytosis. Whether this is a property of individual synapses
is still unknown, as zinc transients were not induced with min-
imal stimulation protocols to activate single MF boutons. The
factors governing the synaptic diffusion and clearance of released
zinc are not understood. It has been proposed that vesicular zinc
may remain bound to synaptic proteins after exocytosis, although
the putative synaptic transporters or proteins that may act as fixed
buffers are undefined (Vogt et al., 2000; Kay, 2003). It has also been
proposed that the high tortuosity of the MF synapse may delay the
clearance of zinc (Qian and Noebels, 2005). Direct comparisons
of the fluorescence kinetics shown by extracellular indicators for
zinc and glutamate (Hires et al., 2008) after release have not been
reported.

MITOCHONDRIA
Another potential source of synaptic zinc is that originating from
mitochondria. Virtually all MF terminals and about half of small
pre-synaptic boutons contain at least one mitochondrion (Ven-
tura and Harris, 1999; Chang et al., 2006), where it can modulate
synaptic plasticity by handling Ca2+ and supplying ATP (Cai et al.,
2011). Recent evidence in neurons indicates that resting mitochon-
dria may harbor two to threefold higher concentrations of reactive
zinc relative to the cytosol (Dittmer et al., 2009). Zinc appears to
access the mitochondrial matrix mainly via the Ca2+ uniporter,
a process dependent on the mitochondrial membrane potential
(Malaiyandi et al., 2005; Caporale et al., 2009). The mechanism
whereby mitochondrial zinc is extruded is unknown, as no zinc
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transporters have been localized to mitochondria. In vitro data
suggest that large intracellular Ca2+ increases, often associated
with neuronal injury, may possibly couple to mitochondrial zinc
release into the cytosol (Sensi et al., 2003; Dineley et al., 2008;
Dittmer et al., 2009).

SYNAPTIC ZINC AND MEMORY
The subsynaptic distribution of reactive zinc suggests three possi-
ble modes whereby synaptic zinc could affect cognitive processes:
(i) tonic binding of zinc to extracellular protein domains with
nanomolar affinity; (ii) phasic modulation of surface proteins fol-
lowing exocytosis of vesicular zinc; (iii) tonic or phasic modulation
of cytosolic proteins in pre- or post-synaptic compartments.

One way to test the cognitive role of synaptic zinc has been to
lower its physiological concentration with the use of zinc chelators.
As such, local zinc chelation allows assessing the net effect of zinc at
the expense of not differentiating between potentially overlapping
facilitatory and inhibitory effects (Timofeeva and Nadler, 2006),
or between the synaptic and extra-synaptic actions of zinc. A num-
ber of studies have found zinc chelators to modify hippocampus-
or amygdala-dependent behaviors. Thus, intra-hippocampal infu-
sion of the membrane-permeable chelator diethyldithiocarbamate
(DEDTC) was shown to impair a delayed matching-to-place ver-
sion of the water maze task (Frederickson et al., 1990). In this task,
rats must remember the last location of a hidden platform sub-
merged in a pool of opaque water. The platform location remains
constant between two consecutive runs in a trial, whereas it is
changed to a different location between trials separated by 10 min.
The shorter latency to find the platform on the second run of a
given trial (i.e., savings) indicates a memory for the last location
(Steele and Morris, 1999). Because the animal has to update its
memory in every trial, a high cognitive load is necessary to perform
the task. DEDTC injection (i.e., spreading across all hippocampal
subregions) shortly before training selectively suppresses the sav-
ings in time normally observed on the second run. Moreover, the
memory impairment is transitory and parallels the time course
of vesicular zinc chelation, arguing against the possibility of hip-
pocampal damage from the injection. Another study assessed the
effect of intra-hippocampal DEDTC injections on the standard
version of the Morris water maze, which measures incremental,
spatial reference memory (Lassalle et al., 2000). DEDTC during
training prevents mice from learning the location of a fixed hid-
den platform, as they show no spatial bias during the probe test.
In contrast, post-training DEDTC injections do not affect mem-
ory consolidation or recall. Interestingly, these two studies found
that injection of the cell-impermeable zinc chelator CaEDTA fails
to replicate the effects of DEDTC. Although initially interpreted
as a lack of effect of extracellular zinc on spatial memory, subse-
quent reports suggested that the high concentrations of CaEDTA
that were used (i.e., 200 mM) can also deplete intra-vesicular zinc,
perhaps by creating an outward gradient (Frederickson et al.,
2002). Hence, the basis for the memory impairment induced by
DEDTC, but not CaEDTA, remains unclear. On the other hand,
both DEDTC and CaEDTA were found to impair contextual fear
conditioning (Daumas et al., 2004). This rapid, one-trial form
of associative learning allows better temporal separation between
the different phases of memory. Acute zinc chelation impairs the

consolidation of contextual memory, but not its recall once the
memory has been established. Of note, hippocampal zinc chela-
tion in the same mice does not impair acoustic conditioning,which
does not depend on the hippocampus. Together, these studies sug-
gest that reactive zinc,perhaps of synaptic origin, is required for the
acquisition or consolidation of hippocampus-dependent memory,
depending on the task involved.

A recent study analyzed the role of reactive zinc in the rat amyg-
dala (Takeda et al., 2010). Continuous perfusion of the amygdala
with 1 mM CaEDTA during fear conditioning or during recall was
found to increase, rather than decrease, the expression of memory.
It should be noted that the intense conditioning protocol used here
(i.e., >100 foot shocks over 1 h) is more akin to inescapable shock
stress models of depression than to associative learning paradigms.
Interestingly, this low concentration of CaEDTA elevates the basal
extracellular levels of zinc and glutamate by two to fourfold, as well
as the probability of vesicular release, suggesting that its potenti-
ating effect may be due to disinhibition of amygdala synapses.
The notion that zinc could indirectly modulate memory through
effects on excitability is consistent with the predominantly anti-
convulsant effects of zinc (Mitchell and Barnes, 1993; Dominguez
et al., 2003).

Dietary zinc deficiency has also been used to assess the role
of brain zinc in memory. A number of reports have demon-
strated behavioral alterations in animals fed a zinc-restricted
diet for several weeks, including increased anxiety or depres-
sion, and impaired spatial memory and extinction learning (Keller
et al., 2000; Takeda et al., 2007; Tassabehji et al., 2008; Whit-
tle et al., 2010). One caveat with dietary zinc deficiency models
is that they can lead to multisystemic dysfunction, particularly
in peripheral tissues with rapid turnover, and compromise many
zinc-dependent reactions (Vallee and Falchuk, 1993). In the hip-
pocampus, zinc deficiency has been shown to reduce the total
number of synaptic vesicles in boutons (Lu et al., 2000). Hence,
the extent to which behavioral changes associated with zinc defi-
ciency are directly attributable to a reduction in synaptic zinc or
even to reactive zinc in neurons is controversial.

To circumvent the lack of subcellular specificity attained by zinc
chelation or dietary zinc deficiency, recent studies have analyzed
the behavioral phenotype of ZnT-3 mutant (KO) mice. These mice
are anatomically normal, but show no zinc staining or enrich-
ment of total zinc in synaptic terminals (Cole et al., 1999; Linkous
et al., 2008). In addition, total zinc levels in brain regions nor-
mally devoid of vesicular zinc, or seizure-induced increases in
somatic (i.e., extra-synaptic) zinc are intact in ZnT-3 KO mice (Lee
et al., 2000), indicating that zinc depletion is restricted to synaptic
vesicles. These data are consistent with the selective expression
of ZnT-3 in synaptic vesicles (Wenzel et al., 1997), and imply
that extra-synaptic zinc pools can be regulated independently of
vesicular zinc. Behaviorally, ZnT-3 KO mice are characterized by
normal sensorimotor function and open field activity (Cole et al.,
2001). Anxiety and depressive-like behaviors are also normal in the
ZnT-3 KO mice. Interestingly, most of the cognitive deficits iden-
tified in ZnT-3 KO mice have been observed in tasks that require
disambiguation, detailed attention or reverse learning. Thus, ZnT3
KO mice show normal fear conditioning after repeated delivery of
tone-shock pairs (Cole et al., 2001), but display reduced memory
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when the tones are made discontinuous or are explicitly unpaired
with the shocks (Martel et al., 2010, 2011). One possible explana-
tion for this result is that the latter paradigms are thought to recruit
cerebrocortical areas (i.e., zincergic), whereas simple cued condi-
tioning is largely supported by thalamo-amygdala synapses devoid
of vesicular zinc (Kodirov et al., 2006). Spatial reference memory
following intense training in the Morris water maze task is also
preserved in ZnT-3 KO mice (Cole et al., 2001; Martel et al., 2011).
However, mutants show a transient learning delay in the reversal
phase (i.e., when the platform was relocated to the opposite quad-
rant). Another study found that ZnT-3 KO mice have a profound
deficit in a T-maze non-matching-to-place working memory task,
in which mice are rewarded for alternating in quick succession in
a two-choice maze (Sindreu et al., 2011). Spatial working memory
has been shown to be highly sensitive to hippocampal dysfunc-
tion (Deacon and Rawlins, 2006). Because the hippocampus also
is indispensable for the formation of detailed contextual memories
(Wiltgen et al., 2010), the same group assessed the performance
of ZnT-3 KO mice in a contextual discrimination task. Strikingly,
ZnT-3 KO mice are unable to differentiate between the condi-
tioning context and a similar context where they have never been
shocked (Sindreu et al., 2011). The fact that ZnT-3 KO mice display
normal levels of contextual memory in non-discriminative con-
ditioning rules out an impairment of performance that prevented
the expression of otherwise intact memory. Moreover, the contex-
tual discrimination deficit in ZnT-3 KO mice can be reproduced by
injecting adult wild type mice with the zinc chelator TPEN into the
MF-rich CA3 subregion. This latter result points to an acute effect
of vesicular zinc in CA3 that was not compensated for in ZnT-
3 KO mice. A marginal deficit in social discrimination, which is
another form of hippocampus-dependent memory, has also been
reported in ZnT-3 KO mice (Martel et al., 2011). Together, the
evidence suggests that vesicular zinc is required for some forms
of hippocampus- and amygdala-dependent memories, but it does
not affect normal general performance.

The neuronal circuits where ZnT-3 is acting to support these
different forms of memory are poorly defined. The contribution of
specific synaptic pathways to learning and memory is just starting
to emerge, and such understanding will be instrumental to fully
account for the complex mnemonic phenotype of ZnT-3 KO mice.
A useful example comes from the effect of genetically inactivating
CA3 neurons (Nakashiba et al., 2008). Although Schaffer-collateral
inputs to CA1 are greatly silenced, mice are still capable of acquir-
ing spatial reference memory in the Morris water maze task. This
finding not only implies that direct cortical projections to distal
CA1 can support incremental learning, but it may also explain
why ZnT-3 KO mice perform this task normally, as the entorhinal
projection to CA1 is entirely non-zincergic (Figure 1). In con-
trast, the deficits in contextual discrimination and complex tone
conditioning in ZnT-3 KO mice may reflect the recruitment of
zincergic mossy fibers and cortico-amygdaloid projections during
performance of these tasks, respectively.

Another lingering question is why zinc chelators appear to cause
stronger behavioral deficits than the genetic removal of vesicu-
lar zinc. Given the absence of reactive zinc in vesicles of ZnT-3
KO mice, molecular redundancy in vesicular zinc transport seems
unlikely. As discussed earlier, reactive zinc also may be found in

other subsynaptic compartments. One possibility, then, is that
zinc chelators may remove additional pools of zinc important
for behavior that are spared in ZnT-3 KO mice. In keeping with
this view, age-related decreases in non-vesicular zinc are observed
in mouse hippocampus and correlate with late-onset deficits in
spatial reference memory (Adlard et al., 2010). If non-vesicular
zinc has any behavioral relevance, one would predict that zinc
chelators aggravate the memory deficits of ZnT-3 KO mice. We
know of no such experiments from the literature. One pool of
non-vesicular zinc that potentially may participate in memory is
the cytosolic zinc bound to MT-3. However, neither deletion nor
over-expression of MT-3 alter passive avoidance, spatial reference
memory or reversal learning (Erickson et al., 1997). An alterna-
tive view, not necessarily incompatible with the above, is that mice
compensate, at least in part, for the absence of vesicular zinc during
development. Although no compensatory mechanism has been
reported in ZnT-3 KO mice so far, rescue experiments in adult
subjects or conditional deletion of ZnT-3 will be necessary before
compensation can be formally ruled out. Finally, the development
of cell-impermeable chelators with faster rates of zinc chelation
and improved ion selectivity would help draw more direct com-
parisons between genetic and pharmacological manipulations of
zinc on behavior.

SYNAPTIC ZINC AND NEURONAL SIGNALING
SYNAPTIC TRANSMISSION AND PLASTICITY
The synaptic accumulation of reactive zinc and its involvement
in several forms of memory suggest a role(s) for zinc in synap-
tic physiology. Zinc chelators or ZnT-3 deletion do not alter
fast excitatory, AMPAR-mediated synaptic transmission evoked by
low-frequency stimulation in brain slices (Li et al., 2001a; Lopant-
sev et al., 2003; Kodirov et al., 2006; Mott et al., 2008; Pan et al.,
2011). However, a number of synaptic receptors are known to
contain binding sites with nanomolar affinity for extracellular
zinc, raising the possibility that zinc modulates their activity in
a tonic or phasic manner. In keeping with this, chelation of extra-
cellular zinc increases GABAAR-, NMDAR-, and kainate receptor-
mediated currents at MF synapses (Vogt et al., 2000; Molnar and
Nadler, 2001; Ruiz et al., 2004; Mott et al., 2008), potentiates
ASIC-mediated currents in cortical neurons (Chu et al., 2004),
and reduces glycinergic currents in hypoglossal neurons of the
brainstem (Hirzel et al., 2006). Zinc inhibition of NMDARs has
been greatly examined in heterologous expression systems and
found to operate via two mechanisms: one that is low-affinity
and voltage-dependent, and another one that is high-affinity and
voltage independent (Paoletti et al., 1997; Traynelis et al., 1998;
Choi and Lipton, 1999). Importantly, knock-in mice with point
mutations previously implicated in zinc binding to the α1 glycine
receptor 1 subunit (Hirzel et al., 2006) or the GluN2A NMDAR
subunit (Nozaki et al., 2011) display sensorimotor deficits and
impaired pain processing, respectively. Likewise, high-affinity zinc
inhibition of Cav3.2 channels may limit hyperalgesia in periph-
eral neurons (Nelson et al., 2007). These findings highlight the
importance of zinc modulation of ion channels in clinically rele-
vant responses. However, few of the above studies have examined
the origin of the zinc that binds to these ion channels. Using glu-
tamate iontophoresis in CA3 neurons, it has been shown that the
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increase in NMDAR currents caused by zinc chelators is abol-
ished in ZnT-3 KO mice and is occluded by an increase of similar
magnitude triggered by briefly blocking pre-synaptic exocytosis
(Vogt et al., 2000). Analogously, zinc chelation no longer enhances
kainate receptors in mocha mice with reduced vesicular zinc (Mott
et al., 2008). These data indicate that, at least at MFs, tonic vesic-
ular zinc release modulates post-synaptic receptors. At variance
with this conclusion, post-synaptic NMDAR currents were found
to be of similar amplitude in ZnT-3 KO and control CA3 neu-
rons, although in this case the differential effect of zinc chelation
between genotypes or the presence of contaminant zinc was not
considered (Lopantsev et al., 2003). Perhaps more importantly,
little is known as to the impact of extracellular zinc binding to
synaptic ion channels on mnemonic processes or neuronal plas-
ticity. The recent development of GluN2A knock-in mice (Nozaki
et al., 2011), which express NMDARs insensitive to nanomolar
zinc (H128S substitution) but are presumably still inhibited by
higher zinc concentrations, will help establish the role of high-
affinity zinc binding on NMDAR-dependent forms of learning
and synaptic plasticity.

Ideally, one would like to know the effect of synaptic zinc on
synaptic responses elicited by the behavior of interest or to the sort
of spike patterns associated with that behavior. This information
is not yet available at the electrophysiological level. Converging
data from three types of zincergic synapses (the MF-to-CA3,
the CA3-to-CA1, and the auditory cortex-to-lateral amygdala
synapse) indicate that endogenous zinc is required for the induc-
tion of long-term potentiation (i.e., LTP) of AMPA currents, a
candidate cellular correlate of learning. Whereas post-synaptic
mechanisms have been strongly implicated in the expression of
LTP at CA3-to-CA1 synapses, MF-to-CA3 plasticity appears to
largely rely on pre-synaptic increases in release probability (Nicoll
and Schmitz, 2005). Thus, Lu et al. (2000) showed that the cell-
permeable zinc chelators dithizone and DEDTC reversibly block
MF LTP. Along these lines, CaEDTA (7.5–10 mM) was also shown
to block the induction of MF LTP by two other laboratories (Li
et al., 2001a; Huang et al., 2008). Notably, lower CaEDTA con-
centrations (1–2 mM) or partial (∼50%) removal of vesicular
zinc by mutation of the AP-3 δ subunit (Seong et al., 2005) fail
to inhibit MF LTP (Lu et al., 2000; Vogt et al., 2000; Li et al.,
2001a). In contrast, low concentrations of CaEDTA (1–2 mM) or
TPEN (0.1 μM) suffice to inhibit LTP at CA1 and lateral amyg-
dala synapses (Izumi et al., 2006; Kodirov et al., 2006; Takeda
et al., 2009). The surprising observation here is that chelator-
induced LTP block appears to be complete in CA1 and amygdala,
even though only a fraction of their synapses react for vesicu-
lar zinc. Paralleling the level of zinc chelation required to affect
LTP, application of a high zinc concentration (50–100 μM) is
needed to potentiate MF synapses (Li et al., 2001a; Huang et al.,
2008), whereas a lower zinc concentration (1–10 μM) enhances
LTP in CA1 (Izumi et al., 2006; Takeda et al., 2009; Lorca et al.,
2011). Importantly, none of the above studies observed an effect
of zinc chelation on basal transmission, paired-pulse modulation,
or LTP maintenance, suggesting a role for synaptic zinc in the
induction of long-term plasticity. Despite this emerging consen-
sus, not all data are concordant, and others have failed to block
MF LTP when using TPEN (20–100 μM; Matias et al., 2006).

Collectively, it could be argued that the differential sensitivity
to zinc manipulation among synapses grossly correlates with the
amount of vesicular zinc that they accumulate. So what, then,
is the effect of completely (and selectively) removing vesicular
zinc on synaptic plasticity? Surprisingly, only one recent study
examined long-term synaptic plasticity in ZnT-3 KO mice, and
obtained both confirmatory and unexpected results (Pan et al.,
2011). On one hand, the increase in release probability nor-
mally observed following tetanus-induced MF LTP was absent
in ZnT3 KO mice, confirming a role for vesicular zinc in pre-
synaptic plasticity. However, MF LTP was still observed in ZnT3
KO mice, and this was found to be due to disinhibiton of a sepa-
rate, post-synaptic calcium-dependent mechanism of MF LTP that
is normally blocked by zinc in wild type mice (Pan et al., 2011).
Thus, in the presence of vesicular zinc, MF LTP is expressed via
a pre-synaptic mechanism, but when vesicular zinc is removed, a
post-synaptic mechanism is recruited instead, indicating a dual
role for zinc. Similar conclusions were reached when using a
new, fast-acting extracellular zinc chelator, ZX1. Importantly, both
pre- and post-synaptic components of MF LTP were observed in
the presence of NMDAR antagonists, differentiating them from
a recently described form of MF LTP affecting NMDAR cur-
rents (Kwon and Castillo, 2008; Rebola et al., 2008). LTP at other
synapses in ZnT3 KO mice remains to be examined. Regarding
synaptic plasticity in ZnT3 KO mice, two reported observations
require clarification: first, and in contrast to ZX1-perfused wild
type mice, post-synaptic calcium chelation does not fully block
MF LTP in ZnT3 KO mice; secondly, a basal increase in the
frequency of spontaneous MF glutamate release in ZnT3 KO
mice has been shown (Lopantsev et al., 2003; Pan et al., 2011).
Inducible downregulation of ZnT3 in adult brain will help deter-
mine whether these differences reflect homeostatic compensations
to gene deletion.

Conclusions on the effects of CaEDTA in LTP are somewhat
confounded by its properties and should be confirmed in the
future with more selective extracellular zinc chelators, such as
Tricine (Paoletti et al., 2009) or ZX1. Given the high-affinity
constant of CaEDTA for zinc (K D = 10−16), its concentration-
dependent effects have been attributed to the slow kinetics of
zinc chelation, which are largely dictated by the slow off-rate
for calcium. Thus, low CaEDTA would remove extracellular zinc
at equilibrium but it would fail to intercept much of synapti-
cally released zinc. On the other hand, concentrations of CaEDTA
higher than 5 mM (i.e., those that block MF LTP) have been shown
to reduce the vesicular zinc content under steady-state condi-
tions (Lavoie et al., 2007; Ketterman and Li, 2008). As CaEDTA
is negatively charged at physiological pH and hence unlikely to
cross the plasma membrane, the intracellular zinc reduction may
reflect a homeostatic response to extracellular chelation of zinc
or other cations. It is therefore unclear if high CaEDTA blocks
MF LTP by chelating zinc before or following its actual release.
The extracellular specificity of alternative zinc chelators may be
assessed by quantifying the extent of vesicular zinc depletion when
blocking pre-synaptic exocytosis in the presence of the chela-
tor. Future studies should also address the importance of intra-
cellular zinc chelation in pre- and post-synaptic compartments
on LTP.
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SYNAPTIC SIGNAL TRANSDUCTION
Both learning and repetitive synaptic activation stimulate intra-
cellular signal transduction cascades necessary for memory for-
mation and synaptic plasticity. The involvement of synaptic zinc
in some forms of memory and LTP hence suggests that zinc
may participate in the mechanisms of neuronal signal transduc-
tion. Indeed, three independent groups have recently implicated
endogenous zinc in the activation of intracellular signal cascades at
MFs (Figure 3; Huang et al., 2008; Besser et al., 2009; Chorin et al.,
2011; Sindreu et al., 2011). MF tetanization or direct zinc appli-
cation (100 μM) in the presence of NMDAR antagonists induces
a form of LTP that requires TrkB activity, and is abrogated by
CaEDTA (Huang et al., 2008). Whether this type of LTP requires a
cAMP-dependent increase in the probability of glutamate release
as in classic MF LTPAMPA has not been shown yet. Providing a pos-
sible mechanism, zinc application to cultured neurons activates the
cytosolic tyrosine kinase Src, increasing phospho-activation of the
TrkB receptor in the absence of its ligand BDNF. It had been previ-
ously suggested that zinc activation of TrkB operates through the
conversion of pro-BDNF to mature BDNF (Hwang et al., 2005).
However, the fact that zinc still potentiates MFs in BDNF KO mice
suggests that such mechanism might not be essential. Downstream
signals, including the Erk1/2 MAP kinase and PLCγ1 pathways, are
also activated by zinc in cultures. Although it remains to be shown
that synaptic zinc activates Src–TrkB signaling during induction of
this form of MF LTP, the data provide circumstantial evidence that
this may be the case. TrkB activation is most prominent in axon
terminals (Spencer-Segal et al., 2011), whereas the Src kinase accu-
mulates in NMDAR complexes (Salter and Kalia, 2004). Hence,
the pre- or post-synaptic MF localization of this pathway and the
route(s) of zinc entry remain to be clarified. Since primary neuron
cultures typically fail to stain for vesicular zinc (Li et al., 2003; Love
et al., 2005; Grabrucker et al., 2011), these issues may need to be
addressed in more intact preparations.

Exogenous zinc application (100 μM) has also been reported
to increase phosphorylation of Erk1/2 in CA3 somata of young
(P8-P16) mice, an effect that is prevented by the Gαq inhibitor
YM-254890 (Besser et al., 2009). Interestingly, brief MF tetaniza-
tion (10 pulses at 66 Hz) triggers a Gq–dependent post-synaptic
calcium increase that is reduced by half in ZnT-3 KO mice, sug-
gesting that synaptic zinc can contribute to G protein-coupled
receptor (GPCR) signaling even at a developmental age when
synaptic vesicles are only partially stocked with zinc (Frederick-
son et al., 2006a). Furthermore, zinc-induced Gq signaling leads
to rapid Erk-dependent up-regulation of KCC2, a K+/Cl− co-
transporter, increasing the transmembrane Cl− gradient in CA3
neurons (Chorin et al., 2011). Because KCC2 up-regulation is
absent in GPR39 KO mice, this orphan receptor might medi-
ate the metabotropic actions of synaptic zinc. Consistent with
this, GPR39 contains extracellular domains that coordinate zinc
(Popovics and Stewart, 2011). Interestingly, Erk1/2 activation via
TrkB also up-regulates KCC2 as long as PLCγ1 is not co-activated
(Rivera et al., 2004). Future studies may clarify the significance
of these converging signals to adult synaptic plasticity or memory
formation. Intriguingly, similar tetanization regimes and molecu-
lar determinants have been associated with the induction of MF
LTPNMDA (Kwon and Castillo, 2008; Rebola et al., 2008). In this

regard,another study showed that MF stimulation at 50 Hz triggers
a form of short-term plasticity (∼10 min-long) that activates, and
is modulated by, the pre-synaptic Erk1/2-Synapsin pathway (Vara
et al., 2009). Synapsin is a protein that tethers synaptic vesicles to
the actin cytoskeleton to modulate transmitter release (Fdez and
Hilfiker, 2006), and shown to interact with the plasticity-related
protein Rab3A (Giovedi et al., 2004). Suggesting some behavioral
relevance for the above observations, dentate gyrus granule cells
can fire in bursts of up to 50 Hz when the animal visits a loca-
tion corresponding to the place field center of the cell (Jung and
Mcnaughton, 1993). More recently, it was found that contextual
conditioning induces the pre-synaptic activation of the Erk1/2-
Synapsin I pathway at MFs (Sindreu et al., 2011). Furthermore,
training-induced activation of Erk1/2 is selectively ablated in MFs
of ZnT-3 KO mice; partial inhibition of Erk1/2 restricted to gran-
ule cells causes a similar deficit in contextual discrimination as that
observed in ZnT-3 KO mice. These data represent the first direct
evidence that vesicular zinc regulates neuronal signal transduc-
tion associated with memory formation. Mechanistically, ZnT-3
KO mice show disinhibition of MAPK tyrosine phosphatases,
suggesting that it may underlie impaired Erk activation. Consis-
tent with this, the authors showed that activity-dependent zinc
release couples to phosphatase inhibition and Erk1/2 stimulation
at MF terminals. The inhibition of MAPK phosphatases by zinc
is in keeping with previous observations in neuron cultures (Ho
et al., 2008). Because direct Erk1/2 inhibition has been shown to
completely block glutamate release (Jovanovic et al., 2000), zinc
inhibition of MAPK phosphatases may regulate other pre-synaptic
proteins in addition to Synapsin I. At present, it is unclear how zinc
may be recycled back into the pre-synaptic terminal to inhibit
phosphatases. The identity of the zinc-sensitive MAPK phos-
phatase also remains to be shown. Suggesting an important role
for tyrosine phosphatases in Erk1/2 regulation, catalyzed dephos-
phorylation of the tyrosine residue (Y185) appears to be the initial
and rate-limiting step in Erk1/2 inactivation (Zhou et al., 2002).
Previous studies indicated that zinc can inhibit tyrosine phos-
phatases with high-affinity by binding to their conserved catalytic
domain (Brautigan et al., 1981; Haase and Maret, 2003; Redman
et al., 2009). How, then, synaptic zinc regulates select signaling
pathways via phosphatase inhibition is an intriguing question.

The aggregate evidence indicates that synaptic zinc is a positive
regulator of Erk1/2 at MF synapses, activating it through one or
more mechanisms (Figure 3). Whereas zinc-dependent Gq signal-
ing may not require zinc influx, released zinc would need to gain
access into the cytosol regulate Src or MAPK phosphatases. At
MFs, voltage-gated calcium channels represent the main route for
pre- and post-synaptic entry of divalent cations (Reid et al., 2001),
and calcium channel inhibition suppresses pre-synaptic Erk1/2
at MFs (Sindreu et al., 2011). In addition, currently undefined
zinc importers or co-transporters could promote (re-)uptake of
extracellular zinc. Whether, similarly to Erk1/2, activation of TrkB
or Gq signaling specifically in granule cells or CA3 neurons sup-
ports hippocampus-dependent memory is still not known. Also,
the possibility of cross-talk between these zinc-regulated pathways
has not been examined. For instance, although basal TrkB activa-
tion is normal in ZnT3 KO mice (Sindreu et al., 2011), it is unclear
if TrkB further stimulates Erk1/2 during learning. Conclusively
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FIGURE 3 | Schematic illustration of zinc-activated signal

transduction pathways at the MF-to-CA3 pyramid synapse.

Synaptic zinc may activate three signaling pathways: (1) Trans-activation
of TrkB receptors at either pre- or post-synaptic sites, perhaps through Src
kinase and leading to downstream activation of Erk1/2, Akt or PLCγ;
(2) Post-synaptic activation of a GPR39, leading to IP3-dependent
intracellular calcium release and KCC2 up-regulation, possibly via Erk1/2

activation; (3) Pre-synaptic Erk1/2 activation, perhaps via inhibition of a MAPK
tyrosine phosphatase, leading to synapsin I phosphorylation. Synaptically
released zinc may cross the plasma membrane via calcium-permeable
channels (VGCC) or dedicated zinc transporter mechanisms (ZIP). Extracellular
zinc may also inhibit surface NMDAR and kainate receptors (KAR). Dashed
arrows indicate the presence of intermediate steps between connected
elements.

establishing the pre- or post-synaptic localization of these various
pathways will help draw connections among them. Mechanisti-
cally, zinc-activated intracellular cascades will need to be put in
context with the previous molecules implicated in MF plasticity,
such as the adenylyl cyclases and their downstream targets (Nicoll
and Schmitz, 2005). A large body of literature indicates that the
Erk1/2 pathway (i.e., Ras–b–Raf–MEK–Erk) acts as a node inte-
grating several upstream signals to control memory and neuronal
plasticity, mainly through actions on dendritic proteins and gene
transcription (Impey et al., 1999; Thomas and Huganir, 2004; Ye
and Carew, 2010). However, there is also evidence that Erk1/2
affects cognition via pre-synaptic mechanisms (Kushner et al.,
2005; Cui et al., 2008). Circumstantially, zinc can have opposite
effects on MAPK in other cellular models. For instance, zinc can
decrease Erk signaling in oocytes by inhibiting Raf, an effect that
may be counteracted by ZnT-1 (Jirakulaporn and Muslin, 2004). It
remains to be explored if reactive zinc can bidirectionally modulate
Erk signaling by engaging various mechanisms in neurons.

A pertinent question is to what extent the effects of synaptic
zinc on ion channels and signal transduction cascades are func-
tionally related, and whether they co-occur at individual synapses.
At MFs, the effects of zinc on Gq-, TrkB-, and Erk-dependent sig-
naling are all spared by NMDAR blockers, in line with the ability
of this synapse to express NMDAR-independent forms of plas-
ticity. Moreover, the effects of synaptic zinc on Erk1/2 activation

or TrkB-dependent plasticity are not reproduced at CA1 synapses
(Huang et al., 2008; Sindreu et al., 2011), possibly as a result of
molecular heterogeneity between synapses. In contrast, blockade
of CA1 LTP by zinc chelators has been attributed to the untimely
activation (due to disinhibition) of NMDARs upstream of cal-
cineurin, nitric oxide, and p38 (Izumi et al., 2006, 2008). Whether
NMDAR-dependent forms of plasticity activate other downstream
signals that regulate, or are regulated by, reactive zinc is unclear.
CaMKII, PKA, PKC, or Akt are normally activated in ZnT-3 KO
hippocampus (Sindreu et al., 2011). However, in vitro studies have
shown that zinc unbinding from PKC can trigger the activation of
this kinase (Knapp and Klann, 2000; Korichneva et al., 2002), and
that constitutively active PKC is, in turn, sufficient to increase the
expression of genes containing metal regulatory elements (Aras
et al., 2009). Thus, PKC activation during synaptic plasticity could
potentially trigger intracellular zinc signaling. The effect of acutely
chelating reactive zinc from brain tissue on these pathways remains
to be shown. On the other hand, block of LTP at cortico-amygdala
synapses by zinc chelators can be rescued by GABAAR antagonists
(Kodirov et al., 2006), implying that zinc can gate LTP via het-
erosynaptic inhibition of feed-forward interneurons. The authors
proposed that such a mechanism may provide spatial control of
amygdala LTP between cortical and thalamic afferents.

Future experiments examining how these, and other, mecha-
nisms of zinc action affect cognition are warranted. The deficits
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in synaptic plasticity and biochemical activation induced by
zinc blockade are in agreement with the memory impairments
observed in ZnT-3 KO mice or after zinc chelation. While the ZnT-
3 KO mouse model has now provided strong evidence for a role of
vesicular zinc in cognition, circumstantial evidence suggests that
other sources of reactive zinc may also be involved. Altogether, the
data we have discussed here lend further support to the hypothe-
sis that synaptic zinc may promote learning and memory through
actions on neuronal signal transduction. Traditionally viewed as
an inhibitor of glutamatergic transmission, synaptic zinc may turn
out to play complementary roles with glutamate in the service
of memory and neuronal plasticity: zinc may recruit additional

plasticity mechanisms during increased neuronal firing associ-
ated with learning, prevent tonic interference from other signaling
pathways, or select between converging synaptic contacts to pro-
mote memory formation. Many of the recent findings on synaptic
zinc had not been anticipated only 5 years ago. Should this trajec-
tory continue, the next few years will reveal interesting new facets
of zinc signaling in the brain.
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