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Memories are thought to be encoded as a distributed representation in the neocortex.The
medial prefrontal cortex (mPFC) has been shown to support the expression of memories
that initially depend on the hippocampus (HPC), yet the mechanisms by which the HPC and
mPFC access the distributed representations in the neocortex are unknown. By measuring
phase synchronization of local field potential (LFP) oscillations, we found that learning initi-
ated changes in neuronal communication of the HPC and mPFC with the lateral entorhinal
cortex (LEC), an area that is connected with many other neocortical regions. LFPs were
recorded simultaneously from the three brain regions while rats formed an association
between an auditory stimulus (CS) and eyelid stimulation (US) in a trace eyeblink condi-
tioning paradigm, as well as during retention 1 month following learning. Over the course
of learning, theta oscillations in the LEC and mPFC became strongly synchronized follow-
ing presentation of the CS on trials in which rats exhibited a conditioned response (CR),
and this strengthened synchronization was also observed during remote retention. In con-
trast, CS-evoked theta synchronization between the LEC and HPC decreased with learning.
Our results suggest that communication between the LEC and mPFC are strengthened
with learning whereas the communication between the LEC and HPC are concomitantly
weakened, suggesting that enhanced LEC–mPFC communication may be a neuronal cor-
relate for theoretically proposed neocortical reorganization accompanying encoding and
consolidation of a memory.
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INTRODUCTION
The hippocampus (HPC) is necessary to rapidly form associa-
tions between elements in an event; however, its importance for
the retrieval of an acquired association is time-limited (Scoville
and Milner, 1957; Squire, 1992). One paradigm that demonstrates
the time-limited involvement of the HPC in memory is trace eye-
blink conditioning, in which an animal learns to associate a neutral
conditioned stimulus with an unconditioned stimulus (US) sepa-
rated by a time, or“trace”interval. Accumulating evidence suggests
that memory acquisition in trace eyeblink conditioning requires
a functional HPC (Solomon et al., 1986; Moyer et al., 1990; Weiss
et al., 1999) as well as medial prefrontal cortex (mPFC; Kronforst-
Collins and Disterhoft, 1998; Weible et al., 2000; McLaughlin
et al., 2002; Takehara-Nishiuchi et al., 2005; Kalmbach et al.,
2009). Although the expression of the learned memory associa-
tion initially requires the HPC (Kim et al., 1995; Takehara et al.,
2002, 2003), memory expression later comes to depend on the
mPFC (Takehara et al., 2003; Simon et al., 2005; Oswald et al.,
2010). Furthermore, the role of the mPFC depends on NMDA-
receptor dependent synaptic plasticity during the consolidation

period (Takehara-Nishiuchi et al., 2006), and neuronal firing of
prefrontal neurons became selective for the acquired association
over the same time course (Takehara-Nishiuchi and McNaughton,
2008; Siegel et al., 2011). Modifications of the prefrontal local net-
work through synaptic changes are therefore essential for memory
expression to become independent of the HPC.

In addition to the time-limited role of the HPC and the subse-
quent role of the mPFC for the expression of associative memories,
it is widely accepted that a neocortical area surrounding the HPC,
the entorhinal cortex, is essential for the consolidation and expres-
sion of HPC-dependent memories (Eichenbaum, 2000; Fernandez
and Tendolkar, 2006), including the memory acquired in trace eye-
blink conditioning (Ryou et al., 2001). The entorhinal cortex is a
higher-order cortical association area and consists of two subdivi-
sions,which specifically mediate the connectivity with functionally
different sets of cortical and subcortical areas (Kerr et al., 2007).
Among them, lateral portions of the entorhinal cortex (LEC)
receive stronger inputs from multiple association cortices arriving
largely through the perirhinal cortex (Canto et al., 2008; Agster and
Burwell, 2009) and are reciprocally connected with the HPC and
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mPFC (Jones and Witter, 2007; Kerr et al., 2007). In addition, the
inactivation of the LEC, but not medial portions of the entorhi-
nal cortex, impairs the retrieval of recently and remotely acquired
memory in trace eyeblink conditioning (Morrissey et al., unpub-
lished observation). Together, these findings suggest that the LEC
may serve as a gateway of sensory information transfer into the
HPC and mPFC, as well as a gateway of pattern-completed mem-
ory information from the HPC and mPFC into cortical association
areas. We hypothesize that before a memory is consolidated, the
LEC relays sensory information to the HPC, but relays information
to the mPFC after consolidation has taken place. This hypothesis
predicts that consolidation will accompany an increase in the cor-
related activity between the LEC and mPFC whereas correlated
activity between the LEC and HPC will be high prior to memory
consolidation.

To test this hypothesis, the present study examined how activity
correlations between the LEC, HPC, and mPFC during memory
expression change as the memory is formed and consolidated in
trace eyeblink conditioning. To acquire the memory in trace eye-
blink conditioning, rats need about seven daily training sessions
(Takehara-Nishiuchi et al., 2005). Each training session initiates
a short (i.e., about 3–4 h) consolidation process, during which de
novo protein synthesis (Inda et al., 2005) and the integrity of mPFC
(Takehara-Nishiuchi et al., 2005) are necessary to stabilize network
changes taking place during the training session. Furthermore,
after the memory is acquired, an additional long (i.e., 2–4 weeks)
consolidation process further reorganizes the network supporting
the memory in a manner such that the memory gradually loses the
dependence on the HPC (Kim et al., 1995; Takehara et al., 2003),
and in turn gains the dependence on the mPFC (Takehara et al.,
2003; Takehara-Nishiuchi et al., 2006). Therefore, changes in the
correlated activity during the training session may originate from
network modifications during the learning process as well as the
consolidation process taking place between training sessions. In
addition, the comparison of the correlated activity between the last
training session and retention sessions taking place 1 month later
provides a measure to detect any changes in the correlated activity
that originate from network modifications during the long con-
solidation process. Building on this notion, we detected correlated
activities between the LEC, HPC, and mPFC by simultaneously
measuring their local field potentials (LFPs) during learning and
later retention in trace eyeblink conditioning. LFPs largely reflect
the sum of local synaptic activity within the neighborhood of
an electrode (Mitzdorf, 1985; Buzsaki, 2006; Nunez and Srini-
vasan, 2006), and synchronization of LFP oscillations has been
linked to increased communication between regions (Singer, 1993;
Varela et al., 2001; Jones and Wilson, 2005; Womelsdorf et al.,
2007; Benchenane et al., 2010; Fell and Axmacher, 2011). Syn-
chronization specifically of 4–12 Hz (theta) oscillations has been
found to increase between regions when increased communication
is thought to take place during memory acquisition (Hoffmann
and Berry, 2009; Anderson et al., 2010; Wikgren et al., 2010),
memory expression (Seidenbecher et al., 2003), and goal selection
(Jones and Wilson, 2005; Benchenane et al., 2010). In the present
study, LFP synchronization at theta oscillations was found to be
consistent with the hypothesized dynamics of communication
between the LEC, mPFC, and HPC.

RESULTS
SYNCHRONIZATION OF THETA OSCILLATIONS BETWEEN THE LEC, HPC,
AND mPFC DURING ACQUISITION OF ASSOCIATIVE MEMORY AND
LATER RETRIEVAL
We recorded local field potentials (LFPs) in the prelimbic region
of the medial prefrontal cortex (mPFC), lateral entorhinal cortex
(LEC), and dorsal hippocampus (HPC) of rats during trace eye-
blink conditioning. The locations of all electrodes were confirmed
by histological analysis at the end of experiment (Figure 1).

During the acquisition period, six rats received one session each
day for 10 days in a testing chamber, where they were exposed to
100 pairings of a neutral tone (CS) and a mild electric shock to
the eyelid (US) separated by a 500-ms stimulus-free trace interval
(Acquisition group, Figure 2A). This group was used to examine
how correlated activity between the regions change with learn-
ing and consolidation processes taking place between training
sessions. The remaining eight rats also received 10 days of acqui-
sition sessions, but were followed 1 month later with 5 days of
remote retention sessions (Remote retention group). This group
was used to examine whether the correlated activity between the
regions further changes during a 1-month consolidation period
without further training. After acquisition or remote retention

FIGURE 1 | Histological reconstruction of recording locations.

(Top) Representative photomicrographs of coronal sections containing the
medial prefrontal cortex [mPFC, (A)], dorsal hippocampus [HPC, (B)], and
lateral entorhinal cortex [LEC, (C)] from a rat. Arrows indicate the recording
locations. (Bottom) Schematic illustration of the location of electrodes.
Closed or empty circle indicates a placement in rats whose LFPs were
recorded during acquisition sessions or during remote retention sessions,
respectively. Numbers to the right indicate stereotaxic coordinates relative
to bregma (Paxinos and Watson, 1986).
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FIGURE 2 | Behavioral performance and theta phase synchronization

between the hippocampus (HPC), lateral entorhinal (LEC), and medial

prefrontal cortices (mPFC) during trace eyeblink conditioning. (A) An
example trial in the trace eyeblink conditioning paradigm. An auditory
conditioned stimulus (CS) was paired with eyelid stimulation (US) separated
by a 500-ms stimulus-free interval. A conditioned response (CR) was
defined as a significant increase in the eyelid electromyogram immediately
prior to the US. (B) Percentage of trials in which rats exhibited CRs
increased during acquisition sessions (Acquisition group, empty circle,
mean ± SEM from six rats), stayed high during remote retention sessions
1 month later (Remote retention group closed circle, mean ± SEM from
eight rats), and decreased during extinction and pseudo-conditioning
sessions (mean ± SEM from six rats from Acquisition or Remote retention
group). Spon. indicates spontaneous eyeblink frequency. (C) Traces of
simultaneously recorded local field potentials (LFPs) from the HPC, LEC,
and mPFC in a rat during the fifth acquisition session. Raw traces are
plotted in gray and theta-filtered traces are overlaid in black. Vertical bar

(Continued )

FIGURE 2 | Continued

indicates 0.1 mV for the LEC and mPFC and 0.15 mV for the HPC. (D)

Representative histograms of the difference in instantaneous theta phase
between two regions at 100 ms before CS onset (gray) and at 100 ms after
CS onset (black). Phase of theta oscillations in the HPC (left) or mPFC (right)
was subtracted from the phase of theta oscillations in the LEC. Narrower
peaks in the histogram indicate stronger synchronization of phase between
two oscillations. (E) Comparison of the strength of phase synchronization
across three different frequency bands. Phase synchronization during the
first 200-ms period of CS–US interval was quantified with synchronization
index (see Materials and Methods) and normalized with the value before CS
onset. Although phase synchronization became stronger after CS onset in
three frequency bands (as suggested z -score values larger than or close to
2), synchronization of 7–11 Hz oscillations was the strongest between the
HPC and LEC during the first day of acquisition session (Day 1) and between
the mPFC and LEC during the last day of acquisition session (Day 10).

sessions, half of the rats in each group received extinction ses-
sions, during which the CS was presented alone. The remaining
rats received pseudo-conditioning sessions, where the CS and
US were separated by a random time interval (1–20 s). Dur-
ing acquisition sessions, both acquisition and remote retention
groups gradually increased the frequency of anticipatory eyeblink
responses to the CS (CR, monitored by eyelid electromyogram)
over the course of 10 days of acquisition sessions (Figure 2B; Two-
way repeated measures ANOVA; Group, F 1, 12 = 0.604, p = 0.45;
Session, F 9, 108 = 9.59, p < 0.001; Group × Session, F 9, 108 = 1.17,
p = 0.32). When tested 1 month after the last acquisition session,
the Remote retention group displayed robust retention of the
learned association by exhibiting significantly higher percentage
of CRs during the first retention session compared with the first
acquisition session (paired t -test, p = 0.01). During extinction and
pseudo-conditioning sessions, the percentage of CRs was compa-
rable to the percentage of spontaneous eyeblink frequency, which
was measured during an adaptation session prior to the first acqui-
sition session (Paired t -test; extinction vs. adaptation, p = 0.17;
pseudo-conditioning vs. adaptation, p = 0.17). During the condi-
tioning, the rats sat quietly in the conditioning chambers. When
the rats moved abruptly (detected as significant changes in EMG
amplitude, see Materials and Methods) before the beginning of
a trial, the trial was removed from further analysis. The number
of these “hyperactive” trials was less than about 15 trials during
acquisition and remote retention sessions, suggesting that loco-
motion level did not significantly change over the course of the
conditioning sessions.

LFPs in the LEC, HPC, and mPFC were recorded during acqui-
sition sessions in the Acquisition group and during remote reten-
tion sessions in the Remote retention group, as well as during
extinction or pseudo-conditioning sessions in both groups. An
example of recorded raw LFP traces is depicted in Figure 2C.
As previously described (Munera et al., 2001; Paz et al., 2008;
Darling et al., 2011), LFPs obtained from the HPC and mPFC
showed stronger theta frequency oscillations after CS onset than
before. A similar CS-locked increase in theta oscillation was also
observed in LFPs in the LEC. To examine whether theta oscillations
in these regions synchronized following CS onset, we measured
phase synchronization between theta oscillations in simultane-
ously recorded pairs of LFPs (Lachaux et al., 1999; Fell and
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Axmacher, 2011; see Materials and Methods). We chose phase syn-
chronization over other methods based on fast Fourier transfor-
mation (FFT) because phase synchronization allows for measuring
synchronization independently from fluctuations of oscillation
amplitude (Le Van Quyen et al., 2001; De Clercq et al., 2003),
and because synchronization can be quantified at higher time res-
olution. Phase synchronization between the LEC and HPC and
between the LEC and mPFC became high following CS onset as
demonstrated by narrower peaks of the phase difference histogram
(Figure 2D). In addition, the peak of phase difference histogram
shifted from zero (phase shift), which indicates that two oscil-
lations potentially originated from different sources. To further
narrow down the frequency band that most strongly changed after
CS onset, the strength of phase synchronization after CS onset was
compared across three different frequency bands within the theta
frequency band (5–9, 7–11, and 9–13 Hz; Figure 2E). The strength
of phase synchronization was quantified with synchronization
index (SI, see Materials and Methods) and normalized with the
SI value during the period before the CS. Although the difference
in the SI value among the three frequency bands was small, the
SI values between the LEC and mPFC at 7–11 and 9–13 Hz bands
had a tendency to be stronger compared with those at 5–9 Hz band
during the last acquisition session (Day 10). Besides, during the
first acquisition sessions (Day 1), LEC and HPC oscillations at
7–11 Hz band tended to be stronger than those at 9–13 Hz band.
Subsequent analyses, therefore, were applied to the oscillations
within 7–11 Hz band.

LEC–mPFC, BUT NOT LEC–HPC, THETA SYNCHRONIZATION WAS
CORRELATED WITH SUCCESSFUL EXPRESSION OF ACQUIRED
ASSOCIATIONS
To examine whether theta phase synchronization changed over
the course of learning, temporal patterns of theta phase synchro-
nization was examined session by session with a sliding window
technique (see Materials and Methods). Furthermore, we also
examined the relationship between theta phase synchronization
and the expression of the conditioned response (CR) by com-
paring theta phase synchronization between trials in which a
rat expressed a CR (CR trials) and those in which the rat did
not express CR (non-CR trials) in a within-subjects design. The
results from this analysis, illustrated in Figure 3, suggested that
communication between the LEC and mPFC increased during
trials with CR expressions, while communication between the
LEC and HPC took place during learning, independent of CR
expression.

Theta synchronization between the LEC and HPC increased
after CS onset in both CR and non-CR trials during the first acqui-
sition session, but subsequently decreased when rats’ performance
reached an asymptotic level and remained low throughout remote
retention sessions (Figure 3A). To quantify this observation, the
maximum value of the measure for phase synchronization after
CS onset (peak SI) was compared between CR trials and non-CR
trials across acquisition sessions (Figure 3C). Two-way repeated
measures ANOVA on the peak SI showed a significant effect of
session (F 9, 45 = 2.11, p = 0.048), but no effect of CR expression
(F 1, 5 = 0.509, p = 0.507) or session × CR expression interaction
(F 9, 45 = 1.540, p = 0.163). Similarly, two-way repeated measures

ANOVA on the peak SI during remote retention sessions showed
no effect of session (F 4, 28 = 0.343, p = 0.847), CR expression
(F 1, 7 = 1.474, p = 0.264), or session × CR expression interaction
(F 4, 28 = 0.682, p = 0.610). The averaged peak SI in CR trials dur-
ing the first three acquisition sessions did not significantly differ
from the averaged peak SI during sessions in which the stimulus
contingency was broken (the data during extinction and pseudo-
conditioning in the Acquisition group were pooled to increase the
statistical power, Paired t -test, p = 0.073). This suggests that LEC–
HPC theta synchronization did not signal the successful expression
of CRs.

In contrast to the decreases observed in LEC–HPC theta syn-
chronization over sessions, LEC–mPFC theta synchronization
remained high during late acquisition and remote retention ses-
sions (Figure 3B). During early acquisition, LEC–mPFC theta syn-
chronization was higher during non-CR trials compared with CR
trials. As the rats acquired the CRs, this pattern reversed: stronger
LEC–mPFC synchronization became consistently observed on CR
trials compared with non-CR trials. This pattern persisted for
remote retention sessions. Two-way repeated measures ANOVA on
the peak SI value (Figure 3D) showed a significant session × CR
expression interaction during acquisition sessions (F 9, 45 = 2.723,
p = 0.013) and a significant effect of CR expression during remote
retention sessions (F 1, 7 = 12.624, p = 0.009). Furthermore, the
peak SI value in CR trials during the final three acquisition ses-
sions or remote retention sessions was higher than that during
extinction sessions (the pooled data in the Acquisition and Remote
retention groups; Paired t -test, p = 0.049) while it was not signif-
icantly different from that during pseudo-conditioning sessions
(the pooled data in the Acquisition and Remote retention groups;
Paired t -test, p = 0.067). These results suggest that the strength of
LEC–PFC theta synchronization was positively correlated with the
expression of CRs.

We also found that theta oscillations in the HPC and mPFC
synchronized after CS onset; however, HPC–mPFC theta synchro-
nization did not change as a function of learning and did not
clearly differentiate between CR trials and non-CR trials (data not
shown).

Theta amplitude in the LEC and mPFC, but not HPC, increased with
learning
Changes in theta phase synchronization between two regions most
likely resulted from changes in amplitude and/or phase of theta
oscillations in each region. We first compared local theta ampli-
tude between CR trials and non-CR trials session by session in each
region (Figures 4A–C). During early acquisition, LEC theta ampli-
tude increased at CS onset both during CR and non-CR trials;
however, theta amplitude during CR trials subsequently increased,
whereas theta amplitude during non-CR trials gradually decreased
(Figure 4A). Stronger theta amplitude was also observed in CR tri-
als compared with non-CR trials during remote retention sessions.
To quantify these observations, we calculated the maximum value
of theta amplitude after CS onset (peak amplitude) in each session
and compared it between CR trials and non-CR trials. A two-
way repeated measures ANOVA on the peak LEC theta amplitude
showed a significant interaction between sessions and CR expres-
sion (F 9, 45 = 2.445, p = 0.023; Figure 4D) during acquisition and

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2012 | Volume 5 | Article 90 | 4

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Takehara-Nishiuchi et al. Increased frontal–rhinal coupling with learning

FIGURE 3 | Dissociation of theta synchronization between the

hippocampus, lateral entorhinal, and medial prefrontal cortices

during learning. (A) Z -score values for theta synchronization upon CS
presentation (i.e., change from baseline during an 800-ms window before
the CS) were averaged across rats, and plotted over time within trials
(x -axis) across days (y -axis, ascending from bottom to top; averaged
percent CRs are plotted to the left). During early acquisition, theta
synchronization between the hippocampus (HPC) and lateral entorhinal
cortex (LEC) increased during trials when the rats expressed the
conditioned response (CR, left, CR trials) as well as during trials when the
rat did not expressed the CR (right, non-CR trials). Subsequently, theta
synchronization decreased in both CR and non-CR trials and remained low

during retention sessions 1 month later. (B) Theta synchronization
between the LEC and medial prefrontal cortex (mPFC) was higher during
non-CR trials (right) than CR trials (left); with training, however, it became
stronger in CR trials than in non-CR trials and this strengthened theta
synchronization was also observed during remote retention. (C,D)

Time-dependent changes in theta synchronization were confirmed by the
plots that represent averaged maximum z -score values for theta
synchronization during acquisition (mean ± SEM from six rats) and remote
retention (mean ± SEM from eight rats). Red and black lines indicate theta
synchronization in CR and non-CR trials, respectively. LEC–HPC and
LEC–mPFC theta synchronization was weak during extinction and
pseudo-conditioning, during which the stimulus contingency was broken.

a significant effect of CR expression (F 1, 7 = 13.924, p = 0.007)
during remote retention sessions. The averaged peak amplitude of
LEC theta in CR trials during the last three acquisition sessions
or remote retention sessions was not significantly different from
that during pseudo-conditioning (the pooled data in the Acqui-
sition and Remote retention groups; Paired t -test, p = 0.075) or
during extinction (the pooled data in the Acquisition and Remote
retention groups; Paired t -test, p = 0.486).

The amplitude of HPC theta oscillations was high during acqui-
sition, but low during remote retention sessions (Figure 4B).
The peak theta amplitude did not differ between CR trials and
non-CR trials during acquisition or during remote retention ses-
sions (Figure 4E, Two-way repeated measures ANOVA; no effect
of sessions, F 9, 45 = 1.450, p = 0.196, F 4, 28 = 0.37, p = 0.826; no
effect of CR expression, F 1, 5 = 1.655, p = 0.255, F 1, 7 = 2.907,
p = 0.132; no sessions × CR expression interaction, F 9, 45 = 1.334,
p = 0.247, F 4, 28 = 0.583, p = 0.677 during acquisition and remote
retention sessions, respectively). Peak HPC theta amplitude in
CR trials during the first three acquisition sessions was not sig-
nificantly different from HPC theta amplitude during extinction

or pseudo-conditioning sessions (the data during extinction and
pseudo-conditioning sessions in Acquisition group were pooled to
increase the statistical power; Paired t-test, p = 0.058).

The amplitude of mPFC theta oscillations was high during
the first acquisition session and remained high during the rest
of acquisition and remote retention sessions (Figure 4C). During
early acquisition, theta amplitude during CR trials was similar to
that in non-CR trials; however, with subsequent conditioning theta
amplitude in non-CR trials gradually decreased whereas theta
amplitude in CR trials stayed high (Figure 4F, Two-way repeated
measures ANOVA on peak theta amplitude of mPFC theta; a sig-
nificant session × CR expression interaction during acquisition,
F 9, 45 = 3.517, p = 0.002). There was a trend that theta amplitude
was stronger in CR trials than in non-CR trials during remote
retention sessions (CR expression, F 1, 7 = 5.458, p = 0.052). In
addition, the averaged mPFC theta amplitude in CR trials dur-
ing the last three acquisition sessions or remote retention sessions
was higher than that during pseudo-conditioning (the pooled data
in the Acquisition and Remote retention groups; Paired t -test,
p = 0.038), but it was not different from that during extinction
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FIGURE 4 | Changes in local theta amplitude with learning and the

correlation between theta amplitude and behavior. (A) Z -score values
for theta amplitude upon CS presentation (i.e., change from baseline during
an 800-ms window before CS onset) were averaged across rats, and plotted
over time within trials (x -axis) across days (y -axis, ascending from bottom to
top; averaged percent CRs are plotted to the left). During early acquisition,
theta amplitude in the lateral entorhinal cortex (LEC) increased after CS
onset in trials when the rats expressed the conditioned response (CR, left,
CR trials) as well as in trials when rats did not express the CR (right, non-CR
trials). During the remaining acquisition sessions, CS-evoked increase in
theta amplitude became stronger in CR trials and weaker in non-CR trials.
(B) In contrast, CS-evoked increase in theta amplitude in the hippocampus

(HPC) decreased with learning and did not differ between CR trials (left) and
non-CR trials (right). (C) In the medial prefrontal cortex (mPFC), CS-evoked
increase in theta amplitude was high in CR trials as well as non-CR trials.
Subsequently, theta amplitude stayed high in CR trials and decreased in
non-CR trials. (D–F) Time-dependent changes in theta amplitude were
confirmed by plots representing the averaged maximum z -score values for
theta amplitude during acquisition (mean ± SEM from six rats) and remote
retention (mean ± SEM from eight rats). Red and black lines indicate theta
amplitude in CR and non-CR trials, respectively. CS-evoked increase in theta
amplitude in the LEC and mPFC, but not HPC, was relatively weak during
extinction and pseudo-conditioning, during which the stimulus contingency
was broken.

(the pooled data in the Acquisition and Remote retention groups;
Paired t -test, p = 0.370).

THE CS-INDUCED THE RESETTING OF ONGOING PHASE OF THETA
OSCILLATIONS
Next, we analyzed how the phase of local theta oscillations was
modulated by CS presentation. Following CS presentation, theta
phase became highly consistent across trials in each of the three
regions examined (Figure 5A Top). Theta signals then became
strongly entrained for roughly two theta cycles (Figure 5A bottom
middle and right). To quantify the magnitude of phase locking,
we calculated the length of the resultant vectors of phase across
trials, which becomes 1 when the phase is identical across all trials
and 0 when the phase is random across trials. The resultant vector
length was separately calculated in CR trials and non-CR trials
at 100 ms before and 100 ms after CS onset in each session. The
result was averaged across each stage of acquisition and retention
sessions (Early, acquisition sessions 1–3; Late, acquisition sessions
4–7; Overtraining, acquisition sessions 8–10; Remote retention,
retention sessions 1–5) and then averaged across rats (Figure 5B).
In all of the three regions, phase concentration increased after
CS onset in all stages (Three-way repeated measures ANOVA; CS,
p < 0.001 in all three regions) and this increase was stronger in

CR trials than in non-CR trials (CS × CR expression interaction,
p < 0.05 in all three regions). Unexpectedly, the phase concentra-
tion before CS onset was stronger in CR trials than in non-CR
trials during early acquisition, but this “anticipatory” phase lock-
ing disappeared during later stages (CS × CR expression × Stage
interaction, p < 0.05 in LEC and mPFC, CR expression × Stage
interaction, p < 0.05 in HPC).

As suggested by the strong phase resetting, all three regions
showed evoked potentials after CS onset. The waveform patterns
of the evoked potentials did not significantly differ between CR
trials and non-CR trials and did not generally change across days
(data not shown).

SYNCHRONIZATION WAS INDUCED BY THE RESETTING OF THETA
PHASE TO THE CS AND WAS AMPLIFIED BY A CS-EVOKED INCREASE
IN AMPLITUDE
Lastly, to address how changes in amplitude and phase of theta
oscillations in the three regions (Figures 4 and 5) contribute
to changes in theta phase synchronization between the regions
(Figure 3), we ran the same analyses on a number of simu-
lations in which phase and amplitude of the LFP signals were
manually adjusted (Figure 6). Single trial LFP data (n = 100)
were comprised of 10 sinusoids with random (initial) phase and
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FIGURE 5 |Theta phase locking to the conditioned stimulus.

(A) A representative pseudo-color scale representation of instantaneous
theta phase in each trial, which was aligned at CS onset. Theta oscillations
in the lateral entorhinal cortex (LEC, top), dorsal hippocampus (HPC,
middle), and medial prefrontal cortex (mPFC, bottom) were locked to the
CS and subsequently entrained for about two oscillation cycles. Phase
distribution across trials was random at 150 ms before CS onset (left), but it
was strongly concentrated at 50 and 150 ms after CS onset (middle and
right). (B) Degree of phase concentration was quantified by using the length
of resultant vector for instantaneous phase across trials during which rats
showed CRs (CR trials, red, mean ± SEM) or trials during which no CR was
expressed (non-CR trials, black, mean ± SEM). In both CR and non-CR
trials, phase entrainment became stronger after CS onset (solid line) than
before CS onset (dotted line) in all stages (Early, the first-third acquisition
session, six rats; Late, the forth to seventh acquisition session, six rats;
Overtraining, the eighth to tenth acquisition session, six rats; Remote Ret.,
five retention sessions 1 month later, eight rats) in all three regions.

random frequencies in the 4- to 16-Hz range (Control). An event-
related increase in amplitude and/or phase reset was imposed at
a specific point in time (set to time = 0, jittered ± 5 ms) in the
wide band range (4–16 Hz) or the theta band range (7–11 Hz,
Figure 6A). As expected, phase synchronization did not change
following an increase in oscillation amplitude in either frequency
band (Figure 6B, left), whereas phase synchronization strongly
increased following the resetting of ongoing oscillations in the
theta, but not wide band range (middle). Synchronization was
the strongest when the phase reset coincided with an increase in

oscillation amplitude (right). These observations were confirmed
by a significant difference in the maximum value of the synchro-
nization measure (Figure 6C) between the control condition, theta
phase reset alone, and the combination of theta phase reset and
amplitude increase (Tukey HSD, all p < 0.001). Together, these
simulation results suggest that theta phase reset,but not an increase
in theta amplitude, can induce theta synchronization, whereas an
increase in theta amplitude can amplify theta synchronization if it
occurs along with theta phase reset.

DISCUSSION
Accumulating evidence suggests that memories for daily events are
mediated by a distributed cortical network and that this network
reorganizes as the memory ages (Squire,1992; Takehara et al., 2003;
Frankland and Bontempi, 2005). Our results demonstrated that
this reorganization may be directly reflected in dissociated patterns
of interaction between the lateral entorhinal cortex (LEC), dorsal
hippocampus (HPC), and medial prefrontal cortex (mPFC) dur-
ing learning and later retention of associative memory. By using
phase synchronization of local field potential (LFP) oscillations
as a measure for neuronal communication between two regions,
we found that as the rats formed an association between a neutral
tone (CS) and aversive eyelid stimulation (US), theta oscillations
in the LEC and mPFC became strongly synchronized following
CS presentation upon successful expression of the CR whereas
synchronization of theta oscillations between the LEC and HPC
gradually weakened. These results suggest that LEC–HPC com-
munication may play a modulatory role in initial learning whereas
the LEC–mPFC communication may play an essential role in the
expression of acquired memory.

Synchronization of oscillatory neuronal activities across dif-
ferent brain regions is widely observed during many cognitive
processes including the acquisition and retrieval of associative
memory in animals and humans (Seidenbecher et al., 2003; Paz
et al., 2008; Hoffmann and Berry, 2009; Anderson et al., 2010;
Wikgren et al., 2010) and has been linked to a transient coupling
of separate processes operating in two brain regions (Varela et al.,
2001; Fell and Axmacher, 2011). The observed theta phase syn-
chronization between the LEC, mPFC, and HPC revealed time
windows during which these regions communicate to form and
express associative memory. During 10 days of acquisition sessions
mPFC–LEC theta synchronization was gradually strengthened
and was correlated with successful CR expression while HPC–
LEC theta synchronization was gradually weakened (Figure 3).
Importantly, these changes in synchronization were detected as
repeated observations within the same animals, supporting a link
between strengthening in LEC–mPFC theta synchronization and
network modifications taking place during learning processes
and consolidation processes between training sessions. Further-
more, the strengthened LEC–mPFC theta synchronization was
also observed during retention sessions 1 month after learning.
This suggests that LEC–mPFC communication remained high,
but was not further strengthened, during a 1-month period of
consolidation after learning. The latter finding was unexpected in
light of an increase in the reliance on memory expression on the
mPFC (Takehara et al., 2003; Takehara-Nishiuchi et al., 2006) and a
gradual development of prefrontal neuron firings selective for the
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FIGURE 6 | Results of simulations demonstrating the link between

changes in local theta oscillations and theta phase synchronization.

(A) Theta amplitude (left) and phase (right) of simulated LFP signals. When an
event-related increase in amplitude occurred at time 0 for the wide band
(4–16 Hz, WB) or theta band range (7–11 Hz, Theta in Amplitude increase),
theta amplitude increased while theta phase did not change. When phase
reset occurred at time 0 for the wide band range (WB) or only for theta band
range (Theta in Phase reset), theta phase was strongly entrained in parallel
with an increase in amplitude. When phase reset coincided with amplitude
increase for the wide band (WD) or theta band range (Theta in Amp increase
and phase reset), an increase in theta amplitude was augmented while
degree of phase entrainment remained unchanged. (B) Effect of amplitude
increase and phase reset on theta phase synchronization. An increase in

amplitude in the wide (gray) or theta band range (black) did not affect theta
synchronization (left). In contrast, phase reset of theta oscillation (black), but
not wide band oscillation (gray) induced theta synchronization (middle).
Coincidence of phase reset and amplitude increase induced a large increase
in theta synchronization (right, black). (C) The peak value of the normalized
measure for theta synchronization (mean ± SEM from eight simulations) was
compared across different types of manipulation. Theta phase reset alone
(Theta in Phase reset) and the coincidence of theta phase reset and amplitude
increase (Theta in Amp increase and phase reset) produced significantly
stronger theta synchronization compared with a control without any
manipulation of phase or amplitude (Control). The coincidence of theta phase
reset and amplitude increase produced stronger theta synchronization than
theta phase reset alone. ***Indicates p < 0.001 in Tukey HSD test.

acquired memory (Takehara-Nishiuchi and McNaughton, 2008)
during the 1-month consolidation period. This might suggest a
possibility that strengthening of LEC–mPFC communication may
precede and assist subsequent changes in prefrontal neuronal fir-
ings. Another finding is that although CR expression significantly
decreased during extinction and pseudo-conditioning sessions
(Figure 2B), theta synchronization during these sessions did not
always become significantly lower than that during acquisition or
remote retention (Figures 3C,D). This may be because extinction
and pseudo-conditioning sessions took place after acquisition and
remote retention sessions in the present experiment.

One might argue that an apparent increase in theta synchro-
nization between two regions could have originated from changes

in an electrical field in remote areas that were conducted through
the volume of neural tissue or from signals in the reference elec-
trode. These possibilities were not likely to play a major role in
the observed synchronization because phase shift was observed
between regions (Figure 2D), and because amplitude of theta
oscillations in the three regions fluctuated in different patterns
across sessions (Figure 4). If the recorded signals were heavily
contaminated with signals that originated from common sources,
these results would not be possible because the signals from
common sources would appear on the signals from three elec-
trodes in the same manner. It is still possible that apparent
differences in oscillations between regions are attributed to sev-
eral generators with dipoles of different orientation and distance,
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which potentially made a volume conducted signal shift phase
across regions (Sirota et al., 2008). However, phase locking of
local neuronal firings to local theta oscillations (Alonso and
Garcia-Austt, 1987a,b; Paz et al., 2008) provides support for the
view that the detected theta oscillations and their synchroniza-
tion have relevance to local neuronal processing at the record-
ing sites. Another possibility is that CS-locked increase in theta
synchronization was induced by eyelid movement (i.e., gener-
ation of CRs). This possibility is unlikely because the stronger
synchronization was not always associated with CR expression:
the strength of LEC–HPC theta synchronization did not dif-
fer whether or not the rats expressed CRs (Figure 3A), and
LEC–mPFC synchronization was stronger when the rats did not
express CRs (i.e., non-CR trials) compared with when the rats
expressed CRs during the early stage of acquisition (i.e., CR trials;
Figure 3B).

In parallel with CS-induced changes in theta phase synchro-
nization between the LEC, HPC, and mPFC (Figure 3), ampli-
tude and phase of local theta oscillation were also modulated
upon CS presentation. Theta amplitude and phase in the three
regions changed in a different manner over the course of acqui-
sition sessions (Figures 4 and 5), and our simulation results
(Figure 6) suggest that these changes in local theta oscillations
may result in the difference in the time course and selectiv-
ity for CR expression between LEC–mPFC and LEC–HPC theta
phase synchronization (Figure 6). Initial non-specific increase
in LEC–mPFC and LEC–HPC theta synchronization following
CS presentation can be induced by the phase resetting of theta
oscillations to the CS in all three regions (Figures 5 and 6).
Although theta phase reset did not become stronger on trials
with CR expression during late acquisition and remote reten-
tion (Figure 5), theta amplitude in the LEC and mPFC became
correlated with CR expression (Figure 4). Consequently, phase
reset coincided with a stronger increase in theta amplitude on
CR trials, which can result in stronger LEC–mPFC theta synchro-
nization on these trials (Figure 6). On the contrary, HPC theta
amplitude did not become correlated with CR expression over the
course of learning (Figures 4B,E). This explains the lack of correla-
tion between LEC–HPC theta synchronization and CR expression
(Figures 3A,C).

It is worth noting that the degree of phase concentration
before CS onset was stronger in CR trials than in non-CR tri-
als during the early stage of acquisition sessions (Figure 5B).
This result suggests a possibility that during early acquisition
animals preferentially expressed CRs when strong theta oscilla-
tions were induced by factors other than the CS, such as a high
state of arousal, before CS onset (Berry and Thompson, 1978;
Sainsbury et al., 1987; Berry and Swain, 1989). Consistent with
this possibility, previous studies showed that acquisition of CRs
is facilitated when CS–US pairings are presented contingent on
strong theta oscillations in the HPC in rabbits (Seager et al.,
2002; Griffin et al., 2004; Darling et al., 2011). Alternatively, one
may argue that some sort of preparation signals for eyelid move-
ment in a motor system is capable of inducing phase resetting
in the three regions and in turn synchronizing theta oscillations
between them. This possibility is unlikely because the stronger
phase concentration before CS onset was correlated with CR

expression during the early, but not late, stage of acquisition
sessions (Figure 5B).

Established theory of consolidation holds that elements or con-
tents of each experience are encoded in distributed areas of the
neocortex, and the HPC stores a memory index (or pointer) for
a unique array of neocortical areas representing each experien-
tial event (Teyler and DiScenna, 1986; McClelland et al., 1995;
Squire and Alvarez, 1995; Rudy and O’Reilly, 2001). Subsequently,
direct connections between areas in the neocortex are gradu-
ally formed, rendering the memory trace independent from HPC
output (McClelland et al., 1995; Squire and Alvarez, 1995). Alter-
natively, a newly emerging view posits that the mPFC may take over
the binding function from the HPC by storing a similar, but per-
haps more efficient index code (Frankland and Bontempi, 2005;
Takashima et al., 2006; Takehara-Nishiuchi and McNaughton,
2008). The present results elaborate on this view by proposing that
the mPFC may serve the binding function through its communi-
cation with the entorhinal cortex. After communication between
the entorhinal cortex and mPFC is strengthened, the entorhinal
cortex relays cue information from the neocortex (Young et al.,
1997) directly to the mPFC. This may recover a pattern of pre-
frontal neuronal firing selective for a previously acquired memory
(Takehara-Nishiuchi and McNaughton, 2008). The recovered pre-
frontal firings then act back on the entorhinal cortex via back
projections, and in turn reactivate a unique array of neocorti-
cal areas representing the corresponding memory. Although this
idea does not eliminate the possibility that connections between
other neocortical areas, such as orbitofrontal (Ross and Eichen-
baum, 2006; Lesburgueres et al., 2011) and sensory cortices (Galvez
et al., 2006; Miller et al., 2008; Sacco and Sacchetti, 2010), are also
formed during consolidation, it emphasizes that strengthening of
communication between neurons in the mPFC and entorhinal
cortex is a key biological change that allows for the neocortical
network to gain independence from the HPC. Consistent with
this idea, consolidation requires several molecular processes in
the mPFC and entorhinal cortex, which lead to strengthening of
synaptic connections, including integrity of NMDA-receptor func-
tion (Takehara-Nishiuchi et al., 2006), an increase in spine density
(Maviel et al., 2004; Restivo et al., 2009; Vetere et al., 2011), and
the appropriate level of CaMKII activity (Yasuda and Mayford,
2006).

In conclusion, dissociated communication patterns of the LEC
with HPC and mPFC provides correlational evidence for a pos-
sibility that strengthening of entorhinal–prefrontal connections
plays an important role in theoretically proposed reorganization
of cortical networks during memory consolidation.

MATERIALS AND METHODS
SUBJECTS
Twenty-two male Long–Evans rats (3 months old at the time of the
first surgery, 385–485 g, Charles River, Montreal) were housed in
Plexiglas home cages and maintained on a reversed 24 h light/dark
cycle. Water and food were available ad libitum. All experiments
were performed in accordance with the guidelines established
by the Institutional Animal Care Committee at the University
of Toronto. Every effort was made to optimize comfort and to
minimize the use of animals.
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GROUPS AND DESIGN OF EXPERIMENTS
Twenty-two rats were divided into two groups. The first group
(Acquisition group, n = 9) received behavioral training in the trace
eyeblink conditioning for 10 days, during which local field poten-
tials (LFPs) were recorded in the hippocampus, lateral entorhinal,
and medial prefrontal cortices. The second group (Remote reten-
tion group, n = 13) received behavioral training for 10 days and
received the retention sessions 1 month after the last training ses-
sion. LFPs in the three regions were recorded during retention
sessions. The Acquisition group was used to detect changes in LFPs
as animals acquire memory. The Remote retention group was used
to examine whether any additional changes in LFPs occur dur-
ing a subsequent consolidation period, during which the acquired
memory shifts its dependence from the hippocampus to the medial
prefrontal cortex (Takehara et al., 2003; Takehara-Nishiuchi et al.,
2006). Using the same design, we detected lasting changes in pre-
frontal neuronal firing during the consolidation period without
continued training (Takehara-Nishiuchi and McNaughton, 2008).

SURGERY AND ELECTRODE PLACEMENT
Each rat was anesthetized with isoflurane (1–1.5% by volume
in oxygen at a flow rate of 1.5 L/min; Holocarbon Laboratories,
River Edge, NJ, USA), placed in a stereotaxic holder, and injected
with ketoprofen (5 mg/kg, s.c.; Phoenix Scientific, Fort Dodge, IA,
USA). Four Teflon-coated stainless steel wires (No. 791000; A-M
Systems, Carlsborg, WA, USA) were implanted subcutaneously in
the left upper eyelid for recording electromyogram (EMG) activity
and presenting a periorbital shock in the same way as in a previ-
ous study (Takehara et al., 2003). Craniotomy was opened over
the mPFC (PFC, 3.2 mm anterior, 0.7 mm lateral to bregma), dor-
sal hippocampus (HPC, 2.8 mm posterior and 1.4 mm lateral to
bregma), and LEC (6.3 mm anterior and 4.7 mm lateral to bregma)
contralateral (right) to the conditioned eye. Electrodes to record
LFPs were fabricated by inserting a short piece of stainless steel
wires (No. 791000; A-M Systems, Carlsborg, WA, USA) into a 28-
G stainless steel cannula. After the dura was cut, an electrode was
slowly lowered to 4.0 mm (mPFC) or 2.8 mm (HPC) from bregma.
For the LEC, an electrode was tilted at 10˚ in the medial–lateral
axis and slowly lowered to 8.2 mm from bregma. Additional cran-
iotomy was opened over the right cerebellar cortex, and a screw
electrode (stainless steel) was implanted on the surface of the
right cerebellar cortex. Nine rats (Acquisition group) received the
implantation of EEG and EMG electrodes. Thirteen rats (Remote
retention group) received two surgeries: an EMG electrode was
implanted during the first surgery, and a new EMG electrode and
LFP electrodes were implanted during the second surgery. The sec-
ond surgery was inevitable to record the good quality of EMG and
LFPs during the retention session 1 month after the last acquisi-
tion session because the EMG and LFPs electrodes typically lasted
only for about 3 weeks after the surgery.

BEHAVIORAL PROCEDURE
The rats received daily trace eyeblink conditioning in cylindri-
cal Plexiglas containers (20 cm in diameter and 25 cm high)
that were placed in sound- and light-attenuated chambers
(35 cm × 35 cm × 40 cm, Med Associates, St. Albans, VA, USA).
A lightweight cable was connected to the connector pins secured

on the animal’s head. The conditioned stimulus (CS) was a 100-
ms tone (2.5 kHz, 85 dB) with a rise–fall time of 10 ms, and it was
delivered from a speaker (16.5 cm in diameter) placed above the
container. The US was a 100-ms periorbital shock (0.3–3.0 mA,
100 Hz square pulses), delivered through a pair of electrodes that
were implanted in the left upper eyelid. The stimulus intensity was
carefully calibrated to give the minimal current required to elicit
an eyeblink/head-turn response and was adjusted daily. The ani-
mals’ head-turn response was monitored by live video during the
conditioning. A stimulus-free trace interval of 500 ms was inter-
posed between the end of the CS and the US onset. The CR was
defined as an eyeblink response during the 200-ms period before
the US onset, and was monitored through electromyographic
(EMG) activity recorded with another pair of implanted elec-
trodes. The conditioning started at least 1 week after the surgery
to allow rats time for recovery. During the first 2 days of condi-
tioning, the CS and US were not presented to allow the rats adapt
to the conditioning procedure and environment. From the third
day of recording, the CS and US were paired. A daily session con-
sisted of 100 trials grouped into 10 blocks, which included nine
CS–US paired trials followed by one CS-alone trial. The inter-
vals of the trials were pseudo-randomized between 20 and 40 s,
resulting in a mean of 30 s. The conditioning sessions contin-
ued until the 12th day for a total of 10 conditioning days. One
month after the last acquisition session, retention of the acquired
memory was measured by re-conditioning the rats in the same
procedure as during acquisition sessions. Following acquisition or
retention sessions, rats received 4 days of extinction sessions or
4 days of pseudo-conditioning sessions. Extinction sessions con-
sisted of presentations of the CS-alone without the US, whereas
during pseudo-conditioning sessions the CS and US were paired
with a pseudo-randomized interval from 1 to 20 s. In the Acqui-
sition group, behavior and neuronal activity were recorded dur-
ing acquisition and extinction or pseudo-conditioning sessions.
In the Remote retention group, behavior was recorded during
acquisition sessions, and behavior and neuronal activity were
recorded during retention and extinction or pseudo-conditioning
sessions.

DATA ACQUISITION
Local field potentials were measured as the voltage difference
between a mono-polar (single tip) electrode and a ground screw
placed above the cerebellar cortex, as opposed to the voltage differ-
ence between two electrode tips of a bi-polar electrode to avoid the
possibility that LFP signals relevant for cortical communication
would be subtracted-out (Paz et al., 2008). LFPs and electromyo-
graphic (EMG) activity were recorded using a RZ-5 recording
system (Tucker-Davis Technologies, Alachua, FL, USA). LFP was
amplified by 1000 times, filtered between 1 and 400 Hz, and digi-
tized at 2 kHz. EMG activity of the eyelid was filtered between 0.3
and 3 kHz and digitized at 6 kHz.

EMG ANALYSIS
All of the analyses were performed using custom codes written in
Matlab (Mathworks, Natick, MA, USA). The method of analysis of
the EMG data was the same as in a previous study (Takehara et al.,
2003). Briefly, the instantaneous EMG amplitude was defined as
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the difference between the minimum and maximum EMG signal
in a 1-ms window. Noise was removed from the EMG amplitude
by subtracting the across-trial mean, plus one SD, of the amplitude
during a 300-ms period before the CS onset. All trials in which the
pre-CS EMG amplitude exceeded the noise level by an additional
30% of this noise level were excluded from further analyses. A
trial was defined as containing a CR if the EMG amplitude during
a 200-ms window prior to the US (CR amplitude) exceeded five
times the pre-CS amplitude (in the case that the pre-CS ampli-
tude was zero, CR amplitude had to be 10% greater than the noise
level). The CR percent was defined as the ratio of the number of
trials containing the CR to the total number of valid trials in each
session.

LOCAL FIELD POTENTIAL ANALYSIS
All of the analyses were performed using custom codes written in
Matlab (Mathworks, Natick, MA, USA). Both trials with pairing of
the CS and US and trials with the presentation of CS-alone were
analyzed and the results were pooled.

Pre-processing
To remove trials with movement artifact, a threshold was defined
as the across-trial mean, plus four SD, of the raw LFP signals dur-
ing a 500-ms period before CS onset. This threshold was selected
based on visual inspection of several data sets. All trials in which
the LFP signal during a 500-ms period before CS onset exceeded
this threshold were excluded from further analyses. Subsequently,
the power spectrum density was calculated to ensure that the shape
of power spectrum agreed with those reported in previous studies
(Munera et al., 2001; Paz et al., 2008; Deshmukh et al., 2010). If the
power spectrum consistently contained a large peak at 60 Hz, we
assumed connection failure and did not use the data for further
analysis (n = 1 in the Acquisition group and n = 2 in the Remote
retention group).

Phase synchronization
Phase synchronization computes the difference in the phase of an
oscillation of a particular frequency between two regions (Varela
et al., 2001). We chose phase synchronization over other methods
based on FFT because phase synchronization allows for measuring
synchronization independently from fluctuations of oscillation
amplitude (Le Van Quyen et al., 2001; De Clercq et al., 2003),
and because synchronization can be quantified at higher time res-
olution. The latter point is critical for the analysis of recording
data during the trace eyeblink conditioning paradigm because the
duration of each trial is less than 1 sec (100 ms for the CS and
500 ms for the interval between the CS and US). Recorded LFPs
were first filtered between 7 and 11 Hz using Chebyshev2 filters.
The selection of 7–11 Hz for theta oscillation rather than a lower
or higher frequency band was made based on the strongest syn-
chronization of 7–11 Hz oscillations upon CS onset among the
neighboring frequency bands (Figure 2E). In each trial, the instan-
taneous amplitude and phase time series of a filtered signal were
computed from the Hilbert transform. Phase synchronization is
defined as locking of the phases of two oscillations:

ΦArea 1, Area 2 = nΦArea 1(t ) − mΦArea 2(t ) = const.

The present study only examined the case when n = m = 1. To
quantify the degree of phase locking, we used the SI defined as
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where 1/Δt is the sampling rate of the discrete time series of the
signal (De Clercq et al., 2003). By construction, SI will be 0 if the
difference in phases of two signals are random and will be 1 when
the difference of phases of two signals is constant during a short
period of time. SI was calculated in a series of 200-ms windows
with an increment of 0.5 ms. SIs were first averaged across trials
in a rat. The averaged SI was normalized by subtracting the mean
and dividing by the SD of SIs during an 800-ms period before the
CS onset. These normalized SIs were averaged across rats. These
analyses made it possible to calculate instantaneous amplitude and
phase at resolution of 0.5 ms (equal to the sampling rate) and the
SI at resolution of 200 ms.

CS-evoked change in theta amplitude
The instantaneous amplitude of theta oscillations was averaged
across trials in each rat. The averaged amplitude was subsequently
normalized by subtracting the mean and dividing by the SD of
the amplitude during an 800-ms period before the CS onset. The
normalized amplitude values were then averaged across rats.

Resetting of theta phase to the CS
The instantaneous phase of theta oscillations was computed from
a filtered signal in each trial at −100 and 100 ms after CS onset.
Degree of phase concentration was quantified by calculating the
resultant vector length for phase across trials in each rat. The value
was then averaged across rats.

SIMULATIONS
To generate LFP signals and to modify their amplitude and phase,
we used similar algorithms to those reported previously (Makinen
et al., 2005; Klimesch et al., 2009). Single trial EEG data (n = 100)
were composites of 10 sinusoids with random (initial) phase and
random frequencies in the 4- to 16-Hz range. An event-related
increase in amplitude and/or phase reset was imposed at a specific
point in time (set to time = 0, jittered ± 5 ms) in the wide band
range (4–16 Hz) or the theta band range (7–11 Hz). To simulate an
increase in oscillation amplitude, the amplitude of five sinusoids
was increased to a random value in the range of 110 and 300%
for 200 ms. To simulate phase reset, the phase of five sinusoids was
shifted to zero. To measure the amplitude and phase of theta oscil-
lations (7–11 Hz), the simulated data were analyzed with the same
method of analyses that was used for the real data (see CS-Evoked
Change in Theta Amplitude and Resetting of Theta Phase to CS
Onset). To examine the effect of modulation of amplitude and
phase on theta phase synchronization, two sets of signals (n = 100)
were independently generated by introducing the same type of
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manipulation (amplitude increase alone, phase reset alone, and a
combination of amplitude increase and phase reset). Theta phase
synchronization was calculated with the same method that was
used for the real data (see Phase Synchronization). These steps were
repeated eight times, matching the sample size of the real data. The
SI was first averaged across simulated data sets (n = 100). The aver-
aged SI was then normalized by subtracting the mean and dividing
by the SD of SIs during a 400-ms period before the CS onset. These
normalized SIs were averaged across repetitions (n = 8).

STATISTICAL ANALYSIS
Statistical analysis of electrophysiological and behavioral data were
carried out with two-way or three-way repeated measures ANOVA,
one-way ANOVA, or paired t -tests, as applicable, using SPSS soft-
ware (SPSS Inc., Chicago, IL, USA). For all tests the criterion
for significance was kept at p < 0.05. All data were depicted with
mean ± SEM.

HISTOLOGY
After all recordings were complete, the rats were deeply anes-
thetized and the tips of the recording electrodes were marked by

electrolytic lesions (20 μA for 45 s, positive to electrode, negative to
animal ground). Each animal was intraperitoneally injected with
an excess amount of sodium pentobarbital and perfused intrac-
ardially with 0.9% saline, followed by phosphate-buffered 10%
formalin. The brain was removed from the skull and stored in
10% formalin for a few days. After infiltration with 30% sucrose,
it was frozen, sectioned at 50 μm thickness, and stained with cre-
syl violet. The sections were subsequently examined under a light
microscope and the locations of the electrode tips were drawn
onto plates from the stereotaxic atlas of the rat brain (Paxinos and
Watson, 1986). All data from the animals whose electrodes were
not located in the prelimbic cortex, dorsal hippocampus and lat-
eral entorhinal cortex were discarded (n = 2, Acquisition group
and n = 3, Remote retention group).
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