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Honeybees use visual cues to relocate profitable food sources and their hive. What bees
see while navigating, depends on the appearance of the cues, the bee’s current posi-
tion, orientation, and movement relative to them. Here we analyze the detailed flight
behavior during the localization of a goal surrounded by cylinders that are characterized
either by a high contrast in luminance and texture or by mostly motion contrast relative to
the background. By relating flight behavior to the nature of the information available from
these landmarks, we aim to identify behavioral strategies that facilitate the processing of
visual information during goal localization. We decompose flight behavior into prototypical
movements using clustering algorithms in order to reduce the behavioral complexity. The
determined prototypical movements reflect the honeybee’s saccadic flight pattern that
largely separates rotational from translational movements. During phases of translational
movements between fast saccadic rotations, the bees can gain information about the 3D
layout of their environment from the translational optic flow. The prototypical movements
reveal the prominent role of sideways and up- or downward movements, which can help
bees to gather information about objects, particularly in the frontal visual field. We find that
the occurrence of specific prototypes depends on the bees’ distance from the landmarks
and the feeder and that changing the texture of the landmarks evokes different prototypical
movements. The adaptive use of different behavioral prototypes shapes the visual input
and can facilitate information processing in the bees’ visual system during local navigation.
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INTRODUCTION
Many insects, in particular bees, wasps, and ants, use visual cues
for locating special places, like food sources or their nest (Col-
lett et al., 2006; Zeil et al., 2009). Despite much research devoted
to this fascinating ability, it is still not entirely clear what visual
information these insects use and store and how they gather this
information for solving the localization task. It is widely accepted
that they memorize a kind of visual snapshot of the scenery sur-
rounding the goal location (review: Collett et al., 2006). However,
it is still an open question what features constitute the snapshot.
The snapshot might contain raw panoramic images (Zeil et al.,
2003) or distinct image features, such as the luminance, color, or
surface texture of objects (Cartwright and Collett, 1983; Cheng
et al., 1986; Lehrer, 1998; Lehrer and Campan, 2005).

When searching for their goal flying hymenopterans, such as
bees and wasps, rarely follow a straight trajectory to their goal.
Rather their flight path may be circuitous and, depending on the
conditions, organized in characteristic ways (e.g., Zeil, 1993a,b;
Collett and Rees, 1997; Voss and Zeil, 1998; Zeil et al., 2009;
Dittmar et al., 2010). Due to the closed-loop nature of behav-
ior, these movements generate retinal image displacements, which
depend, at least during translational phases of locomotion, on the
spatial layout of the environment. Bees and wasps may indeed use

this kind of information derived from the behaviorally generated
optic flow for behavioral control during navigation (e.g., Lehrer,
1996; Zeil et al., 1996; Srinivasan et al., 2000; review: Srinivasan
and Zhang, 2004). In a local navigation task in an indoor flight
arena, honeybees are able to find the goal location surrounded by
camouflaged cylindrical landmarks that carry the same texture as
the background and, thus, are probably detected by optic flow that
is generated by movements of the animal (Dittmar et al., 2010).
Furthermore, the goal localization performance was virtually the
same for these camouflaged landmarks and for landmarks that are
detectable because they differ from the background in their lumi-
nance and texture. The question arises whether bees cope with
these different situations by changing their flight behavior to be
able to localize the feeder. Bees can adjust their flight behavior to
environmental needs in other spatial vision tasks as they modify
their flight speed and height relative to the current surroundings
(Srinivasan et al., 1996; Kern et al., 1997; Srinivasan and Zhang,
2004; Baird et al., 2006; Portelli et al., 2010) or actively generate
depth information by targeted movements (Lehrer, 1996).

Here we analyze how the bees’ flight pattern varies according to
whether cylindrical landmarks have the same random visual tex-
ture as the background and so are detectable only through motion
contrast or whether they are uniformly colored and can also be
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detected through static brightness cues. We do this by employing
cluster analysis as a powerful tool for behavioral analysis (Braun
et al., 2010; Geurten et al., 2010) in order to identify prototypical
behavioral components and relate them to the landmark’s visual
appearance and their current positions relative to the bees. To iden-
tify distinguishable behavioral components during bee landmark
navigation we need a quantitative description of flight behavior
that allows for a classification of behavior into distinct classes. For
this quantitative description, we will represent flight behavior by
local rotational (yaw rotation) and translational (along all three
body axes of the animal) velocity components that we determine
from trajectories filmed during navigation flights. Then, we apply
a clustering approach to these velocity components for determin-
ing prototypical velocity vectors in the 4D velocity space (Braun
et al., 2010). By classifying the data into a finite set of reoccur-
ring prototypical movements, we reduce the complexity of flight
behavior enormously.

We determined the prototypes of the flight trajectories
described in Dittmar et al. (2010) to analyze if the occurrence of
prototypes depends on the landmarks’ appearance that is whether
the landmarks have a different or the same texture as the back-
ground. We analyzed how the prototypes change with the land-
mark texture and with the bees’ distance from the landmarks. We
will elucidate whether bees change their flight behavior to cope
with different visual goal environments in a way that facilitates the
underlying visual information processing.

MATERIALS AND METHODS
The analysis is based on the same experimental data that was col-
lected in a previous study, where the performance of honeybees
in locating a feeder was probed by targeted modifications of the
landmark texture and the landmark–feeder arrangement (Dittmar
et al., 2010). Therefore, we briefly describe only those aspects of
data acquisition that are directly relevant to our current analysis.

EXPERIMENTAL SETUP AND DATA ACQUISITION
Honeybees (Apis mellifera carnica) were trained to collect sugar
water from an inconspicuous Perspex feeder (height 0.105 m) that
was located in an indoor circular flight arena (diameter 1.95 m,
height 0.5 m; Figure 1A). The same red–white Gaussian blurred
random dot pattern covered the wall and floor of the arena. The
bees learned to associate the reward with a constellation of three
cylinders with heights of 0.25 m and diameters of 0.05 m. We will
refer to these cylinders as landmarks. The landmarks were sym-
metrically placed around the feeder at distances of 0.1, 0.2, and
0.4 m, respectively. During training, the landmarks carried in all
experiments a uniform dark red paper that provided strong lumi-
nance and texture contrasts to the brighter arena wall and floor.
For some tests, the landmarks were covered with the same Gauss-
ian blurred random dot pattern as the arena floor and walls. The
experimental setup provided as little additional landmark infor-
mation as possible. To ensure that the bees employed the three
cylindrical landmarks as the main cues for localizing the feeder
and to prevent them from using their path integration system
or potential external cues, the arrangement of landmarks and
feeder was shifted during the training procedure (Dittmar et al.,
2010).

FIGURE 1 | (A) Flight arena with the three landmarks. The upper cover of
the arena made of cloth is not shown. (B) Sample trajectory as seen from
above. The position (gray dot) and orientation (gray line) of the bee are
shown every 24 ms. The locations of the three landmarks (big open circles)
and the feeder (smaller open circle) are indicated.

The flight trajectories of the honeybees approaching the food
source (for an example, see Figure 1B) were recorded with two
high-speed cameras, one placed above the area of the landmark
arrangement and directed vertically and one at mean height of the
arena wall, directed horizontally toward the area of interest. The
cameras recorded the flight trajectory before the bee landed on
the feeder at 125 frames/s and with a resolution of 1024 × 1024
pixels (Dittmar et al., 2010). The 3D trajectories were determined
from two corresponding 2D views using the custom-built soft-
ware package ivTrace (available as open source package from:
opensource.cit-ec.de/projects/ivtools) and stereo calibration data.
The orientation of the bee’s body long axis was determined from
the top-view camera using ivTrace. For reducing detection noise,
we smoothed the resulting 3D coordinates and the body angles by
applying a low pass filter (second order Butterworth filter with a
cut-off frequency of 20 Hz). Based on the body position and orien-
tation in consecutive frames we determined the forward, sideways,
and upward velocities. The differences in 2D body orientation
angle between consecutive frames delivered the yaw velocity. The
4D velocity data (three translational velocities; yaw rotation) cal-
culated for each two consecutive trajectory points constitutes the
base for the following movement analyses.

In the first experiment, 173 flights of 21 bees were recorded
under training conditions with dark red landmarks. We analyzed
278,193 trajectory points corresponding to an overall flight time
of ∼2226 s. In a second experiment, we recorded 79 flights of
16 bees with landmarks carrying the training texture (dark red)
or the same random texture that covered the wall and the floor
of the arena (corresponding to 113,077 data points and an over-
all flight time of 905 s). To compare the flight behavior before
and after exchanging the landmark texture, we selected from this
database the data of nine individually marked bees, which per-
formed the same number of flights under both conditions (same
data as analyzed in Dittmar et al., 2010). These bees performed
three to six flights in the two different environments resulting in
65,004 trajectory points corresponding to 520 s for the random
texture condition and 84,374 trajectory points and, thus, an over-
all flight time of 675 s for the uniform texture condition. We used
the entire dataset recorded with the randomly textured landmarks
for additional control analyses.
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CLUSTERING APPROACH TO ANALYZE VELOCITY PROTOTYPES FOR BEE
TRAJECTORIES
To categorize the flight behavior we identified prototypical move-
ments by applying a clustering approach on the 4D velocity data
obtained from the flight trajectories. In the following, we will
shortly describe this approach (for details, see Braun et al., 2010).

The main idea of this approach is to describe movements in
their simplest form via velocities and to identify prototypical
movements by detecting reoccurring similar combinations of
velocity components. For example, if bees often fly straight for-
ward at a velocity of 1 m/s, many velocity data points should cluster
close to the 4D point corresponding to 1 m/s forward and zero
sideways, upward, and yaw velocity. To detect those prototypical
velocities we identified accumulation points within the 4D veloc-
ity data by applying cluster analysis. The accumulation points are
called velocity prototypes, which describe prototypical movements
of the bee. The cluster analysis delivers the unique assignment of
each velocity data point to its nearest prototype in the 4D velocity
space. To determine the accumulation points in the velocity data
we applied a k-means clustering algorithm (Braun et al., 2010).
This algorithm locates the k accumulation points with the aim
to minimize the overall sum of occurring Euclidean distances
between individual velocity data points and the corresponding
accumulation point. To ensure that all velocity components con-
tribute equally to distance estimation, we normalized each velocity
component to 0 mean and SD 1.

Before applying the k-means approach the number of clusters
(k) to be tested has to be defined. A suitable range of cluster num-
bers was assessed as described previously (Braun et al., 2010). On
this basis we tested cluster numbers from 2 to 20 and chose the
most suitable number by evaluating the clustering results accord-
ing to two criteria: (1) Instability criterion: the resulting accumula-
tion points have to remain constant for different randomly chosen
starting conditions of the iterative clustering procedure. We cal-
culated the stability of the results of each two k-means runs by
matching the accumulation points to each other and determining
the sum of distances between the matched accumulation points.
From the distance for each pair of runs we calculated the mean
value for the current set of runs and call this the instability, which
should be minimized. (2) Quality criterion: the quality of clus-
tering is assessed by the extent to which the distinct clusters are
separated from each other. Optimal clusters have large distances
between corresponding accumulation points, but small distances
to the respective assigned data points. The quality of a cluster is
given by the relation between these distances (for details, see Braun
et al., 2010). Based on the instability and quality criteria, we are
able to compare different clustering results and to select the most
appropriate number of clusters: we selected the cluster number
with the highest quality as it represents the data structures best
and demanded the results to be stable as a prerequisite for any
further interpretation.

For each tested number of clusters we calculated 10 k-means
results and evaluated their instability and quality. In addition, we
varied the given database in order to assess whether the results
generalize from its special characteristics such as the number
of included individuals and trajectories. Therefore, we left out
consecutive sequences of either 10 or 20% of the data at 50 different

equally distributed locations within the whole database. We deter-
mined the instability and quality of the 50 clustering results from
different sets of 80 or 90% of the data, respectively. In this way, we
assessed the most suitable number of clusters k. After fixing the
parameter k, we selected the set of accumulation points for further
analysis from those calculated for the whole database that pro-
vides the smallest mean distance to the other sets of accumulation
points calculated for this database.

To determine the velocity prototypes and the SD of the indi-
vidual data points assigned to this prototype we converted the
corresponding normalized data back to their original physical
units. By assigning the velocity prototypes to the trajectory points,
we could determine the probability of their occurrence and their
spatial distribution in the flight arena.

We calculated the velocity prototypes individually for the
dataset collected in the first experiment, in which flight trajec-
tories were recorded under training conditions with uniformly
textured landmarks, as well as for the two datasets of the second
experiment. Here flight trajectories were recorded with uniform
landmarks under training conditions as a reference and addition-
ally with the randomly textured landmarks. The comparison of
the cluster results allows us to identify changes in flight behavior
depending on landmark texture.

RESULTS
LOCAL NAVIGATION FLIGHTS WITH THREE CONSPICUOUS
LANDMARKS
Although the bees successfully learnt to pinpoint the site of a
food reward with three conspicuous landmarks near to the feeder
(Dittmar et al., 2010), their trajectories are rarely straight and they
perform complex flight maneuvers within the landmark arrange-
ment (Figure 1B). This indicates that they spend some time
searching for the goal instead of directly heading toward it. With
the help of our classification of flight behavior in prototypical
movements, we can analyze this behavior in detail and iden-
tify specific reoccurring behavioral components, the prototypical
movements.

We determined prototypical movements based on the bee’s
translational and rotational velocity components by applying k-
means clustering. By evaluating the clustering results for different
numbers of clusters according to their stability and quality (see
Appendix for details) the most suitable number of clusters turns
out to be nine in experiment 1 (see Figure 2). This relatively small
number is very similar to related studies on cruising flight of dif-
ferent fly species (Braun et al., 2010; Geurten et al., 2010). Only
two velocity prototypes of bees contain significant yaw velocities,
corresponding to fast left and right rotations. This finding con-
firms the classification of insect flight behavior into saccades and
intersaccadic intervals (Land, 1973; Collett and Land, 1975; van
Hateren and Schilstra, 1999; Boeddeker et al., 2010; Braun et al.,
2010; Geurten et al., 2010). The separation of flight behavior into
rotations and translations can facilitate the processing of spatial
information as the optic flow generated on the bee retina dur-
ing pure translational locomotion contains distance information,
while the optic flow resulting from rotations does not (e.g., Land,
1999; Kern et al., 2005; Zeil et al., 2007). The Saccade Left and Sac-
cade Right prototypes combine yaw velocities of about 500 deg/s
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FIGURE 2 | Nine velocity prototypes for experiment 1 in (meter

per second) and (degree per millisecond), respectively. Each prototype is
depicted as star plot containing the four velocity components drawn onto
color coded lines equally dividing the drawing plane. For each line the
distance of the dot from the center determines the absolute value of the

corresponding velocity component, the error bars visualize the SD of this
value. Whether the value is positive or negative determines at which part of
the line relative to zero point the value is plotted. Percentage of data points
assigned to the individual prototypes determines the relative occurrence of
each prototype. For detailed description, see text.
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with forward velocities of 0.38 m/s and take 18% of the whole
flight time. Bees spend the remaining 82% of their flight time by
performing combinations of the three translational velocity com-
ponents. Seven prototypes capture such translational movements
occurring in the intersaccadic intervals.

Two of the intersaccadic prototypes are characterized by for-
ward movements. These two prototypes, Slow Forward and Fast
Forward, occur most often with 16 and 14% of the flight time. The
remaining five translational prototypes are characterized by dif-
ferent combinations of sideways and/or upward/downward veloc-
ities. Together, they cover 52% of the whole flight time and 63%
of the intersaccadic intervals.

By assigning one velocity prototype to every point of the
bees’ trajectories, we analyze whether the prototypical movements
occur preferentially at specific locations within the flight arena
(Figure 3). The prototypes Saccade Left and Saccade Right are

rather equally distributed across all areas of the flight arena that are
flown over by the bees, except that saccades are slightly more fre-
quent close to the arena walls (see Tammero and Dickinson, 2002
for Drosophila), where bees are particularly likely to turn toward
the landmarks and feeder. The Slow Forward prototype occurs
almost exclusively very close (<100 mm) to the landmarks and the
feeder. In contrast, the Fast Forward prototype is infrequent when
bees are near landmarks. It occurs often far away from landmarks,
especially in the left and bottom side of the analyzed area. The
bees fly about 1 m before getting close to the landmark arrange-
ment and entering the recording area from the left, and they seem
to reduce their speed close to the landmark–feeder arrangement.
Similarly, the Fast Forward Down prototype mostly occurs far from
the landmarks, but its distribution is more symmetric around
the landmarks. The remaining four prototypes are characterized
by intermediate forward velocities and contain combinations of

FIGURE 3 | Sketch of the top-view of the arena and the area around the

landmarks and the feeder that is covered by cameras for recording the

trajectories. Spatial distribution of all analyzed trajectory points in 2D
(irrespective of the height above the arena floor). Area is divided into
30 mm × 30 mm large cells and the absolute number of trajectory points
assigned to one cell is visualized. C: spatial probabilities of occurrence of the

nine velocity prototypes combined to six classes for better visualization. For
each class of velocity prototypes’ absolute occurrences are counted within
the 30-mm × 30-mm cells and, firstly, normalized with the overall spatial
distribution. Finally, each distribution is normalized to sum up to 1 and,
therefore, corresponds to the spatial probability of occurrence of this
prototype class. The same color code is used for all distributions.
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different upward/downward and sideways components. The two
prototypes containing upward velocity components, Slow Forward
Left Upward and Slow Forward Right Upward, are concentrated
around the landmarks and close to sections of the arena wall. In
contrast, the Slow Forward Right Downward and Slow Forward Left
prototypes spread over the whole area with only weak local circu-
lar maxima around the landmarks. The prototypes are usually
distributed symmetrically around the landmarks indicating that
the occurrence of individual prototypes depends on the distance
to the nearest landmark and not on the direction from which bees
approach the landmark.

Both the distributions of the multidimensional prototypes and
the individual velocity components depend on the distance to the
nearest landmark (data not shown). The bees decrease their for-
ward velocity with decreasing distance to the nearest landmark.
Upward velocities occur mainly near to the landmarks, while
downward velocities are more prevalent at distances larger than
about 150 mm. The bees seem to fly upward close to the landmarks
and then reduce their height again outside the arrangement. Side-
ways velocities occur rather independent of the distance to the
nearest landmark.

Generally, upward and downward as well as sideways move-
ments are particularly suitable to gather spatial information from
the optic flow evoked by objects that are located within the frontal
field of view, because in many environments retinal velocities are
greatest orthogonally to the direction of motion (e.g., Koenderink,
1986). Hence pure sideways movements generate strong optic flow
signals when there are objects in the bee’s frontal field of view,
whereas the optic flow of objects in front of the bee is much weaker
when approached in pure forward flight. We determined the angle
under which the bees see the landmarks as approximated from the
body position and orientation (for details, see inset Figure 4A) and

the assumption that the head is most of the time aligned with the
body (Boeddeker et al., 2010). All trajectory points <100 mm from
a landmark irrespective of their height were taken into account for
calculating these viewing angles. Figure 4A shows that the nearest
landmark is seen mainly within the frontal visual field. However,
the distribution of viewing angles is very broad (interquartile range
is 105˚, ranging from −47˚ to 58˚), which indicates that the nearest
landmark is not always centered within the frontal visual field. This
conclusion is corroborated by the example trajectory (Figure 4B),
where the bee mainly moves forward and sideways to the right
and the landmark center is always seen within the left visual field.
Figure 4C shows the angular retinal position of the right and left
vertical edge of the landmark for the corresponding five slow inter-
saccadic prototypes that mainly occur close to the landmarks. The
viewing angles differ qualitatively for the different prototypes. The
retinal positions of the edges are significantly shifted away from
the central frontal position for those prototypes that contain large
sideways velocities. Furthermore, the direction of this shift is deter-
mined by the direction of the prototypical sideways movement:
while moving left, the landmark is most often held in the right
visual field and vice versa. This finding underlines the importance
of sideways movements for gathering landmark information from
the optic flow evoked in the fronto-lateral visual field.

Taken together, the analysis of prototypical movements during
landmark navigation reveals that bees change their flight behavior
according to their position relative to the landmarks.

DEPENDENCE OF THE FLIGHT PATTERN ON THE LANDMARKS’
APPEARANCE
Do the prototypical movements vary according to whether the
landmarks require motion contrast to be detected if seen against
the equally textured background? In Dittmar et al. (2010) the

FIGURE 4 | Analysis of the angle Φ between the orientation of the bee

and the direction of the landmark center, which approximates the

viewing angle of the landmark. (A) Distribution and corresponding boxplot
indicating the median and quartiles and the range of the viewing angles Φ to
the center of the landmarks for all trajectory points with the bee closer than
100 mm from the center of the nearest landmark. (B) Example trajectory of a
flight near to the landmark as seen from above. The position of the bee’s
center of mass (dot) and its orientation (line) are shown every 8 ms. (C)

Angles of view of the right and left edge of the nearest landmark, (indicated

by R and L below the respective subplot) for the same data as analyzed in (A)

in dependence on the corresponding prototypical movement. The median,
quartiles, and range of the data are shown. Outliers are displayed as short
horizontal bars; data points are drawn as outliers if they are larger than 1.5 of
the distance between the 25th and 75th percentiles. This corresponds to
∼±2.7 ( and 99.3 coverage if the data are normally distributed. Only data
corresponding to the prototypes providing slow forward velocities are
depicted underneath the subplots because they predominantly occur near to
the landmarks; prototypes are depicted in the format as explained in Figure 2.
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uniform red texture that covered the landmarks during training
was swapped during about half of the trials to the same random
texture that covered the wall and floor of the flight arena. The
navigational performance with the randomly textured landmarks
was not reduced (Dittmar et al., 2010). By applying the clustering
approach to the same data set, we tested for the different conditions
whether the velocity prototypes, their occurrence, and localiza-
tion in the flight arena depend on the visual appearance of the
landmarks. As a control, we compared the cluster results of the
data set with the uniform red texture with the results obtained in
experiment 1 when bees only experienced uniformly colored land-
marks. Both data sets recorded with a uniform landmark texture
led to nine similar velocity prototypes (Figure 5A; Figure A3 in
Appendix compares the two sets directly; Figure A5 in Appendix
shows the spatial probability distributions of the prototypes for
this experiment). When clustering the data obtained for the same
bees but with the landmark texture exchanged, we find differences
in the detailed flight behavior. With randomly textured landmarks,
eight rather than nine clusters describe the data best (Figure A2 in
Appendix; Figure 5B). This result does not depend on the size of
the data set, but also holds true for the complete dataset available
for randomly textured landmarks (see Materials and Methods,
Figure A4 in Appendix). As a further control, we clustered the
data obtained with randomly textured landmarks with a pre-set
number of nine prototypes (data not shown). It turned out that
selecting nine instead of eight clusters does not change any of our
following conclusions. Because of the better quality of the clus-
tering with eight prototypes, we will focus on the comparison of
these eight prototypes for the randomly textured landmarks with
nine prototypes for the uniform landmarks.

The extracted sets of prototypes for flights in the two landmark
situations both contain two prototypes that correspond to saccades
(Figure 5). These saccadic prototypes are distributed uniformly
over the arena independently of the landmarks (Figure A5 in
Appendix). Amongst the prototypes occurring in the intersaccadic
interval we find for both landmark textures those that are charac-
terized by a slow forward velocity (<0.5 m/s). They occur mostly
close to the landmarks and the feeder, while prototypes character-
ized by fast forward velocities occur mostly in the outer areas of the
arena (Figure A5 in Appendix). However, the two sets of proto-
types differ in their sideways and upward/downward velocity com-
ponents. In contrast to the uniform landmarks, there are no pure
forward prototypes. With the random-textured landmarks,all pro-
totypes contain either significant sideways or upward/downward
velocity components or both. We consider a component as signifi-
cant, if its mean value deviates by at least 1 SD from 0. In particular,
when flying distant from the landmarks that are only detectable
by motion contrast, the fast forward flight prototypes (15% of
the whole flight time) contain, in contrast to the uniform tex-
ture, significant sideways components (see Figure 5). These flight
maneuvers allow the bees to detect the camouflaged landmarks by
relative motion,even when flying far from the landmarks. Sideways
and upward/downward locomotion create translational optic flow
that allows the animal to gather information about the layout of the
environment, in particular, in the frontal visual field. In fact, if the
bees are near to the landmarks, they see them mostly in their frontal
visual field. The viewing angles of the uniform and randomly

textured landmarks are similar to each other (data not shown)
and to those obtained in the first experiment (Figure 4). The dif-
ferences in the distributions of sideways and upward/downward
velocities for the different landmark textures have a strong impact
on translational optic flow in the frontal visual field. They may
facilitate the detection of random-textured landmarks in front of
the background. As has been discussed in detail in Dittmar et al.
(2010), the bees may have seen in their upper field of view the
top end of the landmarks against the white background. However,
this “skyline” did not provide a reliable cue, as it changed during
training, due to the shifting of the feeder–landmark arrangement.
Furthermore, the dependence of prototypical movements on land-
mark texture provides strong evidence that motion information
plays a decisive role in detecting the randomly textured landmarks
(other evidence is discussed in Dittmar et al., 2010).

The six intersaccadic prototypes obtained for the random land-
mark condition can be separated into those dominated by a side-
ways velocity component and others that are dominated by an
upward/downward velocity component. Only one exception, the
Fast Forward Left Upward prototype, contains a combination of
equivalent sideways and upward velocity components. The proto-
types dominated by upward/downward velocities occur for about
22% of the total flight time, corresponding to 28% of the inter-
saccadic intervals, while those just containing significant sideways
velocities occur during about 50% of the flight time, correspond-
ing to 63% of the intersaccadic interval. This means that during
intersaccadic intervals sideways movements occur more often than
upward/downward movements when the bees navigate with the
randomly textured landmarks. In contrast, the prototypes deter-
mined for uniform landmarks either do not contain any sideways
or upward/downward velocity components at all (Slow Forward,
Fast Forward) or the prototypes are characterized by combinations
of these velocity components.

Does this difference in the occurrence of these combinations
mean that bees always perform either pure sideways or upward or
downward movements when confronted with the randomly tex-
tured landmarks, while they fly always combinations of both in the
presence of uniform landmarks? There is no such strict separation,
which is indicated by the SDs of the different velocity compo-
nents of each prototype (Figure 5) as well as by the probability
distributions of the relation between two velocity components
(Figure 6). With the uniform landmarks, combinations of side-
ways and upward/downward velocity components as well as move-
ments dominated by either a sideways or an upward/downward
component occur equally often (Figure 6A). For the randomly tex-
tured landmarks, dominant sideways velocities are more frequent
than combinations and dominant upward/downward velocities
(Figure 6A). This is indicated also by the relative occurrences of
the corresponding prototypical velocities. Figures 6B,C show the
probabilities for combinations of forward with upward/downward
and forward with sideways velocity components, for the two land-
mark texture conditions, respectively. These histograms reveal a
dominance of the forward velocity component. However, while the
distributions of the forward/sideways combinations are very sim-
ilar for both landmark texture conditions, the distributions of the
forward/upward/downward combinations appear to differ slightly
from each other depending on landmark texture. With uniform
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FIGURE 5 | Comparison between velocity prototypes resulting from

tests with uniformly red coloured (A) and randomly textured (B)

landmarks for experiment 2. Bar diagram shows the relative

occurrences for prototype classes. Error bars show the mean error of the
mean value of the occurrence data for the individual bees. For detailed
description, see text.
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FIGURE 6 | Probability distributions of velocity component combinations measured as histograms of the occurrence of relations between two

components. Dark: uniform landmarks, gray: random landmarks. (A) Upward/sideways/downward velocity, (B) upward/forward/downward, (C)

left/forward/right.

landmarks, the upward/downward velocity component might play
a more important role in relation to the sideways and forward com-
ponent than when the landmarks are randomly textured (see also
Figure 5 and Dittmar et al., 2011).

These findings indicate that it might be meaningful to take also
the bees’ flight height into consideration, because the functional
significance of the different prototypical movements may differ
depending on whether a bee is close to the base of the landmark,
at its top or somewhere in the middle. We analyzed the height of the
bees when they were closer than 100 mm to either of the two land-
mark types (Figures 7A,B). For the uniform landmark the bees fly
for most of the time between the arena floor and the height of the
feeder; nonetheless they frequently fly also at a height just below
landmark’s the top edge. In contrast, for the randomly textured
landmarks the flight height is approximately distributed around
the feeder height. These characteristic texture dependent flight
heights go along with different proportions of prototypical move-
ments (Figures 7C,D). Two features might be most important
from a functional point of view: (1) Prototypical movements with
a strong sideways component are much more prominent along the
entire vertical extent of the landmark for the uniform landmarks
than for the randomly textured ones. Sideways movements are a
precondition for the randomly textured landmark to be discrim-
inated from the background. (2) Prototypical movements with a
strong vertical component slightly predominate close to the top
edge of the uniform landmark; up- and downward movements of
the bee lead to relative motion information only at the horizontal
edges of the landmark, but not along most of its vertical extent.

DISCUSSION
We investigated, whether and how bees adapt their flight behavior
during a local navigation task depending on the appearance of
landmarks by decomposing the flight behavior into prototypical
movements and relating the distribution of these prototypes to the
distance from the landmarks and the goal. We find that these dis-
tances influence the type of prototypical movements performed
by the bees. Furthermore, depending on the appearance of the
landmarks, we find that different sets of prototypical movements
describe the honeybees detailed flight structure. Prototypical
movements, their relative occurrence, and spatial distribution are

FIGURE 7 | (A,B) Height probability distributions for all trajectory points
that are near to the uniform (A) or randomly textured (B) landmarks
(distance < 100 mm). The data sets contain 23,891 points out of 84,374
(corresponding to 191 s) for uniform landmarks and 15,877 points
(corresponding to 127 s) out of 65,004 for randomly textured landmarks.
Gray vertical lines mark the height of the feeder (105 mm) and the
landmarks (250 mm), respectively. (C,D) Relative part of different
prototypes depending on the height near to the uniform (C) or randomly
textured (D) landmarks. The saccadic prototypes are not depicted here,
because they are rather uniformly distributed within the flight arena. The
fast forward prototypes do not play a role near to the landmarks at all.

well suited to classify the bees’ flight behavior and to relate these
components to characteristics of their current visual environment.

SACCADIC FLIGHT STRUCTURE
The separation of flight behavior into saccadic and intersaccadic
intervals is typical for the flight behavior of many insects (Land,
1973; Collett and Land, 1975; van Hateren and Schilstra, 1999;
Boeddeker et al., 2010; Braun et al., 2010; Geurten et al., 2010).
The cluster analysis allows us now to quantify and localize sac-
cadic movements. We find here that honeybees perform saccades
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independently of their location within the flight arena. This find-
ing reveals that partitioning flight sequences into saccades and
intersaccadic intervals constitutes an elementary flight strategy
that separates rotational and translational optic flow. Kern et al.
(2005) suggested that this separation is of functional significance
for motion sensitive neurons that respond to translational optic
flow components during the intersaccadic intervals. Rotations are
compressed into short fast movements, which maximizes the time
during which spatial information can be acquired. Bees spend less
than 20% of the flight time with saccades. This proportion of sac-
cadic time is similar to that obtained for free-flight behavior of
blowflies (17%; Braun et al., 2010) and hoverflies (7%; Geurten
et al., 2010).

In contrast, the intersaccadic prototypes reveal qualitative dif-
ferences in the translational movements between insect species
under the analyzed experimental conditions. While forward move-
ments play by far the most prominent role for free-flying blowflies,
some free-flight hoverfly prototypes do not contain a forward
velocity at all. Instead, hoverflies perform sideways and up- or
downward movements more often (Geurten et al., 2010). All
velocity prototypes assigned to the intersaccadic intervals during
local navigation flights of honeybees contain a forward velocity
component, but also sideways and/or up- or downward velocity
components play an important role.

INTERSACCADIC TRANSLATIONAL MOVEMENTS DURING HONEYBEE
LOCAL NAVIGATION FLIGHTS
Generally, all translational movements induce optic flow patterns
that contain distance information. Especially, sideways and up- or
downward movements are suited for gathering spatial informa-
tion in particular in the frontal visual field. Indeed, our analysis of
the viewing angles confirms that the bees hold the near landmark
most often in the frontal visual field. Also wasps, while perform-
ing learning and return flights (e.g., Zeil, 1993a,b; Zeil et al., 1996)
or object oriented zig–zag flights (Voss and Zeil, 1998), as well as
bumblebees in learning flights (Baddeley et al., 2009) do not gen-
erally face landmarks; peak orientations are toward the nest-hole
unless a landmark is very close to the nest-hole. However, relating
the viewing angles to the corresponding prototypical movements
leads to different angle distributions. The prototypes providing
sideways velocity components occur together with viewing angles
of the landmark edges that are shifted for about 10˚–80˚ (median
values, Figure 4C) to the lateral field of view. Furthermore, the
directions of sideways movements and viewing angle shift are cou-
pled: while flying to the right, the landmark is most often seen on
the left side and vice versa. This shift in retinal landmark position
might be another indicator that the optic flow generated by inter-
saccadic translational movements might be employed for distance
estimation. The observed shifts are expected at least qualitatively,
if the bee follows a strategy to keep the retinal landmark position
in an eye region that experiences for a given landmark distance
the largest optic flow, i.e., the region that is oriented orthogo-
nally to the direction of motion. Since all prototypical movements
with a strong sideways component contain also a forward com-
ponent, the largest retinal velocities are generated in the right
and left fronto-lateral visual field during prototypical movements
with a leftward and rightward sideways component, respectively. A

similar correlation was found in Zeil (1993a) for individual orien-
tation flights of ground nesting wasps that hold their nest entrance
at angles of about 30˚–70˚ on the left while flying to the right and
vice versa. However, such lateral retinal landmark positions were
found rarely during orientation and search flights of these wasps
(Zeil, 1993b).

The honeybees’ translational velocity prototypes are character-
ized by different combinations of forward and sideways and/or up-
or downward velocity components. When navigating with land-
marks that provide high luminance and texture contrasts, 60% of
the intersaccadic flight time is characterized by prototypes that
contain sideways and/or up- or downward velocity components.
Whether either sideways or up- and downward movements are
better suited for gathering object information in particular in
the frontal visual field depends on the orientation of the edges
between the landmarks and the background. Generally, the ver-
tical landmark edges are the longest and most prominent ones
in our experimental setup. They evoke motion contrasts with the
background, when the bee moves sideways in front of them. In
fact, prototypes containing a sideways velocity component occur
during more than 50% of the intersaccadic intervals. This find-
ing supports the hypothesis that the bees exploit relative motion
information provided by the vertical landmark edges in the frontal
visual field. Whereas relative motion in the frontal visual field
evoked by intersaccadic translation with a pronounced sideways
component is an important source of spatial information irre-
spective of the landmark texture, relative motion becomes the
major cue for detecting and localizing landmarks, if the landmarks
carry the same random texture as the background, which makes
them rather inconspicuous in static images (Dittmar et al., 2010).
Under this condition all the intersaccadic prototypes either con-
tain sideways or up- or downward components. More than 70%
of the intersaccadic intervals are assigned to prototypes with a
relevant sideways velocity component, which emphasizes the role
of sideways when navigating with landmarks only detectable by
relative motion. Prototypes providing an up- or downward veloc-
ity component occur during less than 40% of the intersaccadic
intervals with random landmarks. Up- and downward movements
seem to play a less important role than sideways movements, if
the landmarks are camouflaged by carrying the random texture.
In contrast, for the uniform landmarks, we find a more simi-
lar proportion of translational prototypes containing an up- or
downward velocity component (47% of the intersaccadic inter-
val) and prototypes containing a sideways component (58% of
the intersaccadic interval).

The conspicuous vertical edges of the uniform landmarks
might induce up- and downward movements, known as contour
following behavior (Lehrer et al., 1985; Lehrer and Srinivasan,
1994; Dittmar et al., 2011). The landmarks provide also a horizon-
tal edge at their top, which may be exploited for gathering distance
information by moving up- and downward, if the bee flies close to
the top of the landmark. Indeed, near to the uniform landmarks
bees frequently fly at heights in the range of the top of the land-
mark. With randomly textured landmarks, preferred heights are
below and around the feeder height, where sideways movements
generate motion parallax cues at the vertical landmark edges. It
should be noted, that the correlation between the different types
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of prototypical translational movements close to the landmarks or
the feeder, does not prove that during these movements the bee
really gathers spatial information, although this hypothesis may
appear plausible.

SPATIAL DISTRIBUTION OF PROTOTYPICAL MOVEMENTS
Slow forward prototypes occur most frequently when the bees are
close to the landmarks. When flying through a narrow tunnel, bees
adapt their forward velocity to the tunnel width and wall textures
keeping the optic flow on their eyes constant (Srinivasan et al.,
1996; Srinivasan and Zhang, 2004; Baird et al., 2006). A similar
mechanism might explain that the honeybees reduce their veloc-
ity close to the landmarks in order to avoid collisions with them.
However, in the context of spatial navigation, a reduction of flight
speed is characteristic of search behavior. Honeybees are assumed
to search for the feeder by matching the current visual scene with
a memorized snapshot of the scenery surrounding the feeder loca-
tion (snapshot matching). Dittmar et al. (2010) showed that for
the experimental setup used here the similarity is high between
the image as seen from the feeder and images at locations around
the landmarks. Assuming that the bees have memorized the image
motion pattern as an optic flow snapshot, they can navigate with
high contrast and camouflaged landmarks (Dittmar et al., 2010).

Homing by panoramic matching of images or of the motion pat-
tern, can explain the behavior of ants and bees (e.g., Zeil et al.,
2003; Dittmar et al., 2010; Wystrach et al., 2011). Whether sta-
tic or dynamic information is more important may depend on
the locomotion type, i.e., walking of flying. However, also recent
findings in ants suggest that they may use a more or less contin-
uous mapping of image transformations during their return to
a learned goal location (Harris et al., 2007; Wehner and Müller,
2010). Global matching does not require a separation into land-
marks and background. The phases of translational prototypical
movements (about 80% of the bees’ flight time) are well suited to
memorize an optic flow snapshot and later compare the current
motion pattern with the memorized optic flow snapshot.

In conclusion, the selection of prototypical movements
depending on the bee’s position and orientation relative to visual
cues in its environment can be interpreted as an active behavior
suitable for gathering the relevant information for the homing
process based on optic flow.
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APPENDIX
EVALUATING CLUSTERING RESULTS FOR DETERMINING THE SUITABLE
NUMBER OF CLUSTERS
To determine prototypes based on the velocity data calculated
from local navigation flight trajectories we apply a k-means clus-
tering approach, as described in Materials and Methods (for more
details see Braun et al., 2010). As the first step of this approach,
we have to define the number of clusters that describes the data
best. Therefore, we evaluate the stability and quality of the results
of several runs varying the random starting conditions and the
velocity database. For the range of 2–12 clusters, we calculated
the mean quality and mean instability for 10 runs containing the
whole database and 50 runs containing different portions of 90
and 80% of the database, respectively.

The mean quality is maximal for this data, when clustering
it into nine clusters (Figure A1). The mean instability is slightly
increased for nine in contrast to eight or seven clusters for the
reduced databases. When analyzing these differences in detail, it
turns out that we get for some reduced databases sets of veloc-
ity prototypes that differ in the four prototypes combining slow
forward velocity with sideways and upward/downward velocity
components (Figure 2). The instability values result from different
combinations of upward/downward and sideways velocity compo-
nents within this subset of velocity prototypes but does not change
their characteristics qualitatively. Based on the evaluation of the
quality and stability of the clustering results, we determined nine
clusters to be best suited for describing the data and, consequently,
to be analyzed further.

Clustering the velocity data obtained for the randomly tex-
tured landmarks leads to eight clusters providing best quality
(Figure A2). However, some of the mean instability values for the
small data set originating from the nine individual bees that were
tested under both landmark conditions are increased for this num-
ber of clusters. The comparably small size of the database (65,004
data points) is likely not to be sufficient for additionally leaving out
data for the stability test. Therefore, we employed a different proce-
dure to assess the viability of our results and compared the results
obtained with the small database to the one determined from the
complete data recorded under the random condition (see Mate-
rials and Methods). For the larger database, the eight prototypes
of maximal quality are also stable. The resulting eight prototypes
for both data sets are equivalent (Figure A4). This finding leads us
to the conclusion that these eight prototypes are most suitable to
describe the behavioral data occurring with the random landmark
texture.

FIGURE A1 | Quality and instability criterion for clustering the velocity

data of experiment 1. Determine suitable number of clusters by
minimizing instability and maximizing quality to be nine.

FIGURE A2 | Quality and instability for two data sets recorded with

randomly textured landmarks. Small data set contains the 41 flights of
the nine bees that were also tested with uniform landmarks. Large dataset
is extended by additional data and contains 79 flights from 16 bees at all.
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FIGURE A3 | Comparison between prototypes resulting from clustering

the data of experiment 1 and the data within the same condition (three

uniformly red colored landmarks) of experiment 2. Clustering the
independent data set of experiment 2 leads again to nine clusters providing
the maximal quality and being sufficiently stable (data not shown). The

resulting velocity prototypes are similar to those obtained in experiment 1.
There are only quantitative differences in the relative occurrences of the
velocity prototypes between the data sets which, however, do not affect our
conclusions. The spatial probability distributions of occurrence of the different
prototypes are also similar between the two experiments (Figure A5).
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FIGURE A4 | Comparison between prototypes resulting from all

available 79 flights for the random texture condition (left) and the 41

flights of the nine individuals that were also tested with the

uniformly red landmarks (right). Again, there are no qualitative
differences within the prototypes themselves, but in details of the
relative occurrences.
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FIGURE A5 | Spatial distributions of occurrence probabilities of the

prototypes of experiment 2. There are no characteristic differences in
the spatial distributions of occurrences of the prototypes in dependence
on the landmark texture. The saccadic prototypes are rather equally
distributed under both landmark conditions. During the intersaccadic
intervals, the prototypical forward velocity mainly determines the
probability distributions. Increasing forward velocity shifts the probability

of occurrence to areas of larger distance to the landmarks. For the
random landmarks, there is no prototype as concentrated near to the
landmarks as for the uniform landmarks, because this Slow Forward
prototype does not occur for randomly textured landmarks. Instead, the
existing prototypes providing slow forward velocities occur more often
very close to the landmarks than the remaining prototypes for the
uniform landmarks.

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2012 | Volume 6 | Article 1 | 16

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

	Prototypical components of honeybee homing flight behavior depend on the visual appearance of objects surrounding the goal
	Introduction
	Materials and Methods
	Experimental setup and data acquisition
	Clustering approach to analyze velocity prototypes for bee trajectories

	Results
	Local navigation flights with three conspicuous landmarks
	Dependence of the flight pattern on the landmarks' appearance

	Discussion
	Saccadic flight structure
	Intersaccadic translational movements during honeybee local navigation flights
	Spatial distribution of prototypical movements

	Acknowledgments
	References
	Appendix
	Evaluating clustering results for determining the suitable number of clusters




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


