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The endocannabinoid system shows functional activity from early stages of brain devel-
opment: it plays an important role in fundamental developmental processes such as cell
proliferation, migration, and differentiation, thus shaping brain organization during pre- and
postnatal life. Cannabis sativa preparations are among the illicit drugs most commonly
used by young people, including pregnant women. The developing brain can be there-
fore exposed to cannabis preparations during two critical periods: first, in offspring of
cannabis-using mothers through perinatal and/or prenatal exposure; second, in adoles-
cent cannabis users during neural maturation. In the last decade, it has become clear
that the endocannabinoid system critically modulates memory processing and emotional
responses.Therefore, it is well possible that developmental exposure to cannabinoid com-
pounds induces enduring changes in behaviors and neural processes belonging to the
cognitive and emotional domains. We address this issue by focusing on rodent studies, in
order to provide a framework for understanding the impact of cannabinoid exposure on the
developing brain.
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INTRODUCTION
The endocannabinoid system consists of two types of G-protein-
coupled receptors (CB1, highly expressed in the brain, and
CB2, more abundant in immune cells), their endogenous lipid
ligands, and the enzymatic machinery for their synthesis and
degradation (Piomelli, 2003; Di Marzo et al., 2005; De Petrocel-
lis and Di Marzo, 2009). Endogenous ligands for cannabinoid
receptors, i.e., endocannabinoids [mainly anandamide and 2-
arachidonoylglycerol (2-AG)], are synthesized on demand in
an activity-dependent manner and released from postsynaptic
neurons (Freund et al., 2003; Piomelli, 2003). Once released
into the synaptic cleft, the newly synthesized endocannabinoids
travel in retrograde direction and bind to cannabinoid recep-
tors on presynaptic terminals (Freund et al., 2003; Piomelli,
2003). The primary consequences of activation of cannabinoid
receptors are regulation of ion channel activity and neurotrans-
mitter release (Szabo and Schlicker, 2005). Thus, by acting on
cannabinoid receptors on both excitatory and inhibitory ter-
minals, endocannabinoids play a major role in several forms
of short- and long-term synaptic plasticity (Freund et al., 2003;
Piomelli, 2003; Chevaleyre et al., 2006). Endocannabinoid mod-
ulation of synaptic activity affects several biological functions,
including regulation of emotionality and cognitive performance
(Wotjak, 2005; Moreira and Lutz, 2008; Campolongo et al.,

2009a,b; Lutz, 2009; Akirav, 2011; Marco et al., 2011; Rubino
and Parolaro, 2011; Terzian et al., 2011; Zanettini et al., 2011). It
has indeed repeatedly been shown that cannabis exposure pro-
duces a wide range of subjective emotional effects in humans
(Tunving, 1985; Williamson and Evans, 2000; Degenhardt et al.,
2003; Di Forti et al., 2007; Murray et al., 2007; Fattore and
Fratta, 2011). Furthermore, many clinical studies have reported
that acute challenges with or prolonged use of cannabis and its
products may impair attentional processing and working mem-
ory in humans (Iversen, 2003; Ranganathan and D’Souza, 2006;
Pattij et al., 2008; Solowij and Pesa, 2010; Fattore and Fratta,
2011). These observations have their counterpart in animal stud-
ies, showing that cannabinoid compounds elicit dose-dependent
and environment-dependent anxiolytic and anxiogenic effects in
rodent models of anxiety (Onaivi et al., 1990; Rodriguez de Fon-
seca et al., 1996, 1997; Haller et al., 2002, 2004a,b; Martin et al.,
2002; Kathuria et al., 2003; Wotjak, 2005; Bortolato et al., 2006;
Moreira et al., 2008; Marco et al., 2011), and affect learning and
memory in rodents (Castellano et al., 2003; Riedel and Davies,
2005; Wotjak, 2005; Schneider et al., 2008; Suenaga and Ichi-
tani, 2008; Baek et al., 2009; Marsicano and Lafenetre, 2009;
Akirav, 2011).

In both humans and rodents, the endocannabinoid sys-
tem is present and active in the central nervous system (CNS)
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from early developmental ages (Berrendero et al., 1998;
Fernandez-Ruiz et al., 2000; Mato et al., 2003; Fride, 2004;
Galve-Roperh et al., 2006; Harkany et al., 2007) and continues to
develop throughout adolescence (Rodriguez de Fonseca et al.,
1993; Belue et al., 1995; Romero et al., 1997; Berrendero et al.,
1999). Therefore, developmental exposure to cannabinoid com-
pounds can have profound effects on brain architecture, chemistry
and neurobehavioral function, by changing for instance neuro-
transmitter levels, and by modulating expression of their receptors,
transporters, and degrading enzymes.

Developmental studies on the effects of cannabinoid drugs
are of special relevance for two main reasons. First, cannabis
preparations are the illicit drugs most widely used by young peo-
ple, peaking between 15 and 30 years of age (NIDA, 2005; Hall
and Degenhardt, 2009; SAMHSA, 2009). Importantly, there is
an emerging trend for continued cannabis use in people aged
30–40 (NIDA, 2005; SAMHSA, 2009). This pattern of use poten-
tially exposes the developing brain to cannabis at two periods:
first, in offspring of cannabis-using mothers during the peri-
natal and/or prenatal period; second, in adolescent cannabis
users during neural maturation. Therefore, a better under-
standing of the mechanisms by which exposure to cannabinoid
drugs during development leads to neurobehavioral alterations or
induces neuropsychiatric disorders later in life is an important
issue. Furthermore, in addition to the well-known therapeu-
tic effects of drugs directly acting at cannabinoid receptors
(e.g., as appetite stimulants, anti-emetics, analgesics in neuro-
pathic pain; Pacher et al., 2006; Di Marzo, 2009; Bermudez-Silva
et al., 2010), the endocannabinoid system is now emerging as
a novel therapeutic target for the treatment of the emotional
and cognitive disturbances that characterize some neuropsychi-
atric disorders (Piomelli et al., 2006; Vinod and Hungund, 2006;
Petrosino and Di Marzo, 2010; Marco et al., 2011), including
neurodevelopmental disorders. However, the potential thera-
peutic application of cannabinoid drugs in young populations
requires a profound investigation of possible adverse effects
of such compounds, particularly on the CNS of immature
individuals.

In order to provide a deeper understanding of the long-
lasting, subtle neurobehavioral effects of developmental exposure
to cannabinoid drugs, and to adopt effective public health strate-
gies, it is critical to stimulate a dialog between human and animal
studies. While studies in humans are, of course, most relevant
for understanding the human situation, they can only provide
limited information about the specific molecular and cellular
consequences that underlie drug-induced behavioral and neu-
ral changes. The important advantage of animal studies is that
they allow for exquisite control over the possible confounding
factors that characterize human studies, and for examination
of the independent contribution of a certain drug to adverse
neurodevelopmental consequences.

Here, we examine and discuss preclinical evidence for how
cannabinoid exposure during critical developmental ages, such
as the perinatal, prenatal, and adolescent periods, affects emo-
tionality and cognitive performance in rodents, thus providing a
framework for understanding the impact of cannabinoid exposure
on the developing brain.

EFFECTS OF DEVELOPMENTAL EXPOSURE TO
CANNABINOIDS ON COGNITIVE PERFORMANCE IN
RODENTS
PRENATAL AND PERINATAL CANNABINOID EXPOSURE
First, we will briefly summarize the results of human studies
that investigated the consequences of developmental exposure to
cannabinoids on cognitive performance, and then we will focus
on rodent studies.

Since the late 1970s, two extended longitudinal cohort studies,
the Ottawa Prenatal Prospective Study (OPPS) and the Mater-
nal Health Practices and Child Development Study (MHPCD),
have been measuring the cognitive functions of children born
from mothers who consumed Cannabis sativa preparations dur-
ing pregnancy (Day et al., 1992; Fried, 2002b; Trezza et al., 2008b;
Campolongo et al., 2009c, 2010). These studies showed that the
consequences of prenatal exposure to cannabis are rather sub-
tle. Immediately after birth, there is little evidence for a prenatal
cannabis effect either upon growth or behavior (Fried and Watkin-
son, 1988). However, beyond the age of 3, there are findings
suggesting an association between prenatal cannabis exposure and
aspects of cognitive behavior that fall in the domain of exec-
utive functions (Fried and Watkinson, 1990; Day et al., 1992,
1994; Fried et al., 1998; Fried and Smith, 2001; Fried, 2002b;
Trezza et al., 2008b). Executive functions refer to higher-order
cognitive functions such as cognitive flexibility, sustained and
focused attention, planning and working memory. These func-
tions enable us to organize and manage the many tasks in our
daily life; for instance, to account for short- and long-term
consequences of our actions, to make real time evaluations of
our actions, and make necessary adjustments if these actions
are not achieving the desired results. Impairments in execu-
tive functions have a major impact on our ability to perform
tasks as planning, prioritizing, organizing, paying attention to
and remembering details, and controlling our emotional reac-
tions. In particular, the facets of executive functions which
appear to be affected by cannabis exposure are the domains
of attention/impulsivity and problem solving situations requir-
ing integration and manipulation of basic visuoperceptual skills
(Fried and Watkinson, 1990; Day et al., 1992, 1994; Fried et al.,
1998; Fried and Smith, 2001; Fried, 2002b; Trezza et al., 2008b).
The deficits in executive functions induced by prenatal cannabis
exposure seem to be long-lasting, since 18- to 22-year-old young
adults exposed to cannabis during pregnancy showed altered neu-
ronal functioning during visuospatial working memory processing
(Smith et al., 2006).

Although there is a convergence of evidence in human stud-
ies, the very limited number of studies which have followed
children beyond the age of 3 emphasizes the need for further,
well-controlled investigations in this area. Furthermore, it cannot
be excluded from human studies that genetic and environmen-
tal variables also contribute to the relationship between maternal
cannabis use and long-term cognitive deficits in the offspring.
Therefore, the long-term effects of prenatal exposure to cannabi-
noid drugs on cognitive functions in rodents have received a
great deal of attention. Prenatal exposure to a moderate dose
of the synthetic CB1 cannabinoid receptor agonist WIN55,212-
2 (0.5 mg/kg from GD 5 to GD 20) has been shown to induce
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a disruption of memory retention in 40- and 80-day-old rat
offspring tested in the inhibitory avoidance task (Mereu et al.,
2003). This cognitive impairment was not due to alterations
of non-associative nature, since the approach latency during
the acquisition trials of the task was unaffected. The memory
impairment in WIN55,212-2-exposed offspring was associated
with alterations in hippocampal long-term potentiation (Mereu
et al., 2003). In vivo microdialysis experiments also showed a
significant decrease in basal and K+-evoked extracellular glu-
tamate levels in the hippocampus of juvenile and adult rats
born from WIN55,212-2-treated dams (Mereu et al., 2003). The
decrease in hippocampal glutamate overflow was suggested to be
the cause of disrupted long-term potentiation, which could, in
turn, underlie the long-lasting memory impairment caused by
gestational exposure to the cannabinoid receptor agonist (Mereu
et al., 2003). To further support the hypothesis that changes in
glutamatergic neurotransmission might be responsible of the cog-
nitive impairment observed in WIN55,212-2-exposed offspring,
in vivo microdialysis experiments showed that basal and K+-
evoked glutamate levels were significantly lower in the cerebral
cortex of both adult (90-day-old) and adolescent (40-day-old)
rats exposed to WIN55,212-2 during gestation than in those born
from vehicle-treated mothers (Antonelli et al., 2004; Castaldo et al.,
2007; Ferraro et al., 2009). Interestingly, the cognitive deficits
induced by prenatal exposure to WIN55,212-2 appeared already at
early developmental ages. Thus, 10- to 12-day-old WIN55,212-2-
exposed pups showed a poorer performance in homing behavior,
a simple form of learning occurring during the early phases of
postnatal life (Antonelli et al., 2005). At the neurochemical level,
basal and K+-evoked glutamate levels were significantly lower
in primary cell cultures of hippocampus (Mereu et al., 2003)
and cerebral cortex (Antonelli et al., 2005, 2006) obtained from
pups exposed to WIN55,212-2 compared to pups from the con-
trol group. The alteration of cortical glutamate transmission
induced by prenatal WIN55,212-2 exposure was also associated
with a significant reduction of NMDA receptor-mediated reg-
ulation of glutamate levels (Ferraro et al., 2009). In fact, the
NMDA-induced concentration-dependent increase of glutamate
levels observed in cortical cell cultures obtained from neonates
born from vehicle-treated dams was completely lost in cell cul-
tures obtained from pups prenatally exposed to WIN55,212-2
(Antonelli et al., 2005). These results suggest that chronic pre-
natal treatment with WIN55,212-2 induces a loss of NMDA
receptor activity in the exposed offspring (Antonelli et al., 2005;
Ferraro et al., 2009).

Morphological experiments have shown that prenatal exposure
to WIN55,212-2 also affects neuronal proliferation: a different
neurite growth pattern was observed in cortical cell cultures
obtained from pups born from mothers exposed to WIN55,212-
2 during pregnancy (Antonelli et al., 2005; Ferraro et al., 2009).
Cortical cell cultures from vehicle-exposed pups showed a high
number of healthy neurons, which developed in a monolayer
to form a complex network of neurites. On the contrary, corti-
cal cultures obtained from pups exposed to WIN55,212-2 during
pregnancy showed a minor population of neurons and abnor-
mal neurite outgrowth, characterized by impairments of neurite
branching (Antonelli et al., 2005; Ferraro et al., 2009).

Exposure to cannabinoid agonists during critical periods of
brain development is known to cause long-term changes in the
functionality of several neurotransmitter systems in adulthood,
such as alterations in dopaminergic (Rodriguez de Fonseca et al.,
1991; Bonnin et al., 1994, 1995), opioidergic (Vela et al., 1995,
1998), serotonergic (Molina-Holgado et al., 1996), and GABAergic
(Garcia-Gil et al., 1999a) systems. In addition, prenatal exposure to
WIN55,212-2 has been found to induce long-term changes in the
activity of the endocannabinoid system: in particular, the func-
tionality of CB1 receptors in the hippocampus differed between
adult WIN55,212-2- and vehicle-exposed offspring (Castelli et al.,
2007). Thus, it can be speculated on basis of the in vitro and in vivo
results that gestational WIN55,212-2-exposure produces enduring
alterations of the endocannabinoid system in the developing brain,
which may lead to a long-lasting and irreversible disruption of
glutamate cortical and hippocampal function (Castelli et al., 2007;
Ferraro et al., 2009).

As for the clinical relevance of these preclinical studies, it
is important to estimate, by extrapolation, whether the dose
of the synthetic cannabinoid agonist WIN55,212-2 is com-
parable to that of the main active ingredient of cannabis,
�9-tetrahydrocannabinol (THC), absorbed by cannabis users. It
has been estimated that a dose of 5 mg/kg of THC in rats corre-
sponds to a moderate exposure to the drug in humans, correcting
for the differences in route of administration and body weight sur-
face area (Garcia-Gil et al., 1997, 1999a,b). WIN55,212-2 has been
found to be 3–10 times more potent than THC, depending on
the administration route and the behavioral endpoints considered
(Compton et al., 1992; French et al., 1997; Hampson et al., 2000).
This mirrors the CB1 receptor affinity rank order for the two drugs
(Matsuda, 1997; Pertwee, 1997). Based on these considerations,
the dose of WIN55,212-2 used in the studies described above cor-
responds to a moderate, or even to a low, exposure to cannabis
in humans (Mereu et al., 2003). Furthermore, in line with studies
that used a protocol of prenatal WIN55,212-2 exposure, it has been
demonstrated that the active ingredient of cannabis, THC, admin-
istered during the perinatal period at a dose (5 mg/kg, per os, from
GD 15 to PND 9) that is not associated with gross malformations
and/or overt signs of toxicity, induces cognitive impairments in
the adult offspring (Campolongo et al., 2007). Importantly, peri-
natal exposure to THC not only induced a long-term memory
impairment in the adult offspring, as revealed by the inhibitory
avoidance test, but also a disruption in short-term olfactory mem-
ory, as assessed in the social discrimination test (Campolongo
et al., 2007). This form of memory, that plays a crucial role in the
processing of social information, requires integral glutamatergic
projections from the hippocampal formation to prefrontal areas
(Steckler et al., 1998; McGaugh, 2002), and then back from the
prefrontal cortex to the hippocampus. Interestingly, the cognitive
impairments observed in THC-exposed adult offspring were asso-
ciated with long-lasting alterations in the cortical expression of
genes related to glutamatergic neurotransmission, together with a
decrease in the cortical extracellular levels of this neurotransmit-
ter (Campolongo et al., 2007). Furthermore, in line with studies
that used a protocol of prenatal WIN55,212-2 exposure, the neu-
rochemical changes induced by prenatal THC exposure appeared
early in development, as altered regulation of glutamate release and
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decreased functional activity and expression of GLT1 and GLAST
glutamate transporters in the hippocampus of adolescent rats peri-
natally exposed to THC have been reported (Castaldo et al., 2010).
Again, these studies strongly suggest that changes in glutamatergic
neurotransmission might be responsible for the cognitive deficits
induced by prenatal cannabinoid exposure.

ADOLESCENT CANNABINOID EXPOSURE
In most Western Countries, the first episodes of cannabis use
often occur during adolescence (NIDA, 2005; Hall and Degen-
hardt, 2009; SAMHSA, 2009). Adolescence is a critical phase for
CNS development during the transition from childhood to adult-
hood (Spear, 2000; Andersen, 2003). It is a period characterized
by widespread neuronal plasticity and maturation at the neural
and network level, when the brain undergoes both progressive
and regressive changes including extensive synaptic remodeling
and pruning and alterations in neurotransmitter levels and their
receptors in cortical and limbic brain regions across different
species (Spear, 2000; Andersen, 2003), processes in which the
endocannabinoid system plays a major role (Spear, 2000; Ander-
sen, 2003; Freund et al., 2003; Bossong and Niesink, 2011; Rubino
et al., 2011).

Both neuropsychological and functional imaging studies indi-
cate that the detrimental effects of cannabis on cognitive per-
formance may be more pronounced when cannabis is used
during adolescence (Ehrenreich et al., 1999; Jager and Ramsey,
2008; Schweinsburg et al., 2008; Bossong and Niesink, 2011).
Most imaging studies in adolescent subjects reported cannabis-
induced alterations in working memory (Jacobsen et al., 2004,
2007; Schweinsburg et al., 2008). Studies making a distinction
between the initiation of cannabis use in adolescence and in adult
life showed attention deficits and poor cognitive performance in
early-onset cannabis users (onset before age 17), but not in late-
onset users or control subjects (Ehrenreich et al., 1999; Pope Jr.
et al., 2003).

Despite the increasing use of cannabis among adolescents and
the sometimes conflicting results provided by clinical studies, it is
only in recent years that the short- and long-term behavioral effects
of acute and chronic adolescent exposure to cannabinoid com-
pounds in rodents have been investigated in more detail (Rubino
and Parolaro, 2008; Trezza et al., 2008b; Realini et al., 2009; Rubino
et al., 2011).

Quinn et al. (2008) showed that adolescent but not adult
rats displayed significantly impaired object recognition memory
and altered protein expression profiles in the hippocampus fol-
lowing repeated THC exposure. Similarly, Schneider and Koch
(2003) showed that chronic pubertal treatment with WIN55,212-
2 resulted in impaired object recognition memory in adulthood,
associated with disrupted prepulse inhibition of the acoustic star-
tle response and lower break points in a progressive-ratio operant
behavioral task (Schneider and Koch, 2003). Again, it is worth
noting that if the chronic cannabinoid treatment was adminis-
tered during adulthood, none of the tested behaviors was affected
(Schneider and Koch, 2003). Gender-specific effects of chronic
adolescent cannabinoid exposure have also been reported (O’Shea
et al., 2004, 2006). In these studies, the cannabinoid receptor ago-
nist CP-55,940 was administered daily for 21 consecutive days

to either adolescent or adult male and female rats. Following
a long drug-free period, working memory was assessed in the
object recognition task (O’Shea et al., 2004, 2006). In females,
cannabinoid-treated adolescent, but not adult rats demonstrated
impaired working memory compared to vehicle-treated controls
(O’Shea et al., 2004, 2006). Interestingly, in males, cannabinoid
treatment during adolescence and adulthood produced similar
working memory deficits (O’Shea et al., 2004). Thus, in females,
adolescents may be more susceptible and adults more resilient
to long-lasting cannabinoid-induced cognitive deficits, whereas
in males, both adolescents and adults are equally vulnerable.
Deficits in object recognition memory have also been reported in
adult female rats treated chronically with THC during adolescence
(Realini et al., 2011).

Developmental and gender sensitivity to cannabinoid com-
pounds has been further investigated by Cha et al. (2006, 2007),
who assessed spatial memory in the Morris water maze task follow-
ing acute and chronic THC exposure in male and female adolescent
and adult rats. Acute THC exposure led to greater learning impair-
ments in adolescent than in adult male and female rats tested
in both the spatial and non-spatial versions of the water maze
tasks (Cha et al., 2006, 2007). Conversely, chronic THC admin-
istration during either adolescence or adulthood had no effect
on spatial learning in animals of both sexes tested after a long
drug-free period (Cha et al., 2006, 2007). Thus, while adolescents
may be more sensitive to the acute effects of cannabinoids, both
adolescents and adults demonstrated similar recovery of cognitive
performance following discontinuation of chronic treatment (Cha
et al., 2006, 2007). In line with these findings, it has been reported
that adolescent exposure to the cannabinoid receptor agonist CP-
55,940 did not affect adult performance of animals of both sexes
in the water maze task (Higuera-Matas et al., 2009). However, fol-
lowing adolescent exposure to THC, spatial working memory in
the radial maze task was impaired in both male and female adult
rats, while aversive memory in the inhibitory avoidance task was
unaffected (Rubino et al., 2009a,b). The neural underpinnings of
the spatial working memory impairments observed in the latter
studies may differ between males and females (Rubino and Paro-
laro, 2011). Indeed, adult female rats showed reduced levels of
proteins involved in synaptic plasticity and altered pattern of pro-
tein expression in synaptosomes from prefrontal cortex, with no
alterations in the hippocampus (Rubino et al., 2009a). Conversely,
in adult male rats pre-exposed to THC during adolescence, the
spatial working memory deficit was related to reduced levels of
markers of neuroplasticity and morphological alterations in the
hippocampus (Rubino et al., 2009b). These results suggest that
the same protocol of adolescent THC exposure, although result-
ing in similar behavioral endpoints, may have different neuronal
consequences in the brain of male or female rats.

Long-term sexually dimorphic effects induced by adolescent
THC exposure on cognitive performance have also been described
by Harte and Dow-Edwards (2010), who examined the effects of
adolescent THC exposure on visual spatial learning in adulthood
using the active place avoidance test. This cognitive task allows to
simultaneously assess the ability to learn and retrieve spatial infor-
mation, as well as flexibility of learning, by training animals to
actively move over a slowly rotating arena and avoid an unmarked
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sector, entering which is punished by a mild footshock. The shock
sector is defined in a stable position with respect to the experimen-
tal room. Animals must thus localize the shock sector exclusively
by its spatial relations to distal orienting cues located in the room
and walk into the safe part of the arena in a direction opposite
to arena rotation (Cimadevilla et al., 2000). By using this task,
Harte and Dow-Edwards (2010) showed that THC administra-
tion during early adolescence had no effect on the acquisition of
the task. However, male and female animals treated with THC
during early adolescence made more errors on the reversal trial
requiring flexibility in learning. Conversely, THC administration
during late adolescence had no effect in both sexes. Therefore, early
adolescence appeared to be more sensitive to the cognitive effects
of THC than late adolescence (Harte and Dow-Edwards, 2010).
These findings indicate that the time window during adolescence
in which THC is administered can have a profound influence on
its long-lasting cognitive outcomes.

SUMMARY
Taken together, the preclinical studies outlined here show that
maternal and adolescent exposure to either natural or synthetic
cannabinoid agonists alters cognitive performance in the off-
spring. The cognitive alterations displayed by cannabinoid-treated
rats are long-lasting, since they persist into adulthood. Further-
more, in line with clinical observations, it appears from preclinical
studies that adolescent rats may be more susceptible than adults to
the cognitive effects induced by chronic exposure to cannabinoid
compounds.

EFFECTS OF DEVELOPMENTAL EXPOSURE TO
CANNABINOIDS ON EMOTIONALITY IN RODENTS
PRENATAL AND PERINATAL CANNABINOID EXPOSURE
Although C. sativa preparations have long been known to produce
a wide range of subjective emotional effects, it is only in recent
years that the crucial role of the endocannabinoid system in the
modulation of emotional states has been underscored (Haller et al.,
2002; Millan, 2003; Witkin et al., 2005; Mangieri and Piomelli,
2007; Trezza et al., 2008a; Bambico et al., 2009; Marco and Viveros,
2009; Marco et al., 2011; Zanettini et al., 2011). It has, indeed,
been shown that CB1 cannabinoid receptors are highly expressed
in brain areas involved in the modulation of emotions (Tsou
et al., 1998; Ameri, 1999; Davies et al., 2002). In these regions,
endocannabinoids modulate the release of neurotransmitters and
neuropeptides that play a key role in the control of emotionality,
such as serotonin, dopamine (Tsou et al., 1998; Katona et al., 2001;
Schlicker and Kathmann, 2001; Hermann et al., 2002) and the
anxiogenic neuropeptides, CCK and CRF (Rodriguez de Fonseca
et al., 1997; Ameri, 1999). Therefore, it is well conceivable that
in utero cannabis exposure might produce changes in the emo-
tional reactivity of the exposed offspring. Human studies support
this hypothesis, by showing that prenatal exposure to cannabis
in the first and third trimesters of pregnancy predicts levels of
self-reported anxiety and depressive symptoms in children (Gold-
schmidt et al., 2004; Gray et al., 2005; Leech et al., 2006). Again,
however, only few clinical studies followed the exposed children
past the age of 10 (Fried, 2002a,b; Fried et al., 2003; Goldschmidt
et al., 2004; Gray et al., 2005; Leech et al., 2006), so that most

of the available information about the long-term consequences
of in utero cannabis exposure on the emotional reactivity of the
offspring comes from preclinical studies.

Concerning the neonatal age, we found that 12-day-old pups
exposed to THC during the perinatal period displayed an increased
rate of ultrasonic vocalizations (USVs) when separated from
the mother and siblings compared to the control group (Trezza
et al., 2008a). The USV test has been extensively validated and
widely used to investigate the ontogeny of emotionality (Insel
et al., 1986; Cuomo et al., 1987; Branchi et al., 2001, 2004). USVs
are emitted by rodent pups in response to separation from the
mother and the nest and play an important communicative role in
mother–offspring interaction. They are, indeed, a potent stimu-
lus for maternal retrieval and elicit caregiving behaviors in the
dam (Farrell and Alberts, 2002; Trezza et al., 2011). As high
rates of USVs are generally indicative of an anxiety-like state,
the present results show that perinatal exposure to THC induces
an increased emotional reactivity of the offspring (Trezza et al.,
2008a). Conversely, a reduction of separation-induced USVs in rat
pups either prenatally exposed to the synthetic cannabinoid ago-
nist WIN55,212-2 (Antonelli et al., 2005) or acutely treated with
the synthetic cannabinoid agonist CP-55,940 (McGregor et al.,
1996) has also been reported, highlighting how different time
windows of exposure to cannabinoids can induce opposite neu-
rofunctional effects (Costa et al., 2004). However, differences in
the cannabinoid agonist used, tested dose, and treatment schedule
(acute vs. chronic treatment) could also account for the appar-
ent discrepancies between these preclinical findings. Interestingly,
the alterations we observed in the emotional reactivity of THC-
exposed pups were long-lasting (Trezza et al., 2008a). Indeed, at
adolescence, THC-exposed rats displayed lower social activity
than controls in the social interaction test (Trezza et al., 2008a).
These results are in agreement with findings showing that the syn-
thetic cannabinoid agonist CP-55,940, repeatedly administered
from PND 4 to PND 25, reduced social interaction in 60-day-
old rats (O’Shea et al., 2006). In adulthood, THC-exposed rats
showed increased anxiety in the elevated plus-maze: they spent
more time in the closed arms of the maze, exhibited a significantly
lower number of head dippings and a higher number of stretched-
attend postures than vehicle-exposed rats (Trezza et al., 2008a).
The number of total entries, however, was unaffected, indicating
that perinatal THC treatment did not alter locomotor activity in
the offspring. To further support an altered emotional reactivity
induced by perinatal THC exposure, Newsom and Kelly reported
that adult rats perinatally exposed to THC spent less time in the
central part of an open field arena compared to vehicle-exposed
animals, with no changes in general locomotor activity (Newsom
and Kelly, 2008).

ADOLESCENT CANNABINOID EXPOSURE
The possible causal relation between cannabis use during adoles-
cence and psychotic and affective neuropsychiatric diseases later
in life is widely debated. While some clinical studies indicate that
exposure to cannabis preparations during adolescence may be a
risk factor for neuropsychiatric disorders such as schizophrenia,
depression, and other mood pathologies (Arseneault et al., 2002;
Fergusson et al., 2002, 2003; Patton et al., 2002; Degenhardt et al.,

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2012 | Volume 6 | Article 2 | 5

http://www.frontiersin.org/Behavioral_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


“fnbeh-06-00002” — 2012/1/23 — 14:30 — page 6 — #6

Trezza et al. Developmental cannabinoid exposure: behavioral outcomes

2003; Stefanis et al., 2004; Hayatbakhsh et al., 2007; Moore et al.,
2007; Lee et al., 2008), other authors have found no strong evidence
that cannabis use by young people induces deleterious mental
health outcomes (Iversen, 2003; Macleod et al., 2004, 2007; de
Graaf et al., 2010). Therefore, human studies are still inconclusive
as to whether cannabis use during adolescence has a direct causal
influence on psychotic, depressive, and/or anxiety disorders later
in life, whether cannabis exposure and subsequent psychopathol-
ogy are related by a common liability, or if the association results
from a combination of correlated and causal processes.

ANXIETY-RELATED BEHAVIORS
Despite the fact that the majority of preclinical studies supports
the hypothesis that adolescent exposure to cannabinoid drugs
alters emotional reactivity in adulthood, inconsistent and some-
times sex-dependent effects have also been reported (Rubino
et al., 2011). For instance, some authors reported no changes
in emotional reactivity in animals pretreated with cannabinoid
drugs during adolescence and tested in the elevated plus-maze test
after a washout period (Rubino et al., 2008; Higuera-Matas et al.,
2009; Bambico et al., 2010), while others described cannabinoid-
induced anxiolytic-like effects in the same behavioral test (Biscaia
et al., 2003; Wegener and Koch, 2009). Contrasting results also
emerged from other behavioral tests commonly used to assess
emotional reactivity in rodents. For instance, cannabinoid expo-
sure during adolescence induced anxiety-like behaviors in the
novelty-suppressed feeding test (Bambico et al., 2010), which
assesses anxiety-induced hyponeophagia by measuring the inhibi-
tion of ingestion and approach to food when animals are exposed
to an anxiety-provoking novel environment. Conversely, no evi-
dence of increased anxiety induced by adolescent cannabinoid
exposure was found in adult rats tested in the emergence test
(O’Shea et al., 2006), that measures the animal’s conflict between
exploring a novel environment, and avoiding an open area. When
emotionality was assessed by measuring exploratory behavior and
the time spent in the central and peripheral parts of an open field
arena, some authors reported no effects of adolescent cannabinoid
exposure (Rubino et al., 2008; Bambico et al., 2010), while others
reported anxiolytic-like responses (Biscaia et al., 2003; Wegener
and Koch, 2009).

SOCIAL BEHAVIOR
More consistent results have been obtained when the social inter-
action test was used to assess the emotional reactivity of adult
rats exposed to cannabinoid drugs during adolescence. The syn-
thetic cannabinoid agonist CP-55,940, administered for 21 days to
adolescent rats, reduced social interaction at adulthood, both in
male (O’Shea et al., 2006) and female (O’Shea et al., 2004) subjects.
Similar results have been reported following chronic adolescent
treatment with THC (Realini et al., 2011) or the synthetic cannabi-
noid receptor agonist WIN55,212-2 (Leweke and Schneider, 2011).
There are many internal and external factors that influence an
animal’s sociability, and anxiety has been identified as one of
them (File and Seth, 2003). Therefore, reduced social interac-
tion is widely interpreted as reflecting increased anxiety. However,
it can not be excluded from social interaction experiments that
changes in sociability reflect other aspects of social behavior,

such as social reward, or the subjective interpretation of social
signals, that might also be affected by adolescent cannabinoid
exposure. For instance, we have recently shown that the endo-
cannabinoid system modulates the most abundant and rewarding
form of social interaction displayed by adolescent mammals, that
is social play behavior (Trezza et al., 2010). In particular, we found
that systemic administration of indirect cannabinoid receptor
agonists, i.e., drugs that increase endocannabinoid signaling by
interfering with endocannabinoid deactivation, enhances social
play, through interaction with opioid and dopaminergic neuro-
transmission (Trezza and Vanderschuren, 2008a,b, 2009). This
suggests that during social play, endocannabinoids are released
in brain areas mediating this behavior. Increased endocannabi-
noid activity might facilitate social play, so that drugs that
prevent endocannabinoid deactivation likely enhance social play
by magnifying the ongoing endocannabinoid tone. In contrast, we
have also previously shown that stimulation of CB1 cannabinoid
receptors throughout the brain using the cannabinoid receptor
agonist WIN55,212-2 or the stable analog of anandamide, (R)-
methanandamide reduced social play (Trezza and Vanderschuren,
2008a,b, 2009). Therefore, it appears from these studies that the
effects of cannabinoid drugs on social behavior differ according to
the way the endocannabinoid system is targeted: drugs that pre-
vent endocannabinoid deactivation enhance rewarding aspects of
social interactions by magnifying ongoing endocannabinoid tone;
conversely, drugs that directly activate cannabinoid receptors in
multiple brain areas reduce sociability, perhaps by disrupting cog-
nitive functions necessary to perform adequate social interactions
(Egerton et al., 2006).

DEPRESSIVE-LIKE BEHAVIORS
Alongside changes in anxiety-related and social behaviors, other
facets of emotionality are also affected by adolescent cannabinoid
exposure. Thus, chronic treatment with both synthetic and natural
cannabinoid agonists resulted in behavioral despair in adult-
hood, assessed as increased immobility in the forced swimming
test, and anhedonia, measured as decreased sucrose preference
in the sucrose-preference test (Rubino et al., 2008; Bambico et al.,
2010; Realini et al., 2011). Other measures of anhedonia, such
as impairment of progressive-ratio instrumental responding for
food rewards and changes in sleep–wake cycle have also been
reported following adolescent cannabinoid exposure (Schnei-
der and Koch, 2003, 2005). Interestingly, as already reported
for cannabis-induced cognitive impairments, the depression-like
phenotype did not develop when the chronic cannabinoid admin-
istration was performed in older animals (Schneider and Koch,
2003, 2005; Bambico et al., 2010; Realini et al., 2011), confirming
that the adult brain is less susceptible to the deleterious impact of
chronic cannabinoid exposure.

As for the neural substrates underlying the depressive-like
behaviors induced by adolescent cannabinoid exposure, electro-
physiological recordings revealed that adolescent but not adult
chronic cannabinoid treatment attenuated serotonergic neuro-
transmission in the dorsal raphe nucleus, while it induced a
significant increase in noradrenergic neurotransmission in the
locus coeruleus (Bambico et al., 2010). It has recently been
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proposed that the endocannabinoid system regulates affective
homeostasis by interacting with monoaminergic neurotransmis-
sion (for review, see Bambico et al., 2009). Thus, activation of
cannabinoid receptors by cannabinoid receptor agonists modu-
lates serotonin (Gobbi et al., 2005; Palazzo et al., 2006; Bambico
et al., 2007) and noradrenaline (Gobbi et al., 2005; Oropeza et al.,
2005, 2007) activity. CB1 receptors are expressed on serotoner-
gic neurons in the dorsal raphe nucleus (Elphick and Egetova,
2000; Haring et al., 2007) as well as on noradrenergic neurons in
the locus coeruleus (Oropeza et al., 2007). Furthermore, they are
highly expressed in limbic mood-regulatory brain areas innervated
by these nuclei, such as the amygdala (for review, see Bambico and
Gobbi, 2008; Bambico et al., 2009). During adolescence, serotoner-
gic, noradrenergic, and cannabinoid neurotransmission undergo
critical changes (Spear, 2000; Schneider, 2008). Thus, chronic
cannabinoid exposure during adolescence may interfere with the
cross-talk between these neural systems, eventually leading to
persistent affective dysfunctions.

Interestingly, it has been shown that the depression-like phe-
notype displayed by adult rats treated with cannabinoid drugs
during adolescence was paralleled by changes in other biochem-
ical parameters linked to depression, such as decreased CREB
activation in the prefrontal cortex and hippocampus, increased
CREB activation and dynorphin levels in the nucleus accumbens,
decreased neurogenesis in the dentate gyrus of the hippocam-
pus, likely triggered by a long-lasting impairment of CB1 receptor
signaling in the ventral tegmental area, amygdala, and nucleus
accumbens (Rubino et al., 2008; Realini et al., 2011; Rubino and
Parolaro, 2011). Since endocannabinoid neurotransmission in
these brain areas is fundamental for normal emotional behav-
ior and stress responses (Viveros et al., 2005; Laviolette and Grace,
2006; Zanettini et al., 2011), then changes in cannabinoid recep-
tor function induced by adolescent cannabinoid exposure might
underlie the altered emotional responses in adulthood.

SUMMARY
Altogether, the preclinical studies currently available show that
prenatal and adolescent cannabinoid exposure affects different
aspects of emotional reactivity, from early developmental ages
till adulthood. In particular, it appears from preclinical stud-
ies that the outcome of developmental cannabinoid exposure on
emotional reactivity later in life might depend on the specific com-
ponent of emotionality taxed in the different behavioral tests. For
instance, anxiety-related behaviors in tests that depend on spon-
taneous, exploratory behavior, such as the elevated plus-maze
and open field tests, appear be more resistant to the long-term
consequences of cannabinoid exposure. On the other hand, the
anxiety-related measures in the novelty-suppressed feeding test,
that depends on appetitive drive, and the reduction in social behav-
ior observed in the social interaction test appear to be particularly
sensitive to developmental cannabinoid exposure. The differences

observed at the behavioral level might also be the result of the
different neuroanatomical and molecular correlates involved in
each behavioral test. The changes in anxiety- and depressive-like
behaviors and the altered sociability induced by developmen-
tal cannabinoid exposure might, in turn, affect the ability of
the subject to cope with every day challenges and with fellow
group members. This hypothesis, however, needs to be further
investigated.

CONCLUSIONS
The endocannabinoid system plays a relevant role in brain orga-
nization during pre- and post-natal life. In Western countries, C.
sativa preparations are among the illicit drugs most commonly
used by young people, including pregnant women. Therefore,
understanding the long-lasting consequences of cannabis expo-
sure on the developing brain is an important issue. The clinical
findings currently available suggest an association between devel-
opmental cannabis exposure and executive dysfunctions. Fur-
thermore, cannabis exposure during the prenatal/perinatal and
adolescent periods has been shown to induce subtle changes in
emotionality that may persist into adulthood. Although there is
some consistency in the clinical literature, the very limited num-
ber of findings emphasizes the need for further, well-controlled
follow-up studies in this area. Relevant information is available
from preclinical studies, demonstrating that even low to moderate
doses of cannabinoids, when administered during particular peri-
ods of brain development, can have profound consequences for
brain maturation, leading to long-lasting alterations of cognitive
functions and emotional behaviors. Although there is still scarce
information about the neurobiological substrates of the observed
behavioral alterations, it appears that developmental cannabinoid
exposure induces changes in the endocannabinoid system and in
other neurotransmitter systems that are already functional at early
developmental ages. These alterations may disrupt the integrity
of mood- and cognition-regulating brain circuits, thus inducing
long-lasting emotional and cognitive disturbances.

Multiple experimental approaches, including genetics, molec-
ular biology, pharmacology, neuroanatomy, and neurophysiology,
in both preclinical and clinical settings should be encouraged
in the near future to further clarify the potential relation-
ship between developmental cannabis exposure and long-lasting
neurofunctional outcomes.
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