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The prefrontal cortex (PFC) is implicated in a variety of cognitive and executive operations.
However, this region is not a single functional unit; rather, it is composed of several function-
ally and anatomically distinct networks, including anterior cingulate cortex (ACC), medial
prefrontal cortex (mPFC), and orbitofrontal cortex (OFC).These prefrontal subregions serve
dissociable behavioral functions, and are unique in their afferent and efferent connections.
Each of these subregions is innervated by ascending cholinergic and noradrenergic sys-
tems, each of which likewise has a distinct role in cognitive function; yet the distribution and
projection patterns of cells in the source nuclei for these pathways have not been examined
in great detail. In this study, fluorescent retrograde tracers were injected into ACC, mPFC,
and OFC, and labeled cells were identified in the cholinergic nucleus basalis of Meynert
(NBM) and noradrenergic nucleus locus coeruleus (LC). Injections into all three cortical
regions consistently labeled cells primarily ipsilateral to the injection site with a minimal
contralateral component. In NBM, retrogradely labeled neurons were scattered throughout
the rostral half of the nucleus, whereas those in LC tended to cluster in the core of the
nucleus, and were rarely localized within the rostral or caudal poles. In NBM, more than half
of all retrogradely labeled cells possessed axon collaterals projecting two or more PFC sub-
regions. In LC, however, only 4.3% of retrogradely labeled neurons possessed collaterals
targeting any two prefrontal subregions simultaneously, and no cells were identified that
projected to all three regions. Of all labeled LC neurons, 49.3% projected only to mPFC,
28.5% projected only to OFC, and 18.0% projected only to ACC. These findings suggest
that subsets of LC neurons may be capable of modulating neuronal activity in individual
prefrontal subregions independently, whereas assemblies of NBM cells may exert a more
unified influence on the three areas, simultaneously.This work emphasizes unique aspects
of the cholinergic and noradrenergic projections to functionally and anatomically distinct
subregions of PFC and provides insights regarding global versus segregated regulation of
prefrontal operations by these neuromodulatory pathways.
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The prefrontal cortex (PFC) is critically involved in the mainte-
nance of cognitive and executive functions (Dias et al., 1996, 1997;
Birrell and Brown, 2000; Robbins, 2000; Dalley et al., 2004). In
both rodent and primate (including humans), distinct subregions
of PFC have been shown to mediate distinct behaviors and cogni-
tive roles (Owen et al., 1991, 1993; Dias et al., 1996, 1997; Birrell
and Brown, 2000; McGaughy et al., 2008; Newman and McGaughy,
2008). Accumulating evidence implicates anterior cingulate cortex
(ACC), medial prefrontal cortex (mPFC), and orbitofrontal cor-
tex (OFC) in distinct behavioral and cognitive functions such that
restricted region specific lesions each produce distinct behavioral
and cognitive abnormalities. Therefore, dysfunction of these, and
other, prefrontal subregions and their associated circuitries, likely
contribute to the manifestation of cognitive symptoms associated
with neuropsychiatric and neurodegenerative disease (Pantelis

et al., 1999; Arnsten, 2000; Dalley et al., 2004; Rahman et al., 2006;
Ramos and Arnsten, 2007).

In rodents, lesions of ACC produce characteristic impulsive
behaviors such as premature responding and over-responsiveness
to non-relevant stimuli in several behavioral tasks (Muir et al.,
1996; Bussey et al., 1997a,b; Parkinson et al., 2000; Cardinal et al.,
2002). In non-human primates, lesions of the dorsolateral PFC,
but not OFC, produce impairments in extradimensional shift-
ing, a behavior characterized by switching attention from one
perceptual dimension to another (Dalley et al., 2004). Similar
observations have been made for mPFC and OFC in rodent (Bir-
rell and Brown, 2000; Bissonette et al., 2008; McGaughy et al.,
2008; Newman et al., 2008). Conversely, in both rodents and non-
human primates, lesions of OFC, but not mPFC or dorsolateral
PFC impairs performance in reversal learning, a class of behavioral
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tasks that requires attentional switching without changing atten-
tion to perceptual dimension (Dias et al., 1996, 1997; Dalley et al.,
2004; Bissonette et al., 2008). Therefore, ACC lesions produce
impulsive behavior, responding to task-irrelevant, and distractor
stimuli, whereas mPFC and OFC lesions produce perseverative
behavior and an inability to dissociate attention from stimuli
that have lost their behavioral relevance. OFC, however, seems to
facilitate lower-order discriminations within the same perceptual
dimension, whereas mPFC promotes higher order discrimina-
tions, allowing an animal to shift attention to novel unrelated
stimulus features (Dalley et al., 2004). The roles of these three
subregions in the healthy brain therefore collectively contribute to
the maintenance of cognitive and executive function, permitting
an organism to properly allocate attentional reserves in a complex
and dynamic world. These functions become perturbed in a num-
ber of neuropsychiatric and neurodegenerative diseases; therefore
it is critically important to understand the underlying modulatory
mechanisms of these behaviors.

Several neuromodulatory pathways converge in PFC, includ-
ing cholinergic input from the nucleus basalis of Meynert (NBM)
and noradrenergic input from the pontine nucleus locus coeruleus
(LC). The NBM is the primary source of acetylcholine (ACh) in the
cerebral cortex (Wenk, 1997; Sarter and Bruno, 2000), has a promi-
nent role in arousal, learning, attention, and memory (Wenk, 1997;
McGaughy and Sarter, 1998, 1999; McGaughy et al., 2000; Sarter
and Bruno, 2000; Nieto-Escamez et al., 2002), and undergoes neu-
ronal degeneration in Alzheimer’s disease (Lehmann et al., 1980;
Arendt et al., 1983; Pang et al., 1993). By contrast, the LC is the
only source of norepinephrine (NE) to the forebrain and PFC
(Berridge and Waterhouse, 2003; Sara, 2009) and modulates sen-
sory processing, motor behavior, arousal, and cognitive processes
(McGaughy and Sarter, 1998; Devilbiss and Waterhouse, 2000,
2004; Berridge and Waterhouse, 2003; Hurley et al., 2004; Devilbiss
et al., 2006; Moxon et al., 2007; McGaughy et al., 2008; Newman
et al., 2008; Sara, 2009; Cain et al., 2011). A loss of LC neurons
occurs in Alzheimer’s and Parkinson’s diseases (Bondareff et al.,
1982; Gesi et al., 2000; Von Coelln et al., 2004; McMillan et al.,
2011), which may be related to the cognitive decline associated
with the progression of these disease processes. Given the impor-
tance of PFC integrity in maintaining cognition and executive
function, it seems likely that the PFC projection neurons in NBM
and LC may be those that become dysfunctional or degenerate in
various psychiatric and neurodegenerative diseases.

Both noradrenergic and cholinergic systems are extensively tar-
geted by pharmacological therapeutics designed to treat symptoms
of psychiatric and neurodegenerative disease (Robbins, 2000; Mil-
stein et al., 2007; Arnsten and Pliszka, 2011; Gamo and Arnsten,
2011; Wallace and Porter, 2011; Wallace et al., 2011). However,
evidence suggests that these systems serve dissociable functions
within the cognitive realm (McGaughy et al., 2008). Data from
computational modeling (Yu and Dayan, 2002, 2005) and behav-
ioral paradigms (Chiba et al., 1995; McGaughy and Sarter, 1995;
Bucci et al., 1998; Robbins, 2000; Dalley et al., 2001, 2004; Bouret
and Sara, 2004, 2005; Maddux et al., 2007) suggest that cholinergic
transmission signals “expected uncertainty,” whereas noradrener-
gic transmission signals “unexpected uncertainty,” For example,
in a go/no-go task in which an animal must fixate its vision on a

central point and indicate if specific target stimulus (such as a red
square) appears in a random location on a screen, there is expected
uncertainty in the location that the target will appear: the animal
has been trained to know that the target will appear, but where
this will occur is uncertain. Such conditions have been shown to
recruit the cholinergic system (Yu and Dayan, 2002, 2005). How-
ever, if a distractor stimulus (such as a blue circle) is also present
and likewise appears randomly in different locations on the screen,
unexpected uncertainty occurs if the red square suddenly loses its
relevance and the blue circle instead becomes the target. These type
of unexpected changes recruit the noradrenergic system, which is
needed to promote behavioral adaptation to the rule change that
the animal had not previously learned (Robbins, 2000; Dalley et al.,
2001, 2004; McGaughy et al., 2008; Cain et al., 2011). Importantly,
these neurochemical specific effects are also region specific: nora-
drenergic denervation of mPFC impairs extradimensional shifting
(McGaughy et al., 2008; Newman et al., 2008), a behavior which
requires adaptation to unexpected uncertainty, but not reversal
learning. Furthermore, although a NE-specific lesion produces
this effect, cholinergic denervation of mPFC does not (McGaughy
et al., 2008). A loss of cholinergic input to mPFC, on the other
hand, impairs behavior in the five choice serial reaction time task,
in which an animal must divide its attention between five ran-
domly flashing stimulus lights, and correctly report which light
flashed to retrieve reward (Dalley et al., 2001, 2004; McGaughy
et al., 2002; Maddux et al., 2007). The cholinergic and nora-
drenergic systems in PFC, therefore, are requisite for behavioral
adaptation to both expected and unexpected certainty, and per-
mit an animal to appropriately allocate attentional reserves and
navigate in a complex and dynamic world.

Little attention has been paid, however, to the organization
of the efferent projections of the NBM and LC to OFC, mPFC
and ACC. A rough efferent topography of the cortical projection
from NBM has been identified in primate: rostral and medial
groups of cells project to the medial surface of the cortex, ros-
tral and lateral groups project to frontal and parietal cortices
and amygdala, intermediate regions project to prefrontal, insu-
lar, and posterior parietal cortices, and caudal portions project to
the superior and temporal cortex (Pang et al., 1993). This nucleus
is less well defined and its efferent cholinergic neurons are more
scattered in the rodent (Wenk, 1997; Sarter and Bruno, 2000);
however, it similarly stains intensely for cholinergic markers, exists
within the substantia innominata of the basal forebrain, and has
likewise been implicated in the modulation of higher order cogni-
tive processes (Lehmann et al., 1980; Wenk, 1997; McGaughy and
Sarter, 1998, 1999; Sarter and Bruno, 2000; Nieto-Escamez et al.,
2002). Previous reports of LC anatomy suggest that this nucleus
is highly divergent with only modest efferent topography (Fallon
and Loughlin, 1982; Loughlin et al., 1982; Waterhouse et al., 1983,
1993), although some neurons have a tendency to collateralize to
target multiple structures along the same sensory pathway (Simp-
son et al., 1997, 1999, 2006). The nature of the projections from
LC and NBM to the subregions of PFC, however, has not yet been
explored. Because of the prominent role of PFC in normal cog-
nitive processes and the absence or compromise of these facilities
in neurodegenerative and neuropsychiatric disease, it is critical to
have specific knowledge of these afferent modulatory pathways.
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Studies from our laboratory are currently underway to deter-
mine the organization of the monoaminergic and cholinergic
projections from NBM and LC to discrete subregions of PFC.
The results reported here summarize the findings of experiments
targeting the NBM and LC and show that OFC, mPFC, and
ACC are differentially innervated by discrete groupings of cells
in these nuclei. In these studies, adult male Sprague-Dawley rats
(Taconic, n = 10) underwent a surgical procedure to pressure
inject each region with 0.3 μl of different fluorescently labeled ret-
rograde tracers (FluoroEmerald, FluoroRuby, Cascade Blue dex-
tran, 10,000 MW, Invitrogen) at a flow rate of 0.036 μl/min using
a motorized syringe pump. Therefore, all animals in the study
received a differently labeled tracer into each region, such that all
were injected a total of three times. In this way, the prefrontal
terminal field(s) of individual retrogradely labeled cells in NBM
and LC could be determined. Injections were counterbalanced
between surgeries to control for regional differences in uptake
and transport of the different tracers. After a one week survival
time, rats were perfused and brains were extracted and sectioned
at 80 μm (injection sites) or 30 μm (NBM and LC). Sections con-
taining NBM and LC underwent fluorescent immunostains for
the vesicular acetylcholine transporter (VAChT) and dopamine
β hydroxylase (DBH), respectively, to identify the borders of and
cell types in each nucleus. Tissue containing injection sites under-
went a fluorescent Nissl stain and were microscopically observed
to determine if tracer diffused beyond the anatomical boundaries
of each PFC subregion. The injected volumes were identical for all
tracers and all regions within and between animals. All tracers in all
regions diffused similar distances from the site of deposition and
filled all cortical layers. Any cases in which tracer diffused beyond
the anatomical boundaries of OFC, mPFC, and ACC, or between
these regions (n = 1) were excluded from further analysis. Sections
were visualized on a Leica DMBRE fluorescence microscope with
filters to detect FluoroRuby labeled cells (ex/em = 540/605), Flu-
oroEmerald labeled cells (ex/em = 480/535) Cascade Blue labeled
cells (ex/em = 405/460) and VAChT/DBH immunoreactive cells
(ex/em = 620/700) so that the terminal field(s) and putative neu-
rochemical identity of each retrogradely labeled cell could be
identified. Fluorescent photomicrographs were generated using
a Retiga EXi camera and QImaging software. Figure 1 shows
representative injections into OFC, mPFC, and ACC of a single
animal. Black and white low power images in Figures 2A and 3A
show representative sections of NBM and LC through the fluo-
rescent filter used to detect VAChT and DBH immunoreactivity,
respectively. Color photomicrographs in Figures 2B and 3B show
merged images of the same section photographed through indi-
vidual fluorescence filters that were used to detect each tracer.
All neurons in LC express DBH and therefore all retrogradely
labeled cells in LC were included in the analysis. However, not
all retrogradely labeled cells in the region of NBM stained posi-
tively for VAChT; as such, only those cells that were immunore-
active for the peptide were counted. High power photomicro-
graphs in Figures 2C and 3C show retrogradely labeled cells
denoted by arrows and Roman numerals in low power images
as viewed through each fluorescence filter to detect retrograde
tracers (rows 1–3), the merged image (row 4), and the fluorescent
immunostain (row 5).

FIGURE 1 | Representative low power photomicrographs showing

injections into OFC (blue, top panel), mPFC (red, middle panel), and

ACC (green, bottom panel). Sections were stained with a fluorescent
Nissl stain and then photographed through appropriate fluorescence filters
to show cell bodies and the extent of tracer diffusion. The images were
then overlaid with atlas images from Paxinos and Watson (1997) to confirm
restriction of tracer to regions of interest. Scale bar = 4 cm.

Data suggest that these nuclei are vastly different with respect
to the level of collateralization of axons projecting to OFC, mPFC,
and ACC. Damage to the tissue encompassing NBM in two brains
made it impossible to identify NBM, therefore data for this nucleus
are representative of only seven animals. About 23.3% of retro-
gradely labeled putative cholinergic cells were found to collateral-
ize to all three prefrontal subregions, 37.4% projected to any two
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FIGURE 2 | (A,B) Show the same representative mid-level NBM section
through the fluorescence channel to detect VAChT immunofluorescence (A)

and merged fluorescence channels to detect retrograde tracer (B). Scale
bars = 200 μm. (C) shows high power images of cells represented by
arrowheads and Roman numerals in (A,B). The top three rows illustrate each
image through the fluorescence channels necessary to detect the three

retrograde tracers. Images in row four show the three composite images
merged with one another and demonstrate which tracers individual cells
contained, and therefore whether or not they projected to multiple PFC
terminal fields. The same cells are shown through the fluorescence channel to
detect VAChT immunofluorescence in the bottom row. Scale bars in
(C) = 20 μm. VAChT: vesicular acetylcholine transporter.
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FIGURE 3 | (A,B) Show the same representative LC section through the
fluorescence channel to detect DBH (A) and merged fluorescence
channels to detect retrograde tracer (B). Scale bars = 200 μm. (C) shows
high power images of cells represented by arrowheads and Roman
numerals in (A,B). The top three rows illustrate each image through the
fluorescence channels necessary to detect the three retrograde tracers.

Images in row four show the three composite images merged with one
another and demonstrate which tracers individual cells contained, and
therefore whether or not they projected to multiple PFC terminal fields.
The same cells are shown through the fluorescence channel to detect
DBH immunofluorescence in the bottom row. Scale bars in (C) = 20 μm.
DBH: dopamine β hydroxylase.
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subregions, and 39.3% projected to any single target. In LC (n = 9),
however, only 4.3% of retrogradely labeled neurons possessed col-
laterals targeting any two prefrontal subregions simultaneously,
and no cells were identified that projected to all three regions.
All remaining cells were single labeled and therefore exhibited a
restricted axonal terminal field with respect to individual PFC
subregions (Figure 4). These data suggest that assemblies of NBM
neurons possess highly divergent axons capable of coordinating
ACh release in multiple PFC subregions simultaneously (as well
as in any other terminal fields to which these axons collateral-
ize). LC efferents, on the other hand, appear to be organized so
as to elicit NE release in only one of these PFC subregions at a
time. Interestingly, some topographic order was also identified for
these projection neurons in NBM and LC. Although no differences

FIGURE 4 | (A) Venn diagrams representing the relative sizes and degree of
overlap between populations of projection neurons in NBM and LC.
Overlapping regions correspond to populations of cells that projected to
multiple PFC terminal field regions. Note the high degree of overlap
between in NBM, representing a high proportion of double and triple
labeled cells in this nucleus, whereas LC had very minimal overlap between
the three populations of projection cells. Numbers indicate the mean
number of cells per animal identified within each population. (B) The bar
graphs illustrate the percentages of total retrogradely labeled neurons in
NBM and LC that project to each possible combination of targets within the
PFC.

existed between populations of cells projecting to the different
possible combinations of PFC subregions in either nucleus, PFC
projection cells in NBM clustered in the rostral half of the nucleus,
and those in LC were restricted to its compact core and never local-
ized within the rostral or caudal poles. The projection cells were
almost always labeled ipsilateral to the injection sites. Therefore,
the neurons projecting to OFC, mPFC, and ACC do so primarily
ipsilaterally, and although they do cluster within specific zones of
each nucleus, they are interdigitated with one another rather than
spatially segregated.

These broad versus specific terminal field organizations may
dictate discrete roles for cholinergic and noradrenergic systems in
cognitive function. For example, coordinated ACh release within
several subregions of PFC may facilitate the transmission of behav-
iorally relevant signals across multiple PFC networks simultane-
ously in order to evaluate the salience of this information and
promote optimal decision making. It has been shown that ACh
release in neocortex generally promotes vigilance and environ-
mental awareness by desynchronizing slow cortical EEG patterns,
and also increases the signal to noise ratio of sensory inputs (Wenk,
1997). Furthermore,ACh acts on both GABAergic and glutamater-
gic systems in cortex to suppress weaker inputs to a greater extent
than strong inputs (Metherate et al., 1992; Metherate and Ashe,
1995a,b), which may prepare PFC networks to respond to salient
stimuli that elicit large responses while filtering out behaviorally
irrelevant stimuli that do not. Consider again the example of the
go/no-go task. The simultaneous release of ACh within multiple
PFC subregions may alter response thresholds of individual neu-
rons and prime the networks to respond to the relevant stimulus
(a red square), even in the absence of its physical presentation. In
this way, an animal may prepare to identify the correct stimulus
when it appears in an unexpected location, while simultaneously
ignoring irrelevant stimuli.

Locus coeruleus, on the other hand, may serve an opposing role.
The adaptive gain theory of NE function (Aston-Jones and Cohen,
2005a,b) suggests that during optimal behavioral performance, LC
neurons are capable of acting as independent units and modulat-
ing restricted terminal field regions to promote exploitation of
the current behavioral strategy. Then, as behavioral performance
suddenly decreases (as it does during unexpected uncertainty), LC
neurons begin to fire tonically en masse through dendritic elec-
trotonic coupling, orchestrating a more homogeneous effect on
network properties throughout all terminal field regions of LC. In
this state, animals are less focused on specific stimuli but rather
operate in a scanning mode, searching the environment in order to
identify new relevant stimuli. As new behaviorally relevant targets
are identified, LC neurons once again begin to fire independently
with phasic discharges, thus promoting a new behavioral strat-
egy. Such plasticity of the firing properties and responsivity of LC
neurons are well documented (Aston-Jones et al., 1994, 2000; Dal-
ley et al., 2001, 2004). The restricted pattern of LC projections to
PFC subregions as observed in our work fits well with this theory:
Independent modulation of prefrontal subregions to promote dis-
sociable behavioral operations of these areas would depend on the
existence of subsets of LC neurons that project with exclusivity
to restricted PFC targets. Then, during a decrease in the utility of
an ongoing behavioral strategy, LC neurons would begin to fire in
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unison, leading to greater synchrony of NE release across regions,
thereby disrupting focused attention in favor of scanning attention
and broadly tuned signal processing.

These anatomical findings of the efferent NBM and LC pro-
jections to PFC reflect their unique roles in cognitive function.
Coordinated ACh release in subregions of PFC during ideal behav-
ioral performance may prime the networks to focus on or become
sensitized to specific stimuli, even if the stimuli are physically
absent. In this way, these divergent neurons help to maintain
network properties across broad areas of cortex so that an ani-
mal can respond when a relevant stimulus does occur in an
unexpected location or time. The restricted nature of LC axons
projecting to OFC, mPFC, and ACC, on the other hand, may
facilitate the exploitation of a behavioral strategy that is uniquely
supported by one of these regions by specifically altering only its
network activity. It is known that these regions of PFC project
back down to LC (Aston-Jones and Cohen, 2005a,b), perhaps
to signal to the nucleus that an ongoing behavioral strategy is
in fact paying off and facilitate the maintenance of its current
firing mode. When particular cells in LC receive this informa-
tion, they may then cause subsequent NE release in that same
area to continue facilitating its behavioral function. As unex-
pected uncertainty arises, or a sudden change in stimulus value
occurs, LC begins to fire tonically en masse (perhaps as a result
of a loss of or change in input from PFC), eliciting NE release
in all terminal fields, pushing the animal’s attentional state to
scan its environment for previously ignored stimuli that may
now be relevant. When the novel reinforcement contingency
is identified, global ACh release may again begin to occur, as
well as restricted NE release to sensitize the necessary networks
to the novel target stimulus and exploit the new behavioral
strategy.

The present findings are strictly anatomical in nature. They
do, however, accord well with computational, behavioral, and

pharmacological studies of the cholinergic and noradrenergic sys-
tems in modulation of cognition and executive function. Future
studies may further explore these anatomical distributions of
PFC projection neurons in the contexts of normal developmental
trajectories as well as animal models of psychiatric and neu-
rodegenerative disease in order to correlate change in behavioral
performance with a change in nuclear organization and distri-
bution. It is equally important to characterize the NE and ACh
receptor distributions within these PFC terminal field subregions.
As each of these transmitters interacts with a number of mem-
brane bound receptors, their ultimate effect on network properties
depends not only on neurotransmitter release, but also on recep-
tor binding and receptor expression. Different environmental and
behavioral circumstances may promote engagement of different
receptor subtypes; such information is necessary to gain a more
complete understanding of the role of these modulatory systems
in PFC function. Likewise, the precise nature of the downstream
projections from PFC subregions to NBM and LC remains to be
elucidated. For example, the demonstration of a PFC subregion
specific afferent topography within these nuclei would further
support a highly ordered and functional role for these modulatory
systems in cognition and behavior. Characterization and manip-
ulation of the NBM and LC projection neurons at biochemical,
genetic, pharmacological and physiological levels will provide a
comprehensive and multi-faceted analysis of these cells and their
role in regulating prefrontal local circuit operations and behav-
ioral outcomes. Such studies may inform the development of novel
and more effective therapeutics for psychiatric and neurodegen-
erative diseases associated with dysfunction of these ascending
modulatory pathways.
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