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We generated transgenic mice in which a trans-synaptic tracer, wheat germ agglutinin
(WGA), was specifically expressed in the locus coeruleus (LC) neurons under the control
of the dopamine-β-hydroxylase (DBH) gene promoter. WGA protein was produced in more
than 95% of the tyrosine hydroxylase (TH)-positive LC neurons sampled. Transynaptic
transfer of WGA was most evident in CA3 neurons of the hippocampus, but appeared
absent in CA1 neurons. Faint but significant WGA immunoreactivity was observed
surrounding the nuclei of dentate granule cells. Putative hilar mossy cells, identified
by the presence of calretinin in the ventral hippocampus, appeared uniformly positive
for transynaptically transferred WGA protein. GAD67-positive interneurons in the hilar
and CA3 regions tended to be WGA-positive, although a subset of them did not show
WGA co-localization. The same mixed WGA uptake profile was apparent when examining
co-localization with parvalbumin. The selective uptake of WGA by dentate granule cells,
mossy cells, and CA3 pyramidal neurons is consistent with evidence for a large proportion
of conventional synapses adjacent to LC axonal varicosities in these regions. The lack
of WGA uptake in the CA1 region and its relatively sparse innervation by DBH-positive
fibers suggest that a majority of the TH-positive classical synapses revealed by electron
microscopy in that region may be producing dopamine. The overall pattern of WGA uptake
in these transgenic mice implies a selective role for the granule cell-mossy cell-CA3
network in processing novelty or the salient environmental contingency changes signaled
by LC activity.
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INTRODUCTION
Functionally both the locus coeruleus (LC) (e.g., Aston-Jones
and Bloom, 1981) and the hippocampus (e.g., Wickelgren and
Isaacson, 1963; O’Keefe, 1976) have been implicated in adapt-
ing to changed environmental contingencies. LC tonic activity is
associated with level of arousal, while LC phasic activity reflects
input novelty and salience (Aston-Jones and Bloom, 1981). LC-
activation-induced plasticity has been extensively characterized
in dentate gyrus (DG) (e.g., Kitchigina et al., 1997; Straube
et al., 2003; and reviewed by Sara, 2009; and Harley, 2007) and
is also described for hippocampal pyramidal cell fields (Lemon
et al., 2009). We have hypothesized that a major modification
of hippocampal encoding can be initiated and triggered by LC
activation (Brown et al., 2005).

The present study uses a novel molecular technology devel-
oped by Yoshihara to ask whether this functional associa-
tion between LC and hippocampus is reflected in transynap-
tic communication between the two structures. Wheat germ
agglutin (WGA) transgene is a genetic tool for the visualiza-
tion of “anatomically connected and functionally related neural
structures” (Yoshihara et al., 1999). By expressing WGA transgene

under the control of neuron type-specific promoters in transgenic
mice, neural connectivity patterns were successfully visualized in
point-to-point sensory pathways such as those of taste (Damak
et al., 2008; Matsumoto et al., 2009; Ohmoto et al., 2008, 2010),
olfaction (Horowitz et al., 1999), and vision (Hanno et al., 2003),
and motor circuits such as those of the cerebellum (Yoshihara
et al., 1999). In all cases, this methodology has confirmed results
from classical tract tracing studies and permitted insights not
previously attained with classical methods.

The LC was first revealed to be the major source of noradren-
ergic modulation in the rodent forebrain when fluorescent alde-
hyde visualization methods permitted detailed examination of its
axonal projections. LC axons project to neocortex, hippocampus,
amygdala, septum, thalamus, hypothalamus, cerebellum, and to
spinal cord (Foote et al., 1983). The LC projection patterns in
mouse are described as almost identical to those in rat (Levitt and
Noebels, 1981).

Radiographic methodology in rat has provided a quantita-
tive estimate of 300,000 neocortical axonal varicosities (sites of
noradrenaline release) per LC neuron (Audet et al., 1988). Given
the collateralization of LC neurons (Foote et al., 1983), the
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number of release sites supported by a given LC neuron is likely
considerably higher. Electron microscopic examination suggests
the majority of LC neocortical varicosities do not make conven-
tional postsynaptic contacts, instead influencing noradrenergic
receptors through what is termed “volume conduction” (Seguela
et al., 1990; Latsari et al., 2002). This pattern of termination
appears characteristic of all arousal-associated neuromodulator
systems (Vizi, 2000).

Electron microscopic examination of tyrosine hydroxylase
(TH)-reactive varicosities in hippocampus suggests a larger pro-
portion of classical synapses for noradrenergic terminals in
CA3 and DG than reported in neocortex (Milner and Bacon,
1989).

In the present study, we generated transgenic mice harboring
WGA transgene conjugated to a dopamine-β-hydroxylase (DBH)
gene promoter to examine neural connectivity from the LC. In the
mouse line examined, WGA was faithfully and robustly produced
in LC neurons. However, transynaptic transfer of WGA did not
occur widely throughout the neuraxis, arguing against efficient
uptake at sites of volume conduction. Robust uptake was observed
in CA3 pyramidal cells of the hippocampus and in the DG and
hilar regions, implying strong synaptic connections from LC to
these hippocampal subregions.

MATERIALS AND METHODS
DBH-WGA TRANSGENIC MOUSE GENERATION
Transgene construction
The C terminus-truncated WGA cDNA (Yoshihara et al., 1999)
was fused with IRES-eYFPmem (internal ribosomal entry site,
enhanced yellow fluorescent protein with a membrane-targeting
signal, Clontech) to generate a bicistronic expression cassette,
tWGA-IRES-eYFPmem. A human DBH promoter region (4 kb)
was excised with XbaI from pDBH-GAL (a gift from Dr.
Kobayashi, Fukushima Medical University) and inserted into the
SpeI site of pBstN, which contains a human β-globin gene intron
and SV40 polyadenylation signal, to generate pBstN-DBH. The
tWGA-IRES-eYFPmem cassette was ligated into the EcoRI site of
pBstN-DBH to generate pDBH-WGA-IRES-eYFPmem.

Generation of transgenic mice
Transgenic mouse lines were generated by microinjection of fertil-
ized eggs as described (Nohmi et al., 1996). The purified inserts of
pDBH-WGA-IRES-eYFPmem were injected into the male pronu-
cleus of fertilized eggs from the FVB/N (Japan CLEA) strain of
mice. The manipulated eggs were cultured and transferred into
the oviducts of ICR (CREA Japan) pseudopregnant recipients.
Integration of the transgenes was screened by PCR analysis of tail
DNA. All animal experiments were approved by the Animal Care
and Use Committees of RIKEN.

PREPARATION OF TISSUE
Animals were anesthetized (sodium pentobarbital; 50 mg/kg,
i.p.) and perfused transcardially with saline (0.9%) followed by
4% paraformaldehyde in PBS. Brains were dissected out and
immersed in the same fixative (24 h, 4◦C), cryoprotected in 30%
sucrose, flash frozen (−76◦C), and sectioned by cryostat in the
coronal plane (30 μm).

IMMUNOHISTOCHEMICAL PROCEDURES
Brightfield diaminobenzodine (DAB) processing: Sections were
washed in 0.1 M trishydroxymethyl-amino methane (Tris buffer;
pH 7.6, 3 × 5 min) followed by 30 min in H2O2 (1%, in Tris
buffer) to block endogenous peroxidase activity. Sections were
again washed in Tris buffer (5 min) followed by 10 min in both
Tris buffer containing 0.1% Triton X-100 (Tris A) and Tris buffer
containing 0.1% Triton X-100 and 0.005% bovine serum albu-
min (Tris B). Sections were then treated with 10% normal horse
serum made in Tris B containing avidin (Blocking Kit; Vector
Labs) followed by 10 min each in Tris A, then Tris B. Preparation
of the goat antiserum to WGA (Vector) consisted of preabsorp-
tion of the antibody (1:2000 in Tris B) with 2% mouse brain
acetone powder (Rockland, Gilbertsville, PA) for 12–24 h at 4◦C.
The antibody slurry was centrifuged for 10 min (14,000 RPM)
and the supernatant filtered using a 0.22 μm filter (Millex-GS;
Millipore Corp., Bedford, MA) and biotin (Blocking Kit; Vector)
was added to constitute the final antibody solution. Sections
were incubated with anti-WGA antibody for 24–48 h (4–8◦C)
with gentle agitation, then washed 10 min each in Tris A and
Tris B. Sections were then treated with biotin-conjugated anti-
goat secondary antibody (horse IgG, 1:400 in Tris B; Vector)
for 60 min at room temperature then washed in Tris A and
Tris B (10 min each) followed by goat peroxidase anti-peroxidase
(Jackson Immunoresearch; 1:500 in Tris B) for 60 min at room
temperature. After washes in Tris A and Tris D (0.5 M Tris con-
taining 0.1% Triton X and 0.005% BSA), sections were incubated
for 2 h in avidin-biotin-horseradish peroxidase complex (ABC
Elite Kit; Vector; 1:1000) made in Tris D. Sections were briefly
washed in Tris buffer (3 × 5 min) and visualized using nickel-
enhanced DAB (Sigma; St. Louis). Sections were mounted on
subbed slides, air dried, dehydrated, cleared, and coverslipped
with Microkitt (Serum International Inc, Montreal, QC). In the
case of WGA-parvalbumin double-labeling, parvalbumin anti-
body (mouse monoclonal; 1:100,000; Sigma) was visualized with
SG Gray (Vector).

Immunofluorescence tissue preparation
Preparation of tissue for double-label confocal microscopy con-
sisted of sequential incubation in anti-WGA solution using
the above procedures (with the exclusion of H2O2) and
either rabbit anti-TH (1:2500, Calbiochem), mouse anti-
parvalbumin (1:100,000; Sigma), or mouse anti-calretinin
(1:10,000; Chemicon), in Tris B. WGA was visualized using
donkey Alexa555-conjugated anti-goat IgG (Invitrogen; 1:400 in
Tris B). All other primary antibodies were visualized using Alexa
647 (Invitrogen) targeted at the host species of the primary anti-
body (1:400, in Tris B). To insure no contamination from the
eYFPmem signal, fluorescence secondary antibodies were cho-
sen in the far red spectrum. The eYFPmem fluorescence was
not analyzed as its signal occurred at low levels in hippocampus.
Sections were mounted and covered with Slow Fade Light with
DAPI (Molecular Probes; Eugene, OR).

Brightfield images of WGA immunoreactivity in the hip-
pocampus were captured on an Olympus (Richmond Hill, ON)
BX51 digital imaging system. An Olympus FV300 confocal digi-
tal microimaging system was used to capture fluorescence-labeled
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sections. Images were compiled using Adobe Photoshop software
(San Jose, CA).

RESULTS
LC NORADRENERGIC NEURONS EXPRESS WGA IN DBH-WGA
TRANSGENIC MICE
TH-positive neurons in the LC were quantitatively examined
for WGA expression in five male DBH-WGA transgenic mice
using confocal microscopy. Figure 1 shows an example of LC
staining for the TH antibody, the WGA antibody, and their
co-localization in one representative cross-section. Comparison
with a non-transgenic mouse cross-section processed under
the same conditions reveals no cellular reactivity for WGA, as
expected.

LC sections in the transgenic mice were sampled along the
rostral-caudal axis with 2–4 sections assessed for each mouse.
A mean of 77 cells was counted per section. The mean percent-
age of WGA/TH-double-positive neurons in each section was
98.7%. The remaining 1.3% of TH-expressing cells was negative

for WGA. The pattern was the same in two transgenic female mice
examined. The percentage of cells in each labeling category for the
five male mice is shown in Figure 1D. Paired t-tests evaluated the
differences.

TRANSYNAPTIC TRANSFER OF WGA FROM LC TO SPECIFIC
SUBSETS OF HIPPOCAMPAL NEURONS
The hippocampus was initially examined for transynaptic trans-
fer of WGA from the axon terminals of LC neurons using a DAB
reaction for the WGA antibody. Within the hippocampus, and
relative to the extra-hippocampal forebrain, the CA3 pyramidal
neurons were the most strongly reactive elements for the WGA
antibody in the DBH-WGA mice (Figures 2A,C). CA1 pyrami-
dal cells did not appear reactive. Non-transgenic mice did not
show WGA immunoreactivity (Figures 2B,D). This pattern was
confirmed in confocal images with fluorescent antibodies in all
transgenic mice examined (n = 8, see Figures 3–5).

Double immunofluoescence labeling revealed that WGA
protein was present in all calretinin-positive hilar cells (n = 7

FIGURE 1 | Tyrosine hydroxylase (TH; red) and wheat germ agglutinin

(WGA; green) immunolabelling of the locus coeruleus (LC) for

representative DBH-WGA (A–C) and wildtype (WT; A–C inset) mice.

(C) TH-positive neurons in the LC of DBH-WGA mice were also positive for
WGA. LC neurons of wildtype mice were not immunoreactive for WGA

(C inset). (D) Percentage of LC cells in DBH-WGA mice immunoreactive for
TH only (red), or WGA only (green) and immunoreactive for both TH and WGA
(yellow). Error bars represent s.e.m. and ∗∗ indicates min p < 0.001
differences (paired t-test; n = 5). Scale represents 150 μm in inset, and
30 μm in main DBH-WGA images.
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FIGURE 2 | Brightfield WGA immunostaining in hippocampus of

DBH-WGA (A,C) and wild type (B,D) mice. CA3 pyramidal cell
bodies (A) were heavily filled with reaction product for WGA (white
arrows in C). There was a clear demarcation at the CA3 border, with

adjacent pyramidal neurons lacking reaction product (black arrows).
Pyramidal neurons throughout the hippocampus of wild type mice
lacked WGA reaction product. Scale bar is 500 μm in A,B and
100 μm in C,D.

FIGURE 3 | Calretenin (red) and WGA (green) immunolabelling in

ventral dentate gyrus of DBH-WGA (A) and wildtype (B) mice.

(A) Calretenin+ /WGA+ double immunolabeling is evident in the majority
of large hilar neurons, putative mossy cells known to contain calretenin

in ventral mouse hippocampus. WGA staining in CA3 and the
granule cell layer (GCL) in also evident. (B) No double-labeled
cells or WGA-positive cells occur in the wild type mouse. Scale
is 100 μm.

transgenic mice examined; see Figure 3A). The calretinin-
expressing large hilar cells of the ventral hippocampus have been
identified as glutamatergic mossy cells in the mouse (Liu et al.,
1996; Blasco-Ibanez and Freund, 1997; Fujise et al., 1998). WGA

protein was also detected in the DG granule cells (Figure 4A).
WGA-reactive CA3 pyramidal cells were again readily observed.
Sections from a non-transgenic mouse did not show evidence of
WGA in any cells (Figure 3B).
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FIGURE 4 | GAD-67 (red) and WGA (green) immunolabelling in ventral

dentate gyrus of DBH-WGA (A) and wildtype (B) mice. (A) Co-labelling of
GAD67 and WGA is seen among granule cell interneurons (e.g., white

arrows). GAD-67+ only interneurons are seen in the molecular layer (small
red arrows). WGA+ hilar interneurons void of GAD67 staining are putative
glutamatergic mossy cells. Scale is 100 μm.

FIGURE 5 | Parvalbumin (red) and WGA (green) immunolabelling in

hippocampus of a DBH-WGA mouse. (A) In CA3, both parvalbumin+/

WGA+ interneurons (white arrows) and parvalbumin+ /WGA− interneurons

(red arrow) were found. In dentate gyrus (B) the same patterns were
seen. (C) In CA1, only parvalbumin+ /WGA− interneruons were observed.
Scale is 50 μm.

SUBSETS OF GABAERGIC INTERNEURONS IN DG AND CA3 ARE
POSITIVE FOR WGA
In the DG, GAD67-expressing GABAergic interneurons in or near
the cell body layer were generally positive for WGA in sections
from the five transgenic mice (see Figure 4 granule cell layer).
However, GAD67-positive interneurons in the molecular layer
of DG were negative for WGA (Figure 4 molecular layer). The
large number of WGA-positive/GAD67-negative hilar interneu-
rons seen in ventral hippocampus in Figure 4 is consistent with
the observation of calretinin/WGA-double-positive putative glu-
tamatergic mossy cells (Figure 3). The paucity of GAD67-positive
interneurons seen in CA3 precludes generalizations, but both
positive and negative co-localization was observed.

In other sections from transgenic mice (n = 3), a parvalbumin
antibody was used to highlight a subset of GABAergic interneu-
rons. As with the overall set of GAD67-positive interneurons,
there were both WGA-positive and WGA-negative parvalbumin-
expressing cells. In Figure 6A, parvalbumin-expressing interneu-
rons in CA3 that are WGA-positive are indicated with white
arrows, whereas other parvalbumin-expressing interneurons were

observed to be WGA-negative (indicated with a red arrow). A
similar pattern was seen in the DG, as shown in Figure 6B.
No WGA-positive cells were seen in the parvalbumin-expressing
population in layer CA1 (Figure 5C) consistent with the general
failure to see WGA reactivity in the CA1 layer.

Using brightfield images double-labeled for parvalbumin and
WGA, the same mixed pattern of WGA-positive and negative
interneurons was seen in DG and CA3. In Figure 6A a low power
micrograph shows parvalbumin-expressing cells in all areas of the
hippocampus, again the strongest WGA immunoreactivity was
seen in the CA3 pyramidal layer. Co-localization of parvalbumin
and WGA was not seen at higher power in CA1 (Figure 6B), but
occurred in some parvalbumin-expressing interneurons in CA3
(Figure 6C) and DG (Figure 6D).

DISCUSSION
The nearly complete filling of TH-positive cells in LC with WGA
confirmed the success of the transgenic line examined. The large
number of LC varicosities that do not make classical synap-
tic contacts might have either precluded significant amounts
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FIGURE 6 | Brightfield parvalbumin (red) and WGA (gray) labeling in a

DBH-WGA mouse. (A) Low magnification image showing CA3-WGA pattern.
(B) CA1 parvalbumin-only reactivity (black arrows). (C) Interneurons in CA3

were both parvalbumin+ /WGA+ (white arrow) and parvalbumin+ /WGA−
(black arrow). (D) A similar mixed pattern occurred in DG. Asterisks in
A denote regions sampled in B–D Scale is 50 μm except A = 100 μm.

of WGA uptake or rendered WGA uptake widespread. Instead
we found a highly selective hippocampal WGA uptake pattern.
Although not systematically examined, there was relatively little
evidence, at low magnification, of forebrain uptake in extra-
hippocampal structures. It seems unlikely that WGA would not
have been detected with our confocal methodology, however,
we cannot rule out the possibility that higher copy numbers of
the transgene in another mouse line or more sensitive meth-
ods than those used would reveal more extensive WGA uptake
from LC innervations than seen here. Widespread uptake of
3,3′,5-triiodothyronine in forebrain neurons, for example, has
been reported as occurring via anterograde synaptic transport
from LC (Gordon et al., 1999) suggesting it acted as a marker of
volume conduction. Multi-synaptic transport of WGA has also
been observed in other systems (Yoshihara, 2002), but was not
apparent in the CA3–CA1 connection, for example, in the present
experiments. This suggests transport here was dependent on only
initial synaptic contact.

WGA UPTAKE IN THE HIPPOCAMPAL TRISYNAPTIC PATHWAY
WGA protein was most abundant in the cytoplasm of CA3 pyra-
midal neurons. This was evident in both light and confocal
microscope images. Despite the strong Schaffer collateral connec-
tions of CA3 neurons with CA1 pyramidal cells, there was no
evidence of secondary transynaptic transport of WGA into CA1
pyramidal neurons.

In fluorescent images, rings of cytoplasmic WGA were seen
around granule cell nuclei. The narrow cytoplasmic shell likely
contributed to less evident filling of granule cells with WGA in

light microscope images, although rings of WGA could be seen at
higher power in numerous sections.

The apparent absence of WGA in CA1 pyramidal cells sug-
gests the nature of LC varicosity contacts differs between CA3,
DG, and CA1. While the proportion of classical TH terminals in
CA1 has been reported as similar to that of CA3 and DG (Milner
and Bacon, 1989), CA1, unlike those areas, receives a minor
DBH-reactive input consistent with the observed absence of WGA
uptake (Swanson and Hartman, 1975; Moudy et al., 1993), but
has a significant dopamine input (Gasbarri et al., 1997), which
would entail TH-positive fibers.

WGA UPTAKE IN HILAR INTERNEURONS
GABAergic interneurons in the DG and hilar region showed
selective uptake of WGA. While numerous GAD67-positive
interneurons were positive for WGA, there were also negative
subpopulations. GABAergic interneurons located near or in the
granule cell layer often showed WGA uptake, while those in the
molecular layer were typically unreactive for WGA. LC activa-
tion when recording from GABAergic interneurons near granule
cells reveals a rapid onset, short-term inhibitory effect on feed-
forward interneurons (Brown et al., 2005) Feedback interneu-
rons show both excitation and inhibition to LC activation.
Molecular layer interneurons have not been recorded with this
approach.

The parvalbumin subset of GABAergic interneurons was
examined in DG and CA3. In both areas, parvalbumin cells
positive for WGA and negative for WGA were observed. These
variable effects occurred in parvalbumin cells near and among
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the cell layers, suggesting WGA uptake by cell layer GABAergic
interneurons is not uniform. A more comprehensive survey
of inhibitory interneurons identified with peptidergic markers
would be valuable. While not examined systematically in confocal
images, no double-labeled parvalbumin interneurons were found
in the adjacent CA1 region consistent again with a general lack of
WGA uptake in CA1.

Parvalbumin cells (Wulff et al., 2009) and feedback interneu-
rons at the cell layers have been associated with theta oscillation
generation. LC activation recruits a brief and selective activa-
tion of ∼7.7 Hz theta oscillation in awake rats (Walling et al.,
2011). A similar frequency has been reported in the hippocampus
with exposure to novel environments and may depend on the LC
(Jeewajee et al., 2008). The rapid onset and transient electrophys-
iological effects of LC activation in hippocampus on feedforward
and feedback networks may be associated with classical synap-
tic contacts. However, volume conducting systems have also been
reported to elicit similarly transient patterns of electrophysiology
(Sarter et al., 2009).

The mossy cell glutamatergic interneurons of the ventral hilus
were strongly labeled for WGA. Calretinin is localized in the
mossy cells of ventral DG in the mouse, providing an iden-
tifying marker for mossy cells (Liu et al., 1996; Blasco-Ibanez
and Freund, 1997; Fujise et al., 1998). Co-localization of WGA
with calretinin was evident in all slides reacted for calretinin.
WGA-only hilar cells were also widespread in sections reacted for
GABAergic markers, which is easily understood if WGA was taken
up by glutamatergic hilar interneurons.

CLASSICAL SYNAPTIC LC TERMINALS IN HIPPOCAMPUS
The proportion of classical synapses on neuronal cell dendrites
and cell bodies for TH-positive fibers in DG and CA3 is more
than 50% of the terminals examined using electron microscopy
(Milner and Bacon, 1989). This proportion of classical contacts
is considerably higher than reported for LC varicosities in neo-
cortex (Vizi, 2000) and may account for the selective pattern

of WGA uptake observed here, particularly considering evidence
for strong WGA binding to synaptic glycoproteins (Wood et al.,
1981). The receptor subtype opposite classical synapses in the DG
and CA3 areas is likely to be the α1 receptor, as neither hippocam-
pal α2 (Milner et al., 1998) nor β-adrenergic receptor sites (Milner
et al., 2000) are characterized by classical synaptic connectivity.
Relatively little is known about functional effects of hippocampal
α1 activation in behaving rodents.

A NOVELTY-ENCODING SUBNETWORK
Based on the extensive co-localization of LC-WGA in the gluta-
matergic cells of DG, hilus, and CA3, including both principle
cells and interneurons, we suggest these components of the hip-
pocampal network make a unique contribution to the detection
and encoding of novel events. This pattern supports other obser-
vations revealing a selective role for CA3 in rapid one trial
contextual learning (McHugh et al., 2007). The data suggest that
transynaptic modulation acts in parallel with the contributions of
the volume-conducted β-adrenergic system to promote adapta-
tion to novel events. We (Brown et al., 2005), and others (Bouret
and Sara, 2005), hypothesize that a central role of the LC signal
in hippocampus is a resetting of cognitive maps when novel or
unexpected events occur. The present connectivity patterns are
consistent with such a hypothesis.
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