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Several studies have shown a strong involvement of the basal ganglia (BG) in action
selection and dopamine dependent learning. The dopaminergic signal to striatum, the
input stage of the BG, has been commonly described as coding a reward prediction error
(RPE), i.e., the difference between the predicted and actual reward. The RPE has been
hypothesized to be critical in the modulation of the synaptic plasticity in cortico-striatal
synapses in the direct and indirect pathway. We developed an abstract computational
model of the BG, with a dual pathway structure functionally corresponding to the direct
and indirect pathways, and compared its behavior to biological data as well as other
reinforcement learning models. The computations in our model are inspired by Bayesian
inference, and the synaptic plasticity changes depend on a three factor Hebbian–Bayesian
learning rule based on co-activation of pre- and post-synaptic units and on the value of
the RPE. The model builds on a modified Actor-Critic architecture and implements the
direct (Go) and the indirect (NoGo) pathway, as well as the reward prediction (RP) system,
acting in a complementary fashion. We investigated the performance of the model system
when different configurations of the Go, NoGo, and RP system were utilized, e.g., using
only the Go, NoGo, or RP system, or combinations of those. Learning performance was
investigated in several types of learning paradigms, such as learning-relearning, successive
learning, stochastic learning, reversal learning and a two-choice task. The RPE and the
activity of the model during learning were similar to monkey electrophysiological and
behavioral data. Our results, however, show that there is not a unique best way to
configure this BG model to handle well all the learning paradigms tested. We thus suggest
that an agent might dynamically configure its action selection mode, possibly depending
on task characteristics and also on how much time is available.

Keywords: basal ganglia, behavior selection, reinforcement learning, Hebbian–Bayesian plasticity, Bayesian
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INTRODUCTION
When facing a situation where multiple behavioral choices are
possible, the action selection process becomes critical. The abil-
ity to learn from previous experiences in order to improve further
selections and their relative outcome is thus central. Basal gan-
glia (BG) are believed to be critically involved in action selection
(Graybiel, 1995, 2005; Mink, 1996). It has been suggested that
they have evolved as a centralized selection device, specialized
to resolve conflicts over access to limited motor and cognitive
resources (Redgrave et al., 1999). The BG structures have been
conserved during evolution for more than 560 million years
and are present in all vertebrates, showing a similar architec-
ture among species (Parent and Hazrati, 1995; Grillner et al.,
2005; Stephenson-Jones et al., 2011). A dual pathway architecture
within BG has been described in terms of the direct- and indirect
pathways. They originate from two different pools of GABAergic

medium spiny neurons (MSN) expressing dopamine D1 and
D2 receptors respectively (see below). Abnormalities in these
pathways have been strongly linked with motor pathologies like
e.g., Parkinson’s and Huntington’s diseases (Obeso et al., 2008;
Crittenden and Graybiel, 2011). The BG receive information from
different areas of the cortex, amygdala, thalamus, and dopamin-
ergic nuclei (Parent, 1990). They are interacting with cortex and
thalamus by way of several loops going through sensorimotor-,
associative and limbic brain domains (Figure 1) (Alexander et al.,
1986; Albin et al., 1989; McHaffie et al., 2005). Dopamine plays
a key role in BG functions and is involved in the control of the
different pathways (Surmeier et al., 2007), in the modulation of
plasticity and learning (Reynolds and Wickens, 2002), and in cod-
ing the reward prediction error (RPE) (Montague et al., 1996;
Schultz et al., 1997; Schultz and Dickinson, 2000; Daw and Doya,
2006). This RPE signal, has been used in the temporal difference
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FIGURE 1 | Simplified diagram of the cortico-basal ganglia-thalamo-cortical loops. The Basal ganglia are shown in the orange box. We present a model
investigating the three pathways A (striato-SNc: symbolizes the reward prediction system), B (direct/D1: maps onto the Go pathway), and C (indirect/D2: maps
onto the NoGo pathway) originating in the striatum.

(TD) learning models (Sutton and Barto, 1998) and is associ-
ated with the TD-error (Berns et al., 2001; Suri and Schultz, 2001;
O’Doherty et al., 2003). Computational models have been aimed
at mimicking architecture and functionality of BG, especially
within the Actor-Critic and reinforcement learning frameworks
(Gillies and Arbuthnott, 2000; Joel et al., 2002; Doya, 2007; Cohen
and Frank, 2009; Parush et al., 2011). Various studies have fur-
thermore shown that the central nervous system could compute
and represent the world in terms of probabilities, and could per-
form inferences (Körding and Wolpert, 2004) similar to optimal
statistical ones (Griffiths and Tenenbaum, 2006). Prior knowledge
of a distribution of events would thus be combined with sensory
evidence to update its representation (Friston, 2005; Yang and
Shadlen, 2007). Artificial neural networks and spiking neurons
have been shown to be able to code such Bayesian probabilities
(Doya et al., 2007; Deneve, 2008; Buesing et al., 2011).

Here, we present and investigate a computational model of
the BG based on a Bayesian inference reinforcement learning

framework (Holst and Lansner, 1996). The basic idea is that
the brain builds a model of the world by computing probabil-
ities of occurrences and co-occurrences of events, storing these
in the form of modified synaptic weights and neuronal excitabil-
ities (biases). This learning framework is superimposed on a
biologically well supported dual pathway architecture of the BG,
which enables comparisons with biological reward learning stud-
ies and the modeling of effects of lesions and diseases of the BG.
The Bayesian–Hebbian learning rule used has previously been
evaluated in associative and working memory models of cortex
(Sandberg et al., 2002; Johansson and Lansner, 2007; Lansner,
2009; Lundqvist et al., 2011) and here we demonstrate that it can
also be used to model reinforcement learning. We here focus on
the biological plausibility of the model and how the performance
of its different action selection modes, i.e., how different com-
binations of the activation of Go and NoGo pathways and RP,
perform in various reward learning tasks and compared to animal
experiments.
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MATERIALS AND METHODS
AN ABSTRACT MODEL OF BASAL GANGLIA
Information about the current state of the world and internal state
of the agent is received by the BG from the cortex and thalamus
(Figure 1). BG would then provide the selection mechanism to
decide on the best action to perform, given that information. It
has been shown that neurons in the striatum can encode state
and action value (Samejima et al., 2005; Schultz, 2007; Lau and
Glimcher, 2008).

The output nuclei of the BG, internal segment of the globus
pallidus (GPi) and substantia nigra pars compacta (SNr), project
to the thalamus and also to the brainstem motor command
centra (Hoover and Strick, 1993). The high resting activity of
these nuclei keeps the target motor structures under tonic inhi-
bition. An action can be performed when inhibition from the
output nuclei of the BG is removed, i.e., when the motor com-
mand centra are disinhibited. The inhibition from the BG output
nuclei can be decreased via the direct pathway, and enhanced
via the indirect pathway. The MSNs associated with the direct
pathway send connections mainly to SNr and GPi, while those
associated with the indirect pathway project to the external part
of the globus pallidus (GPe) (Gerfen et al., 1990; Parent and
Hazrati, 1995). GPe in turn provides an additional inhibitory
stage before projecting to SNr and GPi either directly or via the
glutamatergic sub-thalamic nucleus (STN). Studies have shown

that despite the fact that interactions occur between the direct
and indirect pathways, activating direct pathways MSNs facil-
itates an action whereas activation of indirect pathway MSNs
inhibits the targeted action (Gerfen et al., 1990; Kravitz et al.,
2010).

In order to investigate how BG perform action selection, we
implemented and investigated an abstract, Actor-Critic inspired,
computational model, with assumed Hebbian–Bayesian plastic-
ity in the three pathways indicated in Figure 1 (Sandberg et al.,
2002). The model represents cortex and the BG as two sepa-
rate populations, with units coding for states and actions in a
grandmother cell-like unary representation in cortex and BG,
respectively (Figure 2). Based on results from biological studies
of the BG, we have implemented two pathways, one excitatory
(Go) and one inhibitory (NoGo), that are considered critical
for the actual selection of the actions such that the Go pathway
selects which action to perform while the NoGo pathway can
actively prevent non-compatible actions from being selected. A
third functional pathway via the reward prediction (RP) pop-
ulation is configured as a feedback loop which computes the
RPE, i.e., the discrepancy between the expected reward while
being in a specific state and performing a selected action, and
the actual reward received. In our model, this difference plays
an important role in the update of the weights in both the Go,
NoGo, and RP pathways. In classical Actor-Critic models, the

FIGURE 2 | Schematic representation of the model and its pathways.

The output layer should be seen as the whole basal ganglia. The Go and
NoGo connections are all to all from the input layer, here with 5 states, to the
output layer, here with 3 actions. The information about the current state and

the selected action is conveyed to RP. Its weights matrix represents all the
15 possible state-action pairings. The difference between the actual reward
and its predicted value is fed back to the whole system where it impacts the
weights update and can also be involved in action selection (dot dashed lines).
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Critic evaluates state values whereas in our model RP predicts
a state-action value, similar to Q-learning and SARSA. We have
investigated how the action selection performance in this model
depends on the Go, NoGo, and RP capabilities under different
task conditions.

We have mapped the Go pathway in our model to the direct
pathway in BG (where MSNs express D1 type receptors), the
NoGo to the indirect pathway (with D2 type receptors), and
RP to the striato-SNc dopaminergic loop. In accordance with
the biology (Aosaki et al., 1994; Calabresi et al., 1996; Schultz,
1998; Reynolds and Wickens, 2000, 2002; Kerr and Wickens,
2001; Fiorillo et al., 2003; Surmeier et al., 2007; Matsuda et al.,
2009; Pawlak et al., 2010) and in a similar way to previous
computational studies (Suri, 2002; Doya, 2007; Izhikevich, 2007;
Hikosaka et al., 2008; Cohen and Frank, 2009), dopamine activa-
tion represents reward and acts as a modulator of the plasticity
of cortico-striatal synapses, via the RPE. The directionality of the
synaptic plasticity in the Go and NoGo pathway is set to be oppo-
site for the same RPE signal, as inspired by experimental findings
(Shen et al., 2008). In our model, this signal also plays an impor-
tant role in the update of the weights in the RP pathway. We have
here symbolized the RP system with striosomes controlling SNc,
but this system could also include other areas in the brain that
receive information about the state and action and which influ-
ence the dopamine release. Additional elaboration of the mapping
between our model and actual neurobiology can be found in the
“Discussion” section.

We have implemented a softmax action selection in order to
single out a unique action from the action layer, despite the
fact that several action units are likely to have non-zero val-
ues. It has been suggested to offer a good match with human
exploratory behavior (Daw and Doya, 2006) and multidimen-
sional optimization (Parush et al., 2011). This selection process
could be explained by interneurons in striatum but could also
result from recurrent lateral inhibition, or feed-forward compe-
tition along nuclei in the two pathways of the BG (Bolam et al.,
2000; Gurney et al., 2001; Bar-Gad et al., 2003; Voorn et al., 2004;
Chakravarthy et al., 2010).

FORMAL MODEL DESCRIPTION
The Bayesian Confidence Propagation Neural Network (BCPNN;
Sandberg et al., 2002) is used to select an action given the current
state based on occurrence and co-occurrence of states, actions,
and reward history. The network is made of abstract units with
a graded output in [0 1] corresponding to local populations of
on the order of 10–100 neurons, like e.g., a cortical minicol-
umn. A number of such units are collected in soft-winner-take-all
modules analogous to cortical hypercolumns (Peters and Yilmaz,
1993). The network is trained using a Hebbian–Bayesian learning
rule, which treats the units in the network as representing prob-
abilities of stochastic events, and calculates the weights between
units based on correlation between these events.

Suppose we need to decide to take an action A given
a state characterized be the values of H input attributes,
X = {X1, X2, . . . XH}. Analogous to a Naïve Bayes classification,
we consider the state attributes independent both with and with-
out the action A known. This means that the probability of the

joint outcome X can be written as a product,

P(X)= P(X1)P(X2). . .P(XH) (1)

and so can the probability of X given each action A,

P(X|A) = P(X1|A)P(X2|A). . .P(XH |A) (2)

with these assumptions and Bayes rule it is possible to write

P(A|X)= P(A)
P(X|A)

P(X)
= P(A)

∏ P(Xi|A)

P(Xi)
(3)

Now, the action variable A and each state attribute Xh are
assumed to be represented by a hypercolumn module and
attribute values to be discrete coded, i.e., each value represented
by one minicolumn unit (aj and xh,i respectively). Typically one
unit is active (1) and the others silent (0) within the same hyper-

column. The P(Xi|A)
P(Xi)

factors can now be formulated as a sum of
products:

P(aj

∣∣X) = P(aj)
∏

h

∑

i∈S

P(xh,i

∣∣aj)

P(xh,i)
(4)

where S is the indexes of active minicolumns. Taking the loga-
rithm of this expression gives

log P(aj|X) = log P(aj) +
∑

h

log
∑

i∈S

P(xh,i|aj)

P(xh,i)
(5)

This can now be identified with a typical neural unit update
equation for calculating the support sj of a unit in A from the
activity of the N state units with activities σi (1 for one unit in
each hypercolumn) and the biases βj and weights wij:

βj = log P(aj) and wij = log
P(xi

∣∣aj)

P(xi)
(6)

sj = βj +
N∑

i = 1

σiwij (7)

In this study, we avoid the independence assumptions and
instead treat the combination of all attributes as one compos-
ite attribute X̂. We then use one minicolumn to represent each
combination of attribute values, i.e., a “grandmother unit” rep-
resentation. Then, the only difference is that Equation 5 becomes

log P(aj|X̂) = log P(aj) + log
P(xi|aj)

P(xi)
(8)

where σi is 1 for the currently active state unit. A model with
a distributed representation works identically, provided that the
independence assumptions hold.

The input x and the output a of the system are binary
vectors of respectively n and m elements representing n states
and m actions. In these vectors, only one element is set to 1,
representing the current state and the selected action, respec-
tively. A trial, equivalent to updating the model by one time step,
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occurs, in summary, as follows: random activation of a unique
unit in the state (cortical) layer, computation of the activation
of units in the action layer (BG) and selection by the network
of a unique action unit, computation of the RP based on this
information, taking the action and receiving a reward value from
outside of the system, and finally computation of the RPE and
use of it in the update of weights and biases in the network
(Equation 9).

With regard to plasticity of the network, we denote the dif-
ferent probabilities P(xi), P(aj), and P(xi|aj) in Equation 8 with
variables pxi , paj , and pxiaj and these are updated at each time step

(pt +�t = pt + �pt +�t ) using exponential running averages as

�pt +�t
xi

= κ(xt
i − pt

xi
)

τp
�t

�pt +�t
aj

=
κ(at

j − pt
aj
)

τp
�t

�pt +�t
xiaj

=
κ(xt

i a
t
j − pt

xiaj
)

τp
�t (9)

with τp the time constant and initial values pxi = 1/n, paj =
1/m and pxiaj = 1/nm (1/nm, 1/2 and 1/2 nm, respectively, for
RP). Each pathway has its own set of p-variables. These esti-
mates are then used in Equation 6 to calculate biases and
weights. The results are not very sensitive to the initialization
as the updates converge relatively quickly with increasing num-
ber of trials. In our simulations, each pattern was active dur-
ing one time step �t = 1, corresponding to the duration of
one trial.

The three pathways, Go, NoGo, and RP, all work under the
same principles. The action units basically sum the activation they
get from each pathway (Equation 10) and do not implement any
threshold or membrane potential.

For the selection of an action, the activations of the Go and
NoGo pathways are usually combined. This can be done in dif-
ferent ways (see Table 1 below) but is most commonly done as

sj = sGo
j − sNoGo

j (10)

The activation sj then represents the log-propensity to select
action aj given the current state X. A softmax activation function
(Equation 11) with gain γ then gives the probability distri-
bution over A on which a random draw will pick the action
that becomes the selected one. The action which has the high-
est activity is picked most of the time, but the softmax still
allows some exploration by occasionally selecting a different
action.

P(aj = 1) = eγsj

∑
k

eγsk
(11)

The gain parameter γ was 5 in all simulations performed in this
study as it gives some sharpness in the selection.

The RP layer activation is computed in an analogous way
as that of the action layer but from X × A representing all

Table 1 | Specification of the different strategies to select an action.

Actor sj = sGo
j − sNoGo

j Use Go and NoGo pathway
(standard)

Actor Go sj = sGo
j Use only Go pathway

Actor NoGo sj = −sNoGo
j Use only NoGo pathway

RP sj = log(r1)|j Given the current state, use
the network to find the
action that maximizes
predicted reward. Here j
indexes the action.

Actor + RP sj = sGo
j − sNoGo

j + log(r1)|j Equal weight given to Actor
and RP. Here j indexes the
action.

The leftmost column states the name of the mode, the middle column shows

how the argument of the Softmax function (Equation 11) is computed and the

rightmost column provides some additional explanation and information.

possible state-action pairings. The output variable R is dis-
crete coded with two units with activation r0 and r1, respec-
tively, (see Wr

ij of RP in Figure 2). A softmax function with

gain = 1 is applied, but no random draw follows. After this, r1

represents the posterior probability of getting a reward based
on previous experience. Given the actual reward r the RPE is
computed as

RPE = r − r1 (12)

The RPE can be negative, which would correspond to a dip in
dopamine release. κ represents an update signal variable (“learn-
now”) which is controlled by the RPE as κ = η · |RPE|, where η is
the learning rate, which was set to 0.1 in all simulations in this
study. If the actual reward is exactly what the system had pre-
dicted, then RPE is 0 and from Equation 9 above it is trivial to
see that the different p values will then not change and the bias
and weights will stay the same.

Importantly, RPE has opposite effects on the updates of
the p-variables for the Go and the NoGo pathway. If the RPE
is positive (negative), the corresponding activation of the Go
(NoGo) pathway are updated as described previously. However
if the value passed is negative (positive), the binary vector
a of the Go (NoGo) pathway is changed to its complement
(Equation 13).

aj = (1 − aj)

m − 1
(13)

This normalizes a such that its components sum to 1. As an exam-
ple, for a negative RPE, the main effect of this is to decrease
the chance of taking the previously unsuccessful action when in
the same state, and to increase it fractionally for all the other
actions. The behaviors of the Go and NoGo pathways are thus
asymmetrical.

DIFFERENT STRATEGIES FOR ACTION SELECTION
The action selection can be done in other ways than described
above and we have investigated the performance using different
strategies. These are implemented by calculating the sj in different
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ways according to Table 1 before applying Equation 11 and select-
ing the action.

RESULTS
The performance of our action selection model inspired by the
BG was evaluated with regard to the level of correct choices in a
number of tasks with deterministic as well as stochastic rewards.
A trial is correct when the system selects the action which has
been defined beforehand as the one (see Table 2), if not the only
one, leading to a delivery of the reward with the highest prob-
ability, for a given state. For the simple learning task we also
measured the speed of learning, i.e., the number of trials taken
to learn it. We further compared our model with data from mon-
key experiments by simulating a two-choice task where the reward
probability was manipulated in similar ways to the experimental
study by Samejima et al. (2005). Finally, we compared the devel-
opment of the RPE of the model with the measured firing rate of
dopaminergic neurons in monkey given the same reward delivery
scheme. In the following we describe these tasks and the results
achieved.

The same state-action-reward mapping process was used for
all the tasks, except for the two-choice task. The mapping con-
sisted of giving a reward of value 1 for exactly one correct action
for each state (see Table 2 for an example). We typically had more
states than actions in order to mimic the convergent structure
observed in the cortico-BG system (Kincaid et al., 1998). The
probability of getting a reward when a correct choice had been
made, P(r), could be varied between 100% and 0%. Reward was
1 with reward probability P(r), and 0 otherwise. A block is the
number of trials during which both the mapping and P(r) is kept
fixed. Most of the time, all the blocks within the same simulation
run have the same number of trials and the reward probability
doesn’t change.

SIMPLE LEARNING
The size of the network was kept small in this task (10 states and
5 actions) to improve readability of the figures. One block of 200
hundreds trials was presented with P(r) set to 100%. Within the
same block, the mapping did not change, that is, for each state,
one action was rewarded with 1 while all the others gave a reward

of 0 (see Table 2A). Each action thus had two states for which a
positive reward was given. For each trial, the state was randomly
drawn from a uniform distribution. The learning time constant
τp was set to 32. We count as a success a trial where the correct
choice has been made.

The results in Figure 3 come from the same single run. 176
of the 200 trials were correct. The incorrect trials (remaining 24)
occurred during the initial exploratory phase. The system could
learn to select the correct action for each state (see the suc-
cess moving average in Figure 3C). The first choices made were
purely random. When the RPE was positive, the weight between
the state and the rewarded action increased in the Go path-
way and decreased in the NoGo pathway and vice versa. During
the exploratory phase, weights in the NoGo pathway showed
larger amplitude variation than the weights in the Go path-
way. Our interpretation is that the system first tried the red
then the purple action, which led to a reward of 0, because
there is a large increase in the red and purple weights in the
NoGo pathway as well as a decrease in their corresponding
weights in the Go pathway (see the NoGo weights dynamics
in Figure 3), reducing the probability for these actions to be
selected again when in the same state. When in state 1 for the
third time, the blue action was tried. Due to the positive reward
received, the blue Go weight increased and its NoGo weight
decreased.

We compared the different selection modes on a similar task,
but with a network of 25 states and 5 actions. We recorded the
number of trials required for each selection mode to reach crite-
rion, that is to achieve 10 consecutive correct actions. We averaged
the results from 200 simulations for each mode (Figure 4). A
One-Way ANOVA showed a significant effect of the selection
mode on the number of required trials before reaching criterion.
Post-hoc comparisons using the Tukey HSD test indicated that all
the differences between the mean number of trials required to
reach criterion were significant (p < 0.05 for Actor ∼ Actor +
RP; p < 0.001 for the others). Actor and Actor + RP selection
gave the best results, learning to select the correct action out of
five possible for each of the 25 states, in on average around 100
trials, i.e., 4 trials per state. The others modes needed more trials,
between 140 and 180.

Table 2 | Illustration of state-action-reward mapping.

A B

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

a1 1 1 a1 1 1

a2 1 1 a2 1 1

a3 1 1 a3 1 1

a4 1 1 a4 1 1

a5 1 1 a5 1 1

States are shown horizontally and actions vertically, with the nonzero reward as entries in the table. Shown is an example of a state-action-reward mapping for two

consecutive blocks (A and B) in the reversal and successive reward tasks with 10 states and 5 actions. Within a block, the mapping did not change. In the reversal

learning task the third mapping was the same as the first panel A, whereas in the successive learning task the rewards were shifted another step to the right with

wrap-around.
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FIGURE 3 | Evolution of the weights and of the RPE during a simple learning task. (A) and (B) shows dynamics of the weights from state 1 (out of 10) in the
Go (A) and NoGo (B) pathways during a simple learning task. The blue curve represents the weight between state 1 and the rewarded action. (C) Moving average
of reward over ten trials and RPE value for the same simulation. (D) Color coding of the different weights and the associated actions.

FIGURE 4 | Comparison of the learning speed of the different selection

mechanisms on a simple learning task. The reward probability was set to
100%. The standard reward mapping was used in a network of 25 states
and 5 actions. Results were averaged over 200 runs. Error bars represent
standard deviation. All differences are significant at p < 0.001, except
between Actor and Actor + RP (p < 0.05).

SUCCESSIVE LEARNING

In this task, the reward mapping was shifted one step every blocks
of 200 trials, with wrap-around as described in Table 2, while P(r)
was kept at 100%. The mode used was the Actor. There were 10
states and 5 actions, τp = 32 and the simulation consisted of 6
blocks. We measured the dynamics of the weights in the Go and
NoGo pathways as well as the success rate and RPE (see Figure 5C,
red curve).

The system could learn to select the appropriate action for each
state, but was also able to switch its selection appropriately when
the reward mapping was changed (Figure 5). This was mainly
due to the fast and relatively strong increase in the NoGo weight
between the current state and its previously rewarded action (see
the amplitude of the change in the NoGo pathway in Figure 5B).
In the Go pathway, the weight between a state and its previ-
ously appropriate action decreased as the weights from this state
to the other actions increased. At some point, the weight to the
previously correct action dropped sufficiently for the system to
select a different one. The most dramatic updates again occurred
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FIGURE 5 | Dynamics of the weights and of the RPE during a

successive learning task. Each block consisted of 500 trials. 6 blocks were
presented, so that the reward mapping for block 1 and block 6 was the
same. Panels (A) and (B) show Go and NoGo weights from state 1 to the
5 actions. Same color in the two panels represents connections to the
same action. (C) In blue, moving average of reward over the last 10 trials.
In red is shown the RPE.

after a change in the reward mapping. In Figure 5C, the RPE is
shown and it can be seen that the RP part adjusted its predic-
tion and gradually learned to predict an absence of reward: the
RPE became less and less negative as new trials were performed

after a change in the reward mapping. It can also be noted that
the entropy associated with the distribution of the activation in
the action layer given a specific state (results not shown here)
decreases more in the Go pathway than in the NoGo pathway.
This is due to the fact that the Go pathway is about promoting
one action whereas in the NoGo pathway it is about suppressing
all actions except one. The dynamics of the weights in the two
pathways support this idea.

Furthermore, the correct mapping for the first block is learned
faster (average 53.2 trials to criterion) than for successive blocks
with different mappings (average 64.6 trials, Student’s t-test,
p < 0.001) and is probably caused by the fact that the previous
mapping has to be unlearned first. This is true for all the differ-
ent selection modes. Also, the size of the blocks plays a role in
the performance. With 500 trials per block, the system required
more trials to reach criterion in the subsequent blocks (Student’s
t-test, p < 0.001). This shows that even if a mapping is learned
and the system always selects the correct action, significant
“over-training” still occurs and the weights between the current
state and the selected action are increased, making the unlearn-
ing process, required by the presentation of a new mapping,
slower.

STOCHASTIC REWARD
We next compared the different action selection modes in a
stochastic version of the successive learning task in which P(r)
was modulated between 10% and 100%. We set up two versions
of the task which had, respectively, 1 and 10 blocks presented
for each reward probability. The system (weights and biases) was
reinitialized for each change of P(r). The network had 25 states
and 5 actions, and each block consisted of 500 trials. Results from
20 runs for each condition were averaged and τp was set to 128.

Figure 6 shows the performance as the ratio of correct over
total number of trials for different levels of reward probability.
The general trend is a decrease in the performance for all the
modes as the reward probability decreases. In order to get a mean-
ingful statistical analysis, the results were grouped for each of the
selection modes in three groups depending on reward probabil-
ity: high [100, 80], medium [70, 50] and low [40, 10]. A Two-Way
ANOVA was run for each version of the task and showed a signifi-
cant effect of the selection mode and reward probability, as well as
their multiple interactions, on the average success ratio (number
of correct trials over the number of trials). A post-hoc Tukey test
was run to compute pairwise comparisons of the performances
of the different selection modes for each level of reward prob-
ability from the two versions. When the reward level was high
and only one mapping had to be learned (Figure 6A), Actor +
RP performed significantly better than the others (p < 0.001).
The biggest drop in performance is noted for Actor going from
high to medium reward probability. This selection mode eventu-
ally ended as the worst performer after Actor NoGo for the low
reward probabilities (p < 0.001).

The Actor shows a similar trend in the version with 10 blocks
(Figure 6B), giving the best results for the highest level of reward
probability (p < 0.001) and then, while it still displays the best
performances for mid-level along with Actor + RP, it exhibits
a decrease in its average success ratio for the lowest reward
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FIGURE 6 | Average success ratio of the different selection mechanisms

on two versions of a stochastic reward task. Mean success ratio and
standard deviation (errors bars) are shown for three levels of reward probability:
high = 100–80%, mid = 70–50%, and low = 40–10% (A) Stochastic simple

learning: 1 block per reward probability (B) Stochastic successive learning:
10 blocks per reward probability. The output/actions layer consisted of 5 units,
meaning that random choice would lead to a success ratio of 0.2. Success
ratio is the number of correct trials over the total number of trials.

probabilities. However, in this version of the task, it is the RP
mode that displays the worst performance for every level (p <

0.001). Only the Actor NoGo shows similar poor results for the
lowest level of reward probability.

EXTINCTION AND REACQUISITION
Extinction is the process by which previously established stimu-
lus relationships are broken by the removal of reinforcers and/or
biologically relevant stimuli, causing a reduction in responding.
Reacquisition is the quick return of an extinguished behavior
when the response and reinforcer are paired again. Studies with
animals have shown that the longer the extinction is, the slower
the reacquisition (Bouton, 1986; McCallum et al., 2010). Here the
task was to compare the performance of the different selection
modes on two different versions of an extinction task. In both

cases, the simple learning, with P(r) of 100%, was done for 1
block of 1000 trials but the next block had a reward probability
of 0% for all the choices. The number of trials in this extinction
block was 0, 25, 50, 100, 500, 1000, or 2000. The third block dif-
fered such that in one version, “reacquisition,” the same mapping
as in the first block was used again, whereas in the other one, “new
learning,” a new mapping was used. The same type of network as
in the stochastic reward tests was used, the results were averaged
over 20 runs, and τp was set to 128.

The general trend in this task differs in the “new learning”
and the “reacquisition” condition. The more extinction trials
there are in block 2, the easier it was to learn a new map-
ping in block 3, especially for Actor Go (Figure 7A). When the
length of block 2 was non-zero, all the results from the differ-
ent selection modes were better compared to when there was
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FIGURE 7 | Extinction–Reacquisition performance. Extinction between
two learning blocks results in different performances in the second block
depending on the task and on the selection mechanism. During blocks
1 and 3, reward probability was 100% and it was 0% during block 2. This
block could count different number of trials: 0, 25, 50, 100, 500, 1000, or

2000 trials. (A) New learning condition: block 3 had a different reward
mapping than block 1. (B) Reacquisition condition: block 3 had the same
reward mapping as block 1. On the y-axis, non-zero points show the number
of trial needed to reach criterion for the first block for each selection mode.
Error bars represent standard deviation.

no extinction trial between block 1 and 3. When the system
had to reacquire the same actions as in block 1 (Figure 7B), the
performance decreased with the number of extinction trials in
block 2, except for the RP, quite dramatically for Actor NoGo
and to a smaller extent for the Actor alone. Apart from the RP,
all modes required, with variable lower extinction lengths, more
trials to reach criterion in reacquisition than in the first learning
in block 1.

A Two-Way ANOVA showed significant effects of the selection
mode and the length of the extinction block (p < 0.001) for each
of the two versions of the task. A post-hoc Tukey test was again
used for pairwise comparison of the average number of trials
required to reach criterion. In the new learning condition, Actor

Go showed worst performance when the extinction length was the
shortest (p < 0.001, Figure 7A). It exhibited perseverations, i.e., a
tendency to keep on trying the previously rewarded actions even
though they are not associated with a reward anymore, before the
decrease of the weight of that action in the Go pathway enabled
the system to select a different action. If the duration of the extinc-
tion was long enough to suppress the selection of that action,
then the performance was quite good. This interpretation is con-
firmed by the opposite results that the Actor Go system got in the
reacquisition paradigm. Here, it showed the best results up to an
extinction length of 100 trials (p < 0.001, Figure 7B). Its perfor-
mance gradually decreased with the number of unrewarded trials
in the extinction block but stayed better than the full Actor system
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which was affected by the poorly performing NoGo pathway. The
latter exhibited massive trouble to reacquire the correct mapping
after extinction, even failing to reach criterion within the 1000
trials of the test block 3 for the longest extinction period (results
not displayed in Figure 7B). This underlines the contribution of
this pathway in enabling the system to switch its selection after
disappointing rewards.

The RP selection displayed poor performance in the new learn-
ing condition. However, it showed the best performance in the
reacquisition task (p < 0.001) and it was the only mode not
affected by the length of the extinction in reacquisition. The effect
of the length of the extinction block did not reach significance for
this condition only. For this and the Actor Go mode, the perfor-
mance can probably be best explained by the fact that they are
quite good at learning a positively rewarded state-action mapping
but worse when it comes to learn from errors. This is supported by
the behavior of the Actor NoGo, which exhibited almost opposite
performance to these two modes, because it learned better when
the RPE was negative.

REVERSAL LEARNING
In this task, the state-action-reward mapping was changed
between two different mappings, with no overlapping rewarded
states (Table 2) and with 200 trials in each block. 20 blocks were
presented, thus giving 10 presentations of the same mapping. The
network consisted of 5 states and 15 actions, out of which only
two for each state were alternatively rewarded. τp was set to 24.

All the modes were able to learn the first mapping. As shown
in Figure 8, the Actor showed poor performance in this task, and
Actor NoGo and to a lesser extent Actor Go exhibited similar poor
performances, failing to even select the correct action once for
whole blocks (data not shown). Actor+RP and RP were however
able to switch their selection toward the correct action along the
different reversals.

In fact, all the modes that do not involve the RP in their selec-
tion mechanism failed at switching back and forth between the
two mappings (results not shown here). The failure to do so lies
in the dynamics of the plasticity. As a system learns that an action
does not lead anymore to a reward, the associated RP of this
action and the current state is decreased and the global weight,
that is Go + NoGo, of this pairing is also decreased. The system
can get in a position where the two actions previously rewarded
have become so suppressed that all the other actions are tried
instead. However, these other actions having always been asso-
ciated with no reward, makes the resulting RPE approach zero.
This makes the changes in the weights very small and thus keeps
the system in that configuration, where the two actions that have
been linked with a reward are overly suppressed. This was con-
firmed by a test where we increased the number of trials within a
block. When large enough, the number of trials enable the system
to slowly learn to suppress all the other actions that were never
been associated with a reward, to the extent that the two rewarded
actions became selectable again.

Moreover, we found that preventing the plasticity from
becoming too low by adding a “tonic dopamine” component of
about 10% to the update signal (κ) also stabilized the learning
dynamics of the affected action selection modes.

FIGURE 8 | Moving average of the success and RPE for Actor (A) and

Actor+RP (B) in a reversal learning task consisting of 20 blocks of 200

trials each. Panel (C) shows savings effects for Actor+RP and RP as the
systems relearns the same mapping. Error bars represent standard
deviation.

We ran a Two-Way ANOVA on the number of trials needed to
reach criterion for the three first odd reversals (block 1, block 3,
and block 5) for the Actor + RP and the RP modes. It noted a sig-
nificant effect of the mode and of the reversal number (p < 0.001)
but not of the interaction. A post-hoc Tukey test supported that
Actor + RP performed significantly better than RP (p < 0.001,
see Figure 8C).
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Savings are the proactive influences of prior learning on later
learning even when the original behavior has been extinguished
or forgotten (Kehoe and Macrae, 1997; Schmajuk, 1997). In the
reversal learning context, a moderate saving effect, relatively to
experimental data, was evident in the stable selection modes,
resulting in a slightly faster learning of subsequent blocks com-
pared to the first few ones (Figure 8C). We found that this was a
result of traces of the previously learned state-action mapping in
the weight matrix that survived past the training of the alternate
mapping.

The savings seen in our model are much less prominent than
what can be observed in biology and there is an absence of a
clearly S-shaped learning curve. This is likely because our model
represents only the final stages of learning the stimulus-response
mapping and does not represent the earliest stages of the learn-
ing process, e.g., finding out and discriminating the relevant
stimuli.

TWO-CHOICE TASK WITH VARIABLE REWARD PROBABILITY
In the study by Samejima et al. (2005), the authors looked at how
the probability of a monkey to perform an action, out of two pos-
sible (left and right) lever presses, was related to the probability of
reward for these two actions. In order to test the choice dynamics
of our model compared to the monkey we set up a network with
two possible actions and followed the reward schedule given to
the monkey in the experimental study. The values of the reward
schedule are shown in Figure 9D. One difference is that we did
not use variable block lengths but instead fixed the number of tri-
als in a block to 50. The reason for the dynamically changing block
duration in the experiment was that this prevented the monkey
from learning to switch behavior relatively to the number of trials
already performed, that is, to learn the number of trials within a
block. In this simulation we used the Actor, Actor + RP, and RP
selection modes with τp = 6.

Figure 9 shows the moving average ratio of left action over
right action during the task, averaged over 100 runs and for
a single run. The behavior of the model tended to be qual-
itatively similar to that of the monkey. Actor + RP selection
did not show a significant difference in performance compared
to Actor only. When the model was using only the RP part
for the selection, it gave poor performance, that is when com-
pared to optimal behavior, and did not show a strong anal-
ogy with the monkey behavioral responses. In accordance with
results in previous tasks, the RP mode was not very efficient
when mappings were often switched. It could however show
good performance when P(r) was less than 100%. We also
tested our model on a second two choice task with a different
order of the blocks that was presented in their study (Samejima
et al., 2005) and results were qualitatively as good as the ones
showed here.

DOPAMINE ACTIVATION AND RPE DYNAMICS
Activation of dopaminergic neurons in monkey substantia nigra
pars compacta (SNc) has been shown to be positively correlated
with the number of preceding unrewarded trials and this could
be simulated with a conventional TD model (Figures 10A,B)
(Nakahara et al., 2004). In a first part, they gave a reward after a

stimulus in 50% of the presentations, and used the average firing
rate as baseline. They found that the firing rate of the dopamin-
ergic neurons was linked to the recent history of reward delivery
following a stimulus. The firing rate of the recorded neurons at
the delivery of a reward, which followed a stimulus, increased
with the number of previously unrewarded trials associated with
this stimulus. Furthermore, the amplitude of the dip in firing rate
noted after an unrewarded trial decreased as the number of previ-
ously unrewarded trials increased. In order to compare the results
using our computational model to the results from Nakahara et al.
(2004), we ran a similar test as in their study. In a first block, P(r)
was set to 50% (baseline condition). Then, we recorded the RPE
of the model both when a reward was delivered and when it was
omitted. The variable was the number of unrewarded trials before
the recorded trial. This post reward trial number (PRN) ranged
from 1 to 5 and τp was set to 6.

In our model, the RPE following a rewarded trial increased for
a state-action pairing as the number of previously unrewarded
trials for this association increased (Figure 10C). The difference
between the predicted value and the actual delivery served to
update the weights in order to offer a better prediction the next
time the agent was in the same situation. Similarly, the RPE
decreased for the state-action pairing with each new unrewarded
trial as the system adapts its RP to reflect the absence of reward.
The dynamics of RPE in our model are similar to the TD-error in
the standard TD-learning model used by Nakahara et al. and to
the firing rate of dopaminergic neurons in the monkey (Nakahara
et al., 2004).

DISCUSSION
The dense interactions within the BG as well as between these
neural structures and other parts of the brain could provide a
wide diversity of exchange and processing of information. In
this work, we have focused on possible mechanisms for action
selection in an abstract model of BG, investigating how infor-
mation available to an agent could impact action selection based
on a dual pathway probabilistic computational structure where
the weights, state-action propensities, are based on learned event
probabilities. Despite the abstract nature of the model, it is
closer to biology than standard reinforcement learning algo-
rithms and this could be used to help to understand diseases.
In a first part, we emphasized performance assessment of the
model, demonstrating that learning was possible in various tasks,
where reward mapping and reward probability were probabilis-
tic and dynamically changed. The model was able to find the
correct choice and to adapt its RP such as if a discrepancy was
detected, the different pathways changed their weights accord-
ingly. It remains to compare its performances to less biolog-
ically detailed reinforcement learning models like SARSA and
Q-learning. In the second part, we compared model performance
with results from animal learning in a two choice tasks; the
model could reproduce results from a two choice task with a
dynamic reward schedule and the RPE showed the same depen-
dence on the history of reward delivery as the activity of dopamine
neurons. Future works remains to show more quantitative com-
parisons and details in the relation with animal learning perfor-
mance.
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FIGURE 9 | Action selection dynamics in a two-choice task with

changing reward schedule. At the top of panel D are shown two values for
each block, the first one is P(r|left) and the second one is P(r|right). In our
simulations, each block consisted of 50 trials (blue dashed vertical lines).
Panel D shows results reproduced from the experimental study on a monkey

(Samejima et al., 2005). Panels (A–C) show the corresponding results from
our model, for RP, Actor+RP and Actor respectively. Average of 100
simulations, light blue shaded area represents standard deviation and in
dashed red are results from a single run. Left ratio denotes the number of
left action selected trials in a window of 10 trials.
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FIGURE 10 | Dynamics of RPE relatively to previous reward history and trial outcome. (A) Experimental results of the firing rate of dopaminergic neurons
from monkey and (B) TD error results from a conventional TD model; reward omission (blue), reward delivery (red). Reproduced from Nakahara et al. (2004)
(C) RPE dynamic relative to PRN from our model.

RELATION OF THE MODEL TO BIOLOGY
Our model was intentionally designed based on some fundamen-
tal information from biology, but it is still very abstract in nature.
Some more parallels with observations from biology can, how-
ever, be identified. For instance, plasticity in the Go and NoGo
pathways of the model occurred in a complementary fashion,
in accordance with what had been described in biology (Shen
et al., 2008). Weight updates were based on the triple factor rule:
activation and co-activation of a state and an action, along with
the RPE value. This mimicked the three factors observed to be
critical in biology: pre- and post-synaptic activity as well as a
change in baseline dopaminergic neuron firing rate (Reynolds
and Wickens, 2002). The RPE in our model has as its main effect
to bias the probabilities of joint activation toward state-action
pairings that are positively (Go pathway) or negatively (NoGo
pathway) rewarded. The dynamics of the NoGo weights showed
a strong involvement in reversal and successive learning, when
a previously reinforced action had to be suppressed in order to
enable the system to select another one. This is similar to what
has been described in biology, where D2-type receptor availabil-
ity in striatum has been related to the number of trials required to
switch behavior in a reversal learning condition (Groman et al.,
2011).

Cortical neurons project to neurons in both the direct and
indirect pathway and it is thus likely that cortical information
is shared between these two pathways as in our model (Doig
et al., 2010). However, sub-compartments in the striatum, strio-
somes (patches) and matrix, may be differentially involved in
learning, in computing the RPE and selecting the action, respec-
tively (Graybiel, 1990; Houk et al., 1995; Mengual et al., 1999).
Matrisomes receive inputs from cortical sensorimotor areas and
thalamus and project to downstream parts of BG. Striosomes
receive information from associative and frontal cortical areas,
along with amygdala inputs. Furthermore, they are projecting
mostly to the SNc, which is one of the main dopaminergic nuclei
in the brain and they show increased activity when a reward, or a
reward predictive stimulus, is presented (Schultz et al., 2000). No
direct connection was found from matrisomal neurons (Gerfen
et al., 1987; Fujiyama et al., 2011) to dopaminergic neurons.

For these reasons, matrisomes have been suggested to fulfil the
role of the actor and striosomes have been linked with the critic
part of computational Actor-Critic models.

We hypothesize that a loop including thalamus or associative-
or pre-frontal cortex, sends an efference copy-like information
about the selected action to the striosomes, which already have
knowledge about the state to enable them to compute a predic-
tion of the reward (Mengual et al., 1999; Haber, 2003). This view
suggests that the efference copy input from motor divisions of
thalamus and cortex targets striosomes, in order to contribute to
the RP. This would act as an AND function of states and actions,
and thus enables the RP system to know which action has been
selected in the current state, in order to emit its prediction. It
has been suggested that, in birds, BG circuits could receive a
detailed efference copy of premotor activity (Charlesworth et al.,
2012).

An important aspect of how the model is mapped to biology
concerns the prominent negative part of the cortico-striatal con-
nection matrix in the model. Most natural would be to assume
this component to target feed-forward inhibition in striatum,
possibly via the FS neurons (Gage et al., 2010; Planert et al.,
2010). These neurons are, however, very few and it seems unlikely
that they could support such a function on their own. The rel-
ative symmetry of our model opens for the possibility that the
negative weights in one pathway (Go or NoGo) could in fact be
positive weights in the other, a possibility that calls for further
investigation.

A parameter that was varied considerably, between 6 and 128,
in the tasks studied was the learning time constant τp. This was
also necessary to achieve good performance and match to experi-
mental data. In general, small τp are useful for simple tasks, small
number of choices and high reward schedule, as it gives large
updates and thus fast learning but, when the tasks are more com-
plex, i.e., large number of states and many possible actions and/or
low reward schedule, then a long τp would enable the system to
remember more trials and thus enable it to find the best actions
among that longer memory window. A plausible possibility is the
brain actually implements learning dynamics over a range of time
constants while our model only represents a single one. It remains

Frontiers in Behavioral Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 65 | 14

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Berthet et al. Reconfigurable basal ganglia inspired model

to be investigated if our model, extended with a range of plasticity
time constants, would be able to solve this range of tasks without
tuning of the plasticity dynamics.

DIFFERENT ACTION SELECTION STRATEGIES
The model we have presented here provides the possibility to
combine activity in different pathways in order to perform action
selection, and we investigated several different possibilities. There
are two main criteria for judging which of the action selec-
tion modes studied using this model is best—accurate modeling
of biology and best total performance. The most plausible and
straightforward possibility is that the Actor mode is closest to
what biology uses and the computations of the different actions
value can be performed in parallel. The Actor Go and NoGo
modes could represent lesioning or inactivation of the other
pathway, rather than as intact selection mechanisms. The other
possible action selection mode involves the RP, i.e., the RP, but
this mode performed poorly in the stochastic successive learn-
ing task and it is also likely to be sequential in nature and take
time. This is because we assume that an action would need
to be imagined and its associated predicted reward stored in
memory while the predicted rewards from other actions are con-
sidered, in a serial process, until all the possibilities have been
compared or until time has run out. At this point the action
with the highest RP could be selected. PFC might be involved
in this mode of selection, since this area is more activated dur-
ing tasks requiring complex selection and learning (George et al.,
2011). However, when time is an issue, actions might be selected
solely based on the faster parallel Actor. In fact, the most sta-
ble results over the tasks examined here were shown by the
Actor + RP mode. It is unclear, however, how these different
mechanisms could be combined—this may actually require a
more advanced cognitive control, and it is possible that some
animals lack entirely the ability to use the RP in the selection
process.

The reversal learning task proved to be hard for the modes that
did not use the RP for selection. These modes failed at switching
back and forth between the two mappings and the failure mode
was different from what is observed in animal experiments where
poor performance in reversal learning is mostly ascribed to per-
severative behavior (Chaves and Hodos, 1998; Judge et al., 2011).
We also found, however, that adding a “tonic dopamine” com-
ponent to the RPE could rescue e.g., the Actor performance. It is
thus too early to state clearly even for this abstract model what
constitutes the best action selection mode.

DIRECTIONS FOR FUTURE RESEARCH
As already indicated several issues relating to the model proposed
here need further investigation and validation against experimen-
tal data. The model could serve as a basis for extensions in many
directions and this is necessary in order to improve performance
and also the match to biological experimental data. One impor-
tant neglected aspect is time—for instance reward is typically
somewhat delayed relative to performance of the rewarded action.
The learning rules used includes mechanisms for delayed reward
so this can readily be incorporated. It could further be relevant
to change the weight of the contributions from each pathway

(Graybiel, 2004). Higher affinity of D2 receptors to low dopamine
level compared to D1 receptors has been described (Jaber et al.,
1997) which could suggest different learning rates or thresholds
in the Go and the NoGo pathway.

Other important model extensions include transformation
to a network model with populations of spiking neurons rep-
resenting the states and actions and leaving the simple unary
representations in favor of distributed representations in a spik-
ing neural network. This as well should not meet any major
obstacles and it would bring the model to a more detailed level
thus making contact with experimental and modeling data at a
more fine-grained biophysical level. Such an extension opens up
for improved models of e.g., diseases of the BG like Parkinson’s
disease (PD), likely caused by a decreasing level of dopamine,
resulting from the death of dopaminergic cells in SNc (Obeso
et al., 2008). This could be integrated in the model in two steps:
the implementation of a threshold in action selection, meaning
that the activity, sj, would have to reach above a minimum value
in order for an action to be selectable. To reproduce the low
level of dopamine, the RP and the RPE should have, respectively,
low and negative values. Thus, the selection modes where RP is
directly involved might not reach a supra-threshold activation sj

in the action layer and this would thus emulate akisnesia. The
Actor mode would be affected indirectly via the RPE in the update
rule. This would trigger an increase in the suppressing activation
from the NoGo pathway, similar to the indirect pathway over-
activity remarked in Parkinsonian patients (Albin et al., 1989).
It could be that if all the actions are thus depressed, they would
all be below selectability threshold, eventually producing an aki-
nesia phenomenon. Such a model might be able to shed some
more light on the causes and possible treatments of this and other
conditions affecting the BG.

CONCLUSIONS
Our dual pathway model was able to rapidly find the correct state
action mapping and to adapt its RP such as to solve the different
action selection tasks it was evaluated on in this study. Overall, it
seemed that the system combining the RP and the Go and NoGo
pathways gave the best performance. It remains to be studied how
such combinations could occur in biology, with respect to the
type of task and to the time available for the selection for example.
Furthermore, when comparing with results from animal learning
experiments, the model reproduced results from a two choice task
with a dynamic reward schedule and the RPE showed the same
dependence on the history of reward delivery as the activity of
dopamine neurons. Several extensions and much work on model
validation remains for future investigations.
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