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Locomotion in complex, dynamic environments is an integral part of many daily activities,
including walking in crowded spaces, driving on busy roadways, and playing sports.
Many of the tasks that humans perform in such environments involve interactions with
moving objects—that is, they require people to coordinate their own movement with the
movements of other objects. A widely adopted framework for research on the detection,
avoidance, and interception of moving objects is the bearing angle model, according
to which observers move so as to keep the bearing angle of the object constant for
interception and varying for obstacle avoidance. The bearing angle model offers a simple,
parsimonious account of visual control but has several significant limitations and does
not easily scale up to more complex tasks. In this paper, I introduce an alternative
account of how humans choose actions and guide locomotion in the presence of moving
objects. I show how the new approach addresses the limitations of the bearing angle
model and accounts for a variety of behaviors involving moving objects, including (1)
choosing whether to pass in front of or behind a moving obstacle, (2) perceiving whether
a gap between a pair of moving obstacles is passable, (3) avoiding a collision while
passing through single or multiple lanes of traffic, (4) coordinating speed and direction
of locomotion during interception, (5) simultaneously intercepting a moving target while
avoiding a stationary or moving obstacle, and (6) knowing whether to abandon the chase
of a moving target. I also summarize data from recent studies that support the new
approach.
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INTRODUCTION
Getting from point A to point B is typically not simply a matter of
moving along a straight path through a static environment over a
flat, obstacle-free ground surface. More often than not, the envi-
ronment contains moving objects, obstacles that must be stepped
over, avoided, or dodged, and surfaces that vary in traction, slant,
extent, and compliance. In such situations, vision plays a central
role in allowing us to follow safe and efficient routes to the goal
(Patla, 1997).

One of the challenges of developing a general theory of loco-
motion in complex environments is understanding how people
coordinate their own movements with the movements of other
objects. Moving objects can be either targets to be intercepted or
obstacles to be avoided. One approach to this problem is to begin
with the simplest forms of interception and obstacle avoidance
and build up to more complex tasks. Indeed, it is not uncommon
in studies on interception for the target to be the only object in the
environment and to be moving slow enough to be easily catch-
able, and for either speed or direction of observer locomotion to
be held constant (e.g., Lenoir et al., 1999; Chardenon et al., 2002;
Bastin et al., 2006; Diaz et al., 2009).

However, many environments contain multiple moving
objects. In such situations, aspects of locomotor control that are
not particularly relevant in simple environments become critical
in more complex environments. For example, it is easy to over-
look the significance of one’s body dimensions and locomotor

capabilities in a single-target interception task with a slow-
moving target. However, when there are also stationary and
moving obstacles in the environment, the dimensions of one’s
body and other objects cannot be ignored. Similarly, if there is
a possibility that the target is too fast to intercept, then the deci-
sion about whether to pursue the target in the first place must
be made in a way that takes one’s locomotor capabilities into
account.

Theories and models based on interception and obstacle
avoidance in simple, idealized situations do not easily scale up
to more complex tasks because they often neglect aspects of
locomotor control that are only important in more complex envi-
ronments. In this paper, I introduce a new theory of locomotion
in complex dynamic environments that was developed from the
beginning to capture these important aspects of behavior and
to apply to a wider range of tasks involving multiple moving
objects.

THE BEARING ANGLE MODEL
DESCRIPTION OF THE BEARING ANGLE MODEL
Before introducing the new theory, I will describe the bear-
ing angle (BA) model, which is a widely adopted model of
collision detection, obstacle avoidance, and interception. The
BA model is based on a simple heuristic that is well-known
to pilots and sailors for detecting imminent collisions. If an
object’s bearing (i.e., its direction relative to some fixed reference
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FIGURE 1 | The bearing angle model of interception and obstacle

avoidance. The bearing angle is the angle between the object and
reference direction that remains fixed in exocentric coordinates (dashed
line). By keeping the bearing angle constant, the observer will eventually
intercept the moving target.

direction) remains constant, the observer and the object are on
a collision course (Figure 1). If the object is an obstacle to be
avoided, then a fixed bearing angle specifies that evasive action
is called for. The observer should change speed or direction (or
both) to avoid a collision. If the object is a target to be inter-
cepted, and if the bearing angle is decreasing, then the observer’s
speed is insufficient for his or her direction of travel. To inter-
cept the target, the observer should accelerate, turn ahead of
the target, or both. Similarly, if the bearing angle is increas-
ing, then the observer should decelerate, turn toward the target,
or both.

The BA model is widely used to account for collision detection,
interception, and obstacle avoidance in both humans (Cutting
et al., 1995; Lenoir et al., 1999, 2002; Chardenon et al., 2004;
Fajen and Warren, 2004; Ni and Andersen, 2008; Shaffer and
Gregory, 2009) and non-human animals (Lanchester and Mark,
1975; Olberg et al., 2000; Ghose et al., 2006). In addition, the
behavioral dynamics model (Fajen and Warren, 2003; Warren,
2006), which is one of the few general models of visually guided
locomotion in humans, implements the BA strategy in its mov-
ing target (Fajen and Warren, 2007) and moving obstacle (Cohen
et al., 2006) components.

LIMITATIONS OF THE BA MODEL
Although the BA model provides a parsimonious account of some
aspects of interception and obstacle avoidance, the model has a
number of significant limitations:

Limitation #1
The BA model treats the observer’s body and objects as points
without any physical extent. This is especially problematic for
obstacle avoidance, where the physical size of the observer’s body
and the obstacles must be taken into account to avoid collisions.

Limitation #2
The BA model ignores the fact that there are limits to how fast
actors can move and how quickly they can turn. Such limits
must be taken into account to choose appropriate actions and
to properly guide locomotion (Fajen, 2005a, 2007). For exam-
ple, when crossing the street, the decision to go ahead of the
approaching vehicle or wait until after the vehicle passes must
be made in a way that takes one’s locomotor capabilities into
account. Because the BA model ignores the fact that such limits
exist, it provides no explanation of how actions are selected, ini-
tiated, and guided in a way that takes locomotor capabilities into
account.

Limitation #3
Most real-world interception and obstacle avoidance tasks are
minimally two degree-of-freedom control tasks in that actors can
change both direction and speed of locomotion. The BA model
provides no explanation of how these two degrees of freedom are
coordinated (Bastin et al., 2010). A decrease in the bearing angle
specifies that the observer’s current speed (given his or her current
direction) is insufficient, and that the observer should increase
speed, turn ahead of the target, or both. However, the model does
not provide a basis for understanding how observers decide when
to change speed only, when to change direction only, and when to
change both speed and direction.

Limitation #4
The BA model is incompatible with findings demonstrating that
behavior is influenced by manipulations of self-motion infor-
mation. According to the BA model, locomotion is guided by
the change in bearing angle of the object; that is, by the local
optical motion of the moving object, independent of the global
optical motion corresponding to other, stationary features of the
environment such as the ground plane. Therefore, manipula-
tions of optic flow originating from the stationary background
should not influence the observer’s behavior during interception
or obstacle avoidance. Contrary to this prediction, when peo-
ple walk to intercept a moving target or choose routes around
moving obstacles, manipulations of the background optic flow do
influence behavior (Fajen and Warren, 2004; Fajen and Matthis,
2013).

To summarize, the BA model offers a simple, elegant account
of certain aspects of interception and obstacle avoidance, but
has several significant limitations. One can begin to appre-
ciate the consequences of these limitations by considering a
task such as walking across a busy street. According to the
BA model, the observer should move so as to ensure that the
bearing angle of each individual moving obstacle (e.g., vehi-
cles, bicycles, other pedestrians) does not remain constant. The
model offers no account of how people decide when to initiate
locomotion, how they take their physical size and the sizes of
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obstacles into account, how they take their locomotor capabili-
ties into account, or how they coordinate speed and direction of
locomotion.

THE AFFORDANCE-BASED MODEL
In this section, I will introduce a fundamentally different account
of how locomotion is controlled in the presence of other mov-
ing objects, and explain how this approach offers a better starting
point for addressing the weaknesses of the BA model. The guid-
ing principle of the new approach is that observers choose actions
and control locomotion in a way that takes their body dimen-
sions and locomotor capabilities into account (Fajen, 2007). This
begins with the perception of affordances—that is, possibilities for
action provided by the environment for an observer with par-
ticular dimensions and capabilities (Gibson, 1986; Turvey, 1992;
Fajen et al., 2008). As such, the new approach will be referred
to as the affordance-based model. The task of avoiding a single
moving obstacle will be used to illustrate the basic concepts of
this new approach. In the following section, I will explain why
this approach is better suited for more complex tasks involving
moving objects.

MODEL ASSUMPTIONS
The affordance-based model applies in situations in which the fol-
lowing assumptions are satisfied. First, the observer and objects
are in contact with a flat, level ground surface. In its present
form, the model does not apply in situations in which objects
are moving through air, and therefore does not currently account
for the interception of projectiles (e.g., a fly ball in baseball)
or prey catching in fish or flying insects. Second, the model
assumes that targets and obstacles move at a constant velocity.
The model will still function if objects change speeds or direc-
tions, but it does not in its current form account for observers’
ability to anticipate predictable changes in velocity (Diaz et al.,
2009). Third, the model assumes that the relation between the
observer’s eyeheight (E) and body width (W) is stable. In the
event that either eyeheight or body width changes, it would be
necessary for the perceptual-motor system to recalibrate itself to
this change. Previous research has demonstrated that recalibra-
tion to changes in eyeheight occurs rapidly and with minimal
movement (Mark et al., 1990).

BODY-SCALED INFORMATION
The affordance-based model is based on body-scaled visual infor-
mation (Lee, 1980; see Warren, 2007 for a recent review) that
specifies dimensions of the environment in relation to dimen-
sions of the observer. The hypothesis that certain dimensions of
the environment (e.g., object size) are perceived on the basis of
body-scaled information is supported by studies demonstrating
that subtle manipulations of eyeheight influence perception of
the environment (Mark, 1987; Warren and Whang, 1987; Wraga,
1999).

Figure 2A depicts an object moving from left to right across
the observer’s future path. I will consider four properties related
to the position and movement of the object in Figure 2A and
the specification of these properties by body-scaled information.
For the reader’s convenience, definitions of the main spatial,
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FIGURE 2 | (A) Top-down view of observer (body width, W ) moving
straight ahead and an object (black circle) moving from left to right. z and x
correspond to the positions of the observer (subscript o) and moving object
(subscript m), respectively. t corresponds to the current time and t*
corresponds to the time at which the leading edge of the obstacle reaches
the left side of the locomotor path. (B) Illustration of optical angles used in
Equations 1–8.

temporal, and optical variables used in the equations below are
provided not only in the text but also in Table 1.

Distance along z-axis
In terms of spatial variables, the distance to the object along the
z-axis at time t is equal to zm(t) – zo(t), where zm and zo are
the positions of the moving object and observer along the z-axis,
respectively (see Figure 2A). zm(t) – zo(t) is optically specified in
units of the observer’s eyeheight (E) by:

[zm(t) − zo(t)]/E = 1/tan γ (1)

where γ is the angular declination of the base of the object along
the z-axis (see Figure 2B)1. This is based on the well-known depth
cue height in the visual field.

1Note that the point of reference on the ground plane for the angle γ is not the
base of the object but rather the projection of the base of the object along the
z-axis, as shown in Figure 2B. Although there may not be an identifiable point
at this location, the tangent of γ is equal to the tangent of the angular declina-
tion of the base of the object divided by the cosine of the angular azimuth of
the object (i.e., α in Figure 2B), both of which are optical variables.
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Table 1 | Definitions of symbols used to designate spatial, temporal, and optical variables.

Symbol Definition Figures

SPATIAL AND TEMPORAL VARIABLES

xo, zo Position of observer along x and z axes, respectively 2A

xm, zm Position of moving object along x and z axes, respectively 2A

W Width of observer’s body 2A

E Observer’s eyeheight 2B

Vmax Maximum speed at which the observer is capable of moving –
t Current time –
t* Time at moment that leading edge of object first reaches the locomotor path (gray area in Figure 2A) –
TTC Amount of time remaining until the object crosses the reference axis –
k A parameter equal to one-half of the ratio of the observer’s body width (W ) to his or her eyeheight (E) –
dfront Minimum distance that the observer must travel to pass in front of the moving object 2A

dbehind Minimum distance that the observer must travel to pass behind the moving object –
vfront Minimum speed at which the observer must travel to pass in front of the moving object –
vbehind Maximum speed at which the observer could travel and still safely pass behind the moving object –
OPTICAL VARIABLES

α Angle between reference direction and moving object 2B

θ Angle subtended by edges of moving object 2B

γ Angle of declination of projection of base of object along reference axis 2B

Lateral position
The lateral position of the leading edge of the moving object
(xm − lead) is optically specified in units of E by:

[xm − lead(t)]/E = tan α/tan γ (2)

where α is the optical angle between the reference axis and the
leading edge of the object (adapted from Warren and Whang,
1987; see Figure 2B).

Approach speed
The approach speed of the object along the z-axis [−żm(t)] is
optically specified in units of E by:

[−żm(t)]/E = γ̇m/sin2γ (3)

where γ̇ is the rate of change of γ and the subscript m desig-
nates the component of γ̇ that is due to the motion of the moving
object independent of the motion of the observer [adapted from
Lee (1980)]. When both the observer and object are in motion,
γ̇ is the sum of two components: γ̇o, which is the rate of change
of γ due to the observer’s self-motion, and γ̇m, which is the rate
of change of γ due to the motion of the object. This means that
detecting information about −żm(t) requires the visual system
to recover the component of γ̇ that is due to observer motion.
As I will explain below, this has important implications for the
detection of information.

Time-to-crossing
The amount of time remaining until the leading edge of the object
crosses the z-axis is optically specified by:

TTC =
(

φ̇

sin φ
− α̇

tan α

)−1

(4)

where φ is the visual angle subtended by the edges of the object
(Bootsma and Craig, 2002), as illustrated in Figure 2B2.

Next, I will show how the availability of information about
distance along the z-axis, lateral position, approach speed, and
TTC make it possible for people to perceive higher-order prop-
erties that are directly relevant to guiding interception and
obstacle avoidance. In terms of spatial variables, the mini-
mum distance that the observer would need to move along
the z-axis to safely pass in front of the obstacle (dfront) at
time t is:

dfront(t) = zm
(
t∗

) − zo(t) (5)

where zm and zo are the positions along the z-axis of the moving
obstacle and the observer, respectively, and t∗ is the time at
which the leading edge of the obstacle reaches the left side of the
locomotor path (i.e., the gray region in Figure 2A aligned with
the z-axis of width equal to the observer’s body width, W). The
subscript “front” is used to indicate the distance needed to pass
in front of the obstacle. Equation 5 can be rewritten as:

dfront(t)

E
= [zm(t) − zo(t)]

E
+ żm

E
× TTC ×

[
1 − k

[
E

xm − lead(t)

]]

(6)

2Equation 4 was adapted from Equation 2b in Bootsma and Craig (2002),
with one minor modification. In Bootsma and Craig, TTC corresponds to the
amount of time remaining until the center of the object crosses the z-axis.
Therefore, their optical specification uses the angle between the z-axis and the
center of the object, which they designated by θ. Because the affordance-based
model requires the amount of time remaining until the leading edge of the
object crosses the z-axis, Equation 4 uses the angle between the z-axis and the
leading edge of the object (i.e., α in Figure 2B).
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where k is a constant equal to one-half of the ratio of the
observer’s body width (W) to his or her eyeheight (see Appendix
for derivation of Equation 6).

In Equation 6, dfront/E is expressed in spatial variables, which
are not directly accessible to the perceptual system. As shown in
Equation 7, however, each individual component of Equation 6
can be expressed in terms of optical variables using Equations 1–4:

(7)

Equation 7 shows that there is information in the optic array that
specifies the minimum distance that the observer would need to
move to safely pass in front of the obstacle (dfront), taking into
account the physical size of both his or her body and the obstacle.
Similarly, the amount of time remaining before the leading edge
of the obstacle reaches the locomotor path (i.e., tfront = t∗ − t) is
also optically specified:

(8)

Thus, information is available that allows observers to perceive
how far to move to pass in front (Equation 7), how much time
remains before it is no longer possible to pass in front (Equation
8), and the ratio of these two quantities, which is the minimum
locomotor speed needed to pass in front (vfront).

The abovementioned information specifies properties for
passing in front of the obstacle. Observers must also perceive
properties relevant for passing behind the obstacle: the distance
they need to travel to pass behind (dbehind), the amount of time
remaining until the trailing edge of the obstacle reaches the far
side of the locomotor path (tbehind), and the maximum speed that
the observer could move and still pass behind (vbehind). Distance
to pass behind is specified by a variant of Equation 7 that uses
the angular azimuth of the trailing (rather than leading) edge
of the obstacle, and adds k × (E/xm−trail) rather than subtracts
k × (E/xm−lead). With the same modifications, Equation 8 spec-
ifies the amount of time remaining until the trailing edge passes
the far side of the locomotor path. The ratio of these two quanti-
ties is equal to the maximum speed at which the observer could
move and still pass behind (i.e., vbehind = dbehind/tbehind).

Taken together, the available information specifies the mini-
mum speed needed to pass in front (vfront) and the maximum
speed to pass behind (vbehind), or equivalently, the range of
speeds that would result in a collision between some part of
the observer’s body and some part of the obstacle. Figures 3A–C
shows the optically specified values of distance, time remaining,
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FIGURE 3 | Optically specified distance (A), time remaining (B), and

speed (C,D) to pass in front (red line) and behind (blue line) for a

stationary observer and a moving obstacle, similar to the situation

depicted in Figure 2A. (A–C) Are for a small obstacle, and (D) is for a
larger obstacle. Values were calculated using optical variables in Equations
7 and 8. E is the observer’s eyeheight, s is seconds, and Vmax is the
observer’s maximum locomotor speed. Gray area in (C) and (D) indicate
range of speeds that would result in a collision.

and required speed for passing in front and passing behind as a
function of time for a stationary observer and a moving obstacle,
similar to the situation depicted in Figure 2A. The values were
calculated using the optical variables in Equations 7 and 8.

TAKING BODY SIZE AND OBJECT SIZE INTO ACCOUNT
Recall that one of the weaknesses of the BA model is that it
treats objects and the observer as points (see Limitation #1),
which means that it does not explain how observers take their
body size or the sizes of objects into account. In this section,
I will explain how the affordance-based model addresses this
problem.
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To pass in front of a moving obstacle, an observer with a large
body size must travel farther and cover that distance in less time
than an observer with a small body size. Indeed, Equations 7 and
8 yield values of dfront/E and tfront that take observer size into
account in exactly this manner. This is because the observer’s size
is implicitly represented by the parameter k, which is equal to one-
half of the observer’s body width (W) in units of eyeheight (E);
that is, k = 1/2 × W/E.

A cognitive interpretation is that k represents the observer’s
knowledge of his or her body size and eyeheight. However, propo-
nents of non-representational accounts of visually guided action
can take comfort in the fact that k is in fact the relation between
body size and eyeheight. It is body size in units of eyeheight (i.e.,
in intrinsic units). The observer need not know either body size
or eyeheight in absolute, extrinsic units, but merely the relation
between these dimensions. Therefore, k is arguably better con-
strued as a unit-free parameter that is learned through active
exploration. The outcome of such learning is a properly cali-
brated perceptual system that allows for the accurate perception
of dfront/E and tfront (see Bingham and Pagano, 1998; Fajen,
2005b; Jacobs and Michaels, 2006 for similar accounts involving
calibration). From this perspective, the only sense in which the
observer “knows” his or her body size is in terms of the state of
calibration of the perceptual system.

The relevant properties are also specified in a way that takes
into account the size of the obstacle. This is illustrated in
Figures 3C,D, which shows the optically specified values of vfront

and vbehind for a smaller obstacle (Figure 3C) and a larger obstacle
(Figure 3D) moving at the same speed along the same trajec-
tory. Note that the information specifies how much faster the
observer would have to move to pass in front of the larger obsta-
cle and how much slower he or she would have to move to pass
behind. Thus, by detecting this information, observers can choose
routes and guide locomotion in a way that takes observer and
object size into account. This addresses Limitation #1 of the BA
model.

TAKING LOCOMOTOR CAPABILITIES INTO ACCOUNT
The affordance-based model also differs from the BA model in
that it provides a basis for understanding how people take their
locomotor capabilities into account. To illustrate this point, let
us suppose that the observer and the obstacle in Figure 2A are
moving in such a way that they would collide if both maintain
their current velocity. If the observer is in a hurry, then she may
choose to speed up to pass in front of the obstacle. However, if
the speed needed to pass in front is faster than the speed that
the observer is capable of moving, then the act of passing in
front has no chance of succeeding. Accelerating in an attempt
to pass in front would result in wasted energy or worse, a col-
lision. The sooner the observer perceives that it is not within
her locomotor capabilities to pass in front, the better. To decide
whether to pass in front or pass behind, the observer must per-
ceive the minimum speed needed to pass in front (vfront) in
relation to the maximum speed that the observer is capable of
moving (Vmax).

Again, there is a cognitive interpretation that treats Vmax as
knowledge of one’s maximum locomotor capabilities. By this

account, the decision about whether to pass in front or pass
behind involves a comparison of a perceived quantity (vfront) to
a known quantity (Vmax). However, the fact that vfront is specified
in units of eyeheight opens the door to a less cognitive interpreta-
tion. During locomotion over a solid support surface, observers’
eyeheight (E) and maximum locomotor speed (Vmax) remain rel-
atively stable. Therefore, the relation between these two quantities
remains stable. As such, the fact that vfront/E is optically specified
means that vfront/Vmax is also optically specified. The logic of this
argument is the same as that used by Warren and Whang (1987),
captured in the following quote, to claim that eyeheight-scaled
information about the size of an aperture specifies aperture size
in relation to shoulder width: “Because standing eyeheight (E)
bears a constant relation to shoulder width (W) in any individual,
optical information specifying the ratio A/E also provides infor-
mation about the ratio A/W” (p. 378).3 By the same logic, because
E bears a constant relation to Vmax (at least, during locomotion
over a flat, solid support surface), information specifying vfront/E
also provides information about vfront/Vmax. Of course, the rela-
tion between E and Vmax would have to be learned through active
exploration, just as the relation between E and W must be learned
in the case of perceiving aperture size. As in the previous example,
the outcome of such learning is a properly calibrated perceptual
system that allows for the perception of vfront/Vmax on the basis of
information about vfront/E.

Let us now return to the observer, who must decide whether
to pass in front or pass behind the moving obstacle. By detecting
information about vfront/E, the observer can perceive the mini-
mum speed needed to pass in front in relation to her maximum
speed capabilities. If the optically specified vfront/Vmax is greater
than 1.0, then it is not possible to pass in front. The observer
can immediately perceive that attempting to pass in front is futile
and potentially injurious, and that the appropriate action is to
slow down and pass behind the obstacle. On the other hand, if
vfront/Vmax is less than 1.0, then it is still within the observer’s
capabilities to pass in front. Further, vfront/Vmax also specifies the
proportion of the observer’s maximum speed capabilities that she
would need to move to pass in front. Thus, the availability of
information about vfront/Vmax makes it possible to choose actions
in a way that takes one’s locomotor capabilities into account.
In the section titled Perceiving Passability and Choosing Routes
Around Moving Obstacles below, I will summarize findings from
a recent study that demonstrate observers’ ability to perform
this task.

IS LOCOMOTION GUIDED BY OBJECT MOTION IN OBSERVER
COORDINATES OR WORLD COORDINATES?
When people move in the presence of other moving objects,
the motion of the object can be described in a reference frame
that moves with the observer (i.e., observer coordinates) or in
a reference frame that remains fixed relative to the stationary
environment (i.e., world coordinates). A fundamental difference
between the BA model and the affordance-based model concerns

3Warren and Whang (1987) used S rather than W for shoulder width. I sub-
stituted W for S in the quotation to be consistent with the notation used in
the present paper.
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FIGURE 4 | (A) Optic flow field generated by combined motion of
observer and object (black dot). (B) The component of optic flow due
to self-motion independent of object motion. (C) The component of

optic flow due to object motion independent of self-motion. The
optic flow field (A) is the vector sum of the self-motion (B) and
object-motion (C) components.

the reference frame within which object motion is perceived. In
this section, I will explain why the two models use different refer-
ence frames and discuss empirical evidence that bears upon this
issue.

Figure 4A depicts the optic flow field generated by an observer
moving straight ahead with an object (black dot) moving from
left to right across the observer’s future path. The black vector rep-
resents the local optical motion of the moving object. Different
combinations of observer motion and object motion with the
same relative motion will result in identical local optical motion.
This is because the local optical motion of the moving object is
determined by the motion of the object relative to the motion of
the observer—that is, object motion in a reference frame centered
on the moving observer.

For an observer moving along a straight path, the lateral (i.e.,
side-to-side) optical motion of the moving object reflects the
change in bearing angle4. For example, the rightward optical
motion of the moving object in Figure 4A reflects a decrease in
the bearing angle, specifying that the moving object is on course
to pass in front of the observer. Conversely, if the moving object
was drifting leftward in the optic flow field, the bearing angle
would be increasing and the object would be on course to pass
behind the observer. Thus, the change in bearing angle is reflected
in the local optical motion of the moving object, which is deter-
mined by the relative motion between the object and the observer.
As such, an observer using the BA strategy is guiding locomotion
based upon object motion in observer coordinates.

In contrast, the affordance-based model relies on object
motion perceived in world coordinates. This is because the
properties upon which an observer using that strategy relies are
independent of how the observer is moving at that instant. For

4When the observer is moving along a curved path, there is a component
of the object’s optical motion that is due to observer rotation. Because the
bearing angle is measured against a reference direction that remains fixed in
exocentric coordinates (see Figure 1), the influence of observer rotation must
be factored out (Fajen and Warren, 2007).

example, for the observer in Figure 2A, the minimum speed
needed to pass in front and the maximum speed needed to
pass behind are the same regardless of how fast the observer is
currently moving. These properties are defined in a reference
frame that is fixed relative to the stationary environment rather
than moving with the observer. Therefore, an observer using the
affordance-based strategy is relying on object motion in world
coordinates.

This raises an important question about the detection of infor-
mation. If the optical motion of the object in the flow field reflects
object motion in observer coordinates, then how can locomotion
be guided by object motion in world coordinates? Formally, the
optic flow field (Figure 4A) can be decomposed into two com-
ponents: a self-motion component that reflects the motion of the
observer independent of the motion of objects (Figure 4B) and
an object-motion component that reflects the motion of objects
independent of the motion of the observer (Figure 4C). The lat-
ter reflects object motion in a reference frame that is fixed in
the world rather than moving with the observer—that is, object
motion in world coordinates.

If locomotion is guided by object motion in world coordinates
(as suggested by the affordance-based model), then the relevant
information must be found, at least in part, in the object-motion
component of optic flow. Indeed, looking back at Equation 7,
one can see that the optical specification of the object’s approach
speed (żm) involves γ̇m, which is the rate of change of γ due
to the motion of the object independent of the motion of the
observer. γ̇m is effectively the downward optical motion of the
base of the moving object in the object-motion component of
optic flow. Thus, to detect the information that is needed to
use the affordance-based strategy, observers must be capable of
recovering the component of optic flow that is due to object
motion.

Recovering object motion during self-motion
Formally, the object-motion component can be recovered from
the optic flow field by factoring out the influence of self-motion,
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such that the component that remains reflects the optical motion
due to object motion alone. One solution to this problem is to
use global optic flow, which is a powerful source of information
about the direction and speed of self-motion (Israël and Warren,
2005). By this account, the component of the object’s optical
motion that is due to self-motion is determined by global optic
flow and factored out by the visual system, leaving the compo-
nent that is due to object motion. Rushton and Warren (2005;
Warren and Rushton, 2007, 2009) coined the term flow parsing to
describe this process. In a series of psychophysical studies, they
and other researchers (e.g., Matsumiya and Ando, 2009) have
demonstrated that observers are capable of using global optic flow
from the stationary background to recover object motion in world
coordinates.

Of course, global optic flow is not the only source of infor-
mation about self-motion. When self-motion is real and actively
generated, non-visual information, which is known to play a
role in the perception of self-motion (see Israël and Warren,
2005 for a review) is also available. In principle, the compo-
nent of the object’s optical motion that is due to self-motion
(i.e., the component that must be factored out) can also be
determined by non-visual information. Indeed, non-visual infor-
mation about the speed (Fajen and Matthis, 2011) and direc-
tion (Fajen et al., in press) of self-motion also plays a role in
recovering object motion in world coordinates. These findings
and those of other researchers (e.g., Dyde and Harris, 2008;
Calabro et al., 2011; MacNeilage et al., 2012; Warren et al.,
2012) highlight the multisensory nature of the flow parsing
problem.

A recent attempt to understand the neural substrates for
this process revealed two clusters, one that includes the lat-
eral occipital area, V3A, the kinetic occipital area, and human
MT, and another that includes the ventral intraparietal sul-
cus and dorsal intrapariental sulcus medial (Calabro and Vaina,
2012). Activation in these areas was significantly correlated with
performance on a psychophysical task involving object motion
detection during simulated self-motion. It has also been pro-
posed that neurons in MSTd and VIP that respond maximally
to optic flow and vestibular signals in opposite directions could
play a role in the recovery of object motion (Takahashi et al.,
2007; Gu et al., 2008; MacNeilage et al., 2012). These cells
might be ideally suited to detect object motion during self-
motion because such situations result in local optical motion
that does not match what would be expected based on vestibular
input.

Flow parsing and visual control
So far, I have discussed the ability of human observers to use
self-motion information to recover object motion in world coor-
dinates. But does this process actually play a role in the visual
guidance of locomotion during interception or obstacle avoid-
ance? One way to test this hypothesis is by manipulating self-
motion information in a virtual environment (VE) while subjects
are performing an interception or obstacle avoidance task. For
example, Fajen and Matthis (2013) instructed subjects to walk
through a VE and choose whether they would pass in front
of or behind an object moving across their future path, as in

Figure 2A. They manipulated information about subjects’ speed
of self-motion by increasing the visual gain in the VE; that is,
by translating subjects 50% faster through the VE compared to
the real world. Importantly, the visual gain manipulation affected
subjects’ movement relative to the background only and not rel-
ative to the moving object. Thus, the local optical motion of
the moving object was unaffected by the visual gain manipula-
tion. If observers rely on object motion in world coordinates, and
if global optic flow is used to recover object motion in world
coordinates, then subjects should be less likely to perceive that
they can pass in front when visual gain is increased. The results
were consistent with this prediction. Similarly, route decisions
were affected by manipulations of visual information about the
direction of self-motion. In another study, the trajectories that
subjects took to intercept a moving target were affected by manip-
ulations of visual self-motion information (Fajen and Warren,
2004).

To summarize, effects of manipulations of self-motion infor-
mation on behavior during interception and obstacle avoidance
have been reported in several studies. These effects are predicted
by the affordance-based model because locomotion is guided
by information in the object-motion component of optic flow,
and self-motion information is needed to recover that infor-
mation. The BA model, on the other hand, does not account
for these effects because locomotion is believed to be coupled
to the local optical motion of the moving object in the optic
flow field. Global optic flow and other sources of self-motion
information do not play a role in the BA model. Therefore,
manipulations of self-motion information that affect behavior
would have to be interpreted as a reflection of some additional
mechanism that interferes with the BA strategy. Insofar as the
affordance-based model portrays these background flow effects
as a reflection of an adaptive process rather than a flaw in the
system, one could argue that it offers the more parsimonious
account.

The broader issue raised in this section concerns the ref-
erence frame within which object motion is perceived during
interception and obstacle avoidance. Whereas the BA model
asserts that object motion is perceived in observer coordinates,
the affordance-based model maintains that object motion is per-
ceived in world coordinates. This entails the ability to recover
the object-motion component of optic flow during self-motion,
which is achieved using a combination of visual and non-visual
self-motion information.

GENERALIZING TO ARBITRARY DIRECTIONS
The section titled Body-Scaled Information above described how
the range of speeds needed to avoid a moving obstacle can be
perceived based on information about vfront and vbehind (i.e.,
v < vbehind or v > vfront). Of course, if the object is a target rather
than an obstacle, the same information specifies the range of
speeds required to intercept the target (i.e., vbehind < v < vfront).
Next, I will show that vfront and vbehind are specified not only for
locomotion along the z-axis (as in Figure 2) but for any arbi-
trary direction. In the example in Figure 2, vfront and vbehind are
specified for locomotion along the z-axis because the reference
direction against which the visual angles α (corresponding to the
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FIGURE 5 | Moving observer and moving target. The black lines
emanating from observer represent the optically specified speed required
to intercept the moving target by moving in the corresponding direction.
The light gray circular sector corresponds to the observer’s maximum
speed and the dark gray sector corresponds to directions for which
interception is not possible because required speed exceeds maximum
speed.

visual direction of the object) and γ (corresponding to the angular
declination) is measured is aligned with the z-axis. However, if α

and γ are measured against some other arbitrary reference direc-
tion, then the optically specified required speed tells the observer
how fast to move to intercept the target by moving in that direc-
tion. Thus, by varying the reference direction against which the
visual angle α and γ are measured, such information could be
used to perceive the speed needed to intercept a moving target
by moving in any arbitrary direction.

Figure 5 shows a moving observer and a target moving from
left to right. The black lines emanating from the observer repre-
sent the optically specified speed needed to intercept the target
by moving in that direction5. In particular, the lengths of the lines
are proportional to the optically specified speed for each direction
relative to the observer’s maximum speed, which is represented by
the light gray circle surrounding the observer. This illustrates that
there is information about how fast to move to intercept the target
not only for the current direction of locomotion but for any pos-
sible direction. Further, by calibrating that information to Vmax,
one can also perceive the range of directions for which intercep-
tion is not possible because the speed needed to intercept the
target exceeds his or her maximum possible locomotor speed. In
the section titled Coordinating Speed and Direction of Locomotion
during Interception below, I will explain how such information can
be used to coordinate speed and direction during interception,
which addresses Limitation #3 of the BA model.

5These values were calculated in Matlab using Equations 7 and 8, with the
reference direction varying in 5◦ increments.

SUMMARY
To summarize, the affordance-based model offers an alternative
to the BA model that can address the four limitations listed in
the section The Bearing Angle Model. Unlike the BA model, the
affordance-based model can explain how observers take object
and body size into account, take their own locomotor capabilities
into account, and coordinate speed and direction of locomo-
tion. The model also explains why manipulations of self-motion
information affect behavior during interception and obstacle
avoidance.

SCALING UP TO COMPLEX TASKS
Having introduced the basic components and features of the
affordance-based model, I am now ready to illustrate how this
model can be applied to a wider range of problems that are
encountered when guiding locomotion in complex dynamic envi-
ronments.

PERCEIVING PASSABILITY AND CHOOSING ROUTES AROUND MOVING
OBSTACLES
Figure 2A depicts an observer moving along a straight path and
an obstacle moving from left to right across the observer’s future
path. In such situations, the decision about whether to pass in
front of or behind the moving obstacle must be made in a way
that takes into account the size of the observer and the obstacle as
well as the observer’s locomotor capabilities.

Let us consider how the BA model and the affordance-based
model perform on this task. As explained above, the BA model
treats objects and the observer as points without physical size,
which means that this model, at least in its original form, fails
to capture how people take object and observer size into account.
A potential solution to this problem is to treat the direction that
would null the change in bearing angle as a repellor of heading
and weight the strength of repulsion by a term that exponentially
decays with obstacle distance (Cohen et al., 2006). The param-
eter of this term can be tuned to ensure that the observer veers
far enough away from the obstacle to ensure collision avoidance.
However, the parameter value is specific to the size of the observer
and the size of the obstacle. Thus, when the environment contains
multiple obstacles of varying sizes, the trajectories generated by
this strategy may lead to collisions with large obstacles and veer
unnecessarily far away from small obstacles.

By comparison, the affordance-based model capitalizes on
information that reliably specifies required locomotor speed
across variations in obstacle size. This was illustrated in
Figures 3C,D, which show how the optically specified minimum
speed to pass in front and maximum speed to pass behind sys-
tematically vary with obstacle size. Similarly, an observer who is
properly calibrated to the relation between eyeheight and body
size can perceive these properties in a way that takes body size
into account. Thus, the affordance-based model is better suited to
explain how people take the sizes of their body and obstacles into
account.

The decision about whether to pass in front or behind the
moving obstacle must also be made in a way that takes into
account one’s locomotor capabilities. Recall that the BA model
ignores the fact that there are limits to how fast a person is capable

Frontiers in Behavioral Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 85 | 9

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Fajen Locomotion in complex dynamic environments

of moving (see Limitation #2). Nonetheless, a proponent of the
BA model could argue that the BA strategy could still be used to
perceive whether it is possible to pass in front or behind. If the
bearing angle is expanding, then the observer’s current speed is
sufficient to pass in front. Therefore, as long as current speed can
be maintained, it is within the observer’s capabilities to pass in
front. Likewise, if the observer is moving as fast as possible and the
bearing angle is shrinking, then the observer’s maximum speed is
not sufficient and it is not within his or her capabilities to pass in
front. Thus, an expanding bearing angle specifies that it is possible
to pass in front and a contracting bearing angle when the observer
is moving as fast as possible specifies that it is not possible to pass
in front6.

In other situations, the change in bearing angle is not informa-
tive about passability. For example, if the observer in Figure 2A
was stationary rather than moving, then the bearing angle would
be shrinking. This specifies that the observer’s current speed
(which is zero when the observer is stationary) is not sufficient
to pass in front. However, depending on the object’s trajectory
and how fast the observer is capable of moving, the observer may
or may not be capable of passing in front. The change in bearing
angle provides no information about whether or not it is within
the observer’s capabilities to pass in front.

This leads to a testable prediction. If observers rely on the
BA strategy to perceive whether it is within their capabilities
to pass in front of an obstacle, then their ability to perceive
passability should be impaired when they are not moving. This
prediction is not supported. Observers are capable of accurately
perceiving their ability to pass in front of a moving obstacle
regardless of whether they are stationary or moving (Fajen et al.,
2011).

The affordance-based model relies on information that speci-
fies how fast the observer needs to move to pass in front in relation
to how fast the observer is capable of moving. Such information
can be used to perceive whether it is within the observer’s capabil-
ities to pass in front, and if so, the percentage of one’s maximum
speed that would be needed to pass in front (see the section titled
Taking Locomotor Capabilities into Account above). Furthermore,
this information is available regardless of whether the observer is
stationary or moving, and therefore better accounts for the range
of conditions across which observers can perceive which actions
are within their locomotor capabilities.

PERCEIVING PASSABLE OPENINGS BETWEEN PAIRS OF MOVING
OBJECTS
Having demonstrated the basic principles of the affordance-
based model using a single moving obstacle task, we are now
ready to consider situations involving multiple moving obstacles.
Consider the task of passing through a lane of pedestrian traffic
(see Figure 6A), which one might encounter at an intersection in
a crowded airport terminal or shopping mall. In previous studies
on passing through a lane of traffic, it was common to treat gaps
between obstacles as targets to be intercepted (Chihak et al., 2010;

6This is similar to the strategy originally proposed by Oudejans, Michaels,
Bakker, & Dolné (Oudejans et al., 1996) to explain how baseball outfielders
perceive whether a fly ball is catchable.
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FIGURE 6 | (A) Observer passing through a lane of obstacles on course to
cross the observer’s future path. (B) Optically specified range of speeds
that would result in a collision with each obstacle as a function of time.

Louveton et al., 2012a,b). By characterizing the situation as a tar-
get interception task, the BA model can be considered a possible
strategy for regulating approach speed to an intersection.

However, the BA model does not explain how observers choose
which gap to pass through in the first place. This is not a trivial
problem because the passability of each gap depends on multiple
factors, including the observer’s body size, his or her locomotor
capabilities, the spatial separation between obstacles, the speed of
the obstacles, and the distance to the lane of traffic. Therefore, the
decision about which gap to pass through must be made in a way
that takes these factors into account.

The affordance-based model offers a starting point for under-
standing how observers choose appropriate gaps in these situa-
tions. The information described in the previous section specifies,
for each obstacle, the range of speeds that would result in a col-
lision between some part of the observer’s body and some part
of the obstacle. To illustrate this point, Figure 6B shows the opti-
cally specified range of collision speeds as a function of time for
the situation depicted in Figure 6A (assuming that the observer
remains stationary). By detecting this information, observers can
perceive which pairs of obstacles form passable gaps and the range
of speeds needed to safely pass through those gaps. For exam-
ple, at the time indicated by the vertical arrow in Figure 6B, it
is not within the observer’s capabilities to pass in front of obsta-
cle A because he or she would have to exceed 100% of Vmax. The
observer could, however, safely pass between obstacles A and B
by moving between 30 and 40% of Vmax. There is also a very
narrow range of speeds (∼19–21% of Vmax) that would allow
the observer to pass between obstacles B and C. The important
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point is that the available information allows observers to per-
ceive which gaps are passable and how fast to move to pass
through those gaps. As such, the affordance-based model pro-
vides a basis for understanding how observers choose which gaps
to pass through.

CROSSING MULTIPLE LANES OF TRAFFIC
In many real-world situations, such as when crossing two or
more lanes of vehicle or pedestrian traffic, reaching the goal
requires passing through multiple moving gaps at different depths
(Figure 7A). Under such conditions, it may be necessary to
choose a gap in the first lane that takes into account the size and
movement of gaps in subsequent lanes (Grechkin et al., 2012).

The affordance-based model can be easily generalized to sit-
uations in which there are multiple lanes of traffic at different
depths. Each curve in Figure 7B shows the optically specified
range of speeds that would result in a collision with one of the
obstacles in Figure 7A. Light gray curves correspond to obstacles
in the nearby lane and dark gray curves correspond to obsta-
cles in the distant lane. As in the single-lane situation, the white
spaces represent speeds at which the observer could move to safely
avoid a collision. For example, at the time indicated by the ver-
tical arrow in Figure 7B, the information specifies that it is not
possible to pass between obstacles D and E in the far lane without
colliding with obstacle B in the near lane. However, the observer
could pass between obstacles B and C and then between obsta-
cles E and F by moving between 40 and 50% of Vmax. Thus, the
problem of choosing pairs of gaps to pass through when crossing
multiple lanes of traffic can be solved by detecting information
about vfront and vbehind for each obstacle.
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FIGURE 7 | (A) Observer passing through two lanes of obstacles moving at
different speeds. (B) Optically specified range of speeds that would result
in a collision with each obstacle in the near (light gray) and far (dark gray)
lanes as a function of time.

COORDINATING SPEED AND DIRECTION OF LOCOMOTION DURING
INTERCEPTION
When people intercept moving targets, there are an infinite num-
ber of combinations of locomotor speed and direction that would
result in a successful interception. One of the strengths of the
affordance-based model is that, unlike the BA model, it provides
a basis for understanding how observers choose one combina-
tion of locomotor speed and direction from among all possible
combinations. This is because the speed needed to intercept the
target is optically specified not only for the current direction of
locomotion but for any arbitrary direction (see the section titled
Generalizing to Arbitrary Directions and Figure 5). Thus, if the
observer wanted to intercept the target by moving at his or her
preferred walking speed, then he or she could simply walk in the
direction in which the optically specified required speed is equal
to the preferred speed. Alternatively, if the observer wanted to
intercept the target as quickly as possible, he or she could walk
in the direction in which the optically specified speed is equal to
his or her maximum locomotor speed.

SIMULTANEOUS INTERCEPTION AND OBSTACLE AVOIDANCE
The ability to perceive the speed needed to intercept a moving tar-
get as a function of direction could also allow people to choose
appropriate routes when simultaneously avoiding a stationary
obstacle. Figure 8 depicts a situation in which an observer must
decide whether to pass to the right or left of a stationary obstacle
while intercepting a moving target. As in Figure 5, the black lines
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FIGURE 8 | Simultaneous interception of a moving target and

avoidance of a stationary obstacle. Black lines emanating from observer
indicate speed required to intercept moving target in each direction.
Directions that would result in a collision with the obstacle are removed.
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emanating from the observer represent the speed needed to inter-
cept the moving target for a range of directions. The lines that
point in directions that would result in a collision with the obsta-
cle are removed to indicate that these are not candidate directions
of safe locomotion. Note that in the example in Figure 8, the
available information specifies that the observer cannot intercept
the target by moving at his or her preferred speed because doing
so would result in a collision with the obstacle. In such situations,
the observer can follow the route to the left of the obstacle and
walk faster than normal to intercept the target, or follow the route
to the right of the obstacle and walk slower than normal. One
strategy for selecting routes in this situation is to choose the direc-
tion in which the optically specified required speed is closest to the
preferred speed. The important point is that there is information
that is available that allows the observer to choose which route to
follow and to do so in a way that takes into account the speed that
would be required to intercept the target for each possible route.

KNOWING WHEN TO ABANDON THE CHASE
Another limitation of the BA model that was not mentioned in
the section titled Limitations of the BA Model is that it offers no
account of how an observer knows when to abandon the chase.
For interception tasks, knowing when to give up is an extremely
important aspect of achieving energetic efficiency. In the wild,
for example, animals that do not know when to give up may
expend more energy hunting than they consume by eating their
kill. Indeed, one of the skills that cheetah acquire when learning to
hunt is knowing when to stop running. This was demonstrated in
a study by Caro (1994), who found that when adolescent cheetah
abandon a chase during hunting, they travel an average of 18 m
before doing so. By comparison, adult cheetah travel an average
of just 2 m before giving up.

The affordance-based model offers a possible account of how
observers can perceive whether to continue chasing or to give up.
If the information specifies that the speed needed to intercept the
target is greater than maximum speed for all possible directions of
locomotion, then the observer can perceive that the target is not
interceptable. Attempting to chase the target in such situations
would be a waste of energy. This solution even generalizes to sit-
uations in which the moving target must be intercepted before it
reaches a safe zone. For example, suppose the observer in Figure 9
is a football player attempting to reach a ball before it rolls out of
bounds, or a predator attempting to catch its prey before it reaches
an area from which it can easily escape (e.g., a forest or a river).
In Figure 9A, which shows a slow moving target, there are direc-
tions in which the observer could move to intercept the target
before it reaches the safe zone. In Figure 9B, the speed required
to intercept the target in any given direction is greater because
the target is moving faster. As such, the observer would have to
move faster than his or her maximum speed to intercept the target
before it reaches the safe zone. Because the available information
specifies the speed needed to intercept the target in each possi-
ble direction and in relation to maximum speed, the observer can
perceive whether it is (Figure 9A) or is not (Figure 9B) within its
capabilities to reach the target before it escapes. Such information
could be the basis for deciding whether to attempt to intercept the
target or stop moving and let the target go.

FUTURE DIRECTIONS
Although the affordance-based model captures important aspects
of interception and obstacle avoidance that the BA model does not
capture, there are questions about these tasks that remain open.
First, in its current form, the model is unconstrained in that it
does not make any specific predictions about which action the
observer will select or which trajectory the observer will follow to
intercept or avoid a moving object. For example, for the task of
crossing a lane of traffic, the model describes how observers per-
ceive which gaps are passable and the range of speeds needed to
pass through each gap, but does not offer an account of which
gap the observer will actually select. Similarly, when intercept-
ing a moving target, the model describes how observers perceive
the speed needed to intercept the target for each possible direc-
tion, but does not make any predictions about which direction
the observer will actually follow to reach the target. In both cases,
what is needed to generate specific predictions are additional
constraints that presumably come from the observer’s goal and
intentions. For example, if the observer is attempting to move as
closely as possible to his or her comfortable locomotor speed, the
prediction in the case of crossing a lane of traffic would be the
gap that allows the observer to move as closely as possible to that
speed. Alternatively, if the observer is attempting to perform the
task as quickly as possible, the prediction would be the gap that
allows the observer to move as close as possible to his or her max-
imum speed. Additional theoretical development and empirical
research is needed to understand how goals and intentions, which
vary across observers and from situation to situation, constrain
behavior on these tasks.

Another outstanding question concerns the limits on
observers’ ability to simultaneously make use of the available
information for multiple obstacles. For example, in the situation
depicted in Figure 7A involving multiple lanes of pedestrian
traffic, the available information specifies which pairs of gaps
are passable. However, perceiving passability for multiple gaps
requires simultaneously detecting the relevant information for
each obstacle in the scene. More research is needed to understand
the limits of observers’ ability to detect this information in
environments with multiple moving objects.

CONCLUSIONS
Few tasks exemplify the tight coupling of perception and action
better than visually guided interception and obstacle avoidance.
As such, information-based solutions such as the bearing angle
model have been favored by researchers and for good reasons.
Equally important, however, is the ability to choose actions and
guide locomotion in a way that takes one’s body dimensions
and dynamics into account. No theory of visually guided loco-
motion would be complete without an account of how this is
achieved.

In this article, I put forth a new affordance-based approach
that attempts to do justice to the importance of taking one’s
body dimensions and dynamics into account. I showed how the
affordance-based model accounts for the effects of self-motion
information that have been reported in several studies, and
demonstrated how this approach can account for a variety of
complex behaviors involving moving objects.
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FIGURE 9 | Observer attempting to intercept a moving target before it reaches a safe zone (gray region on right side). The observer is capable of
intercepting the target in (A) but not in (B).

The affordance-based model leads to important new insights
into the components of the brain-body-environment system that
make it possible for humans to perform these tasks: (1) the avail-
ability of eyeheight-scaled information that specifies dimensions
of the environment in relation to dimensions of the body, (2)
the ability of the perceptual system to calibrate itself to the rela-
tion between dimensions of the body (e.g., eyeheight and body
width), and (3) the ability to recover object motion in world
coordinates during self-motion. The latter insight, in particu-
lar, provides much needed justification for current and future
research on the mechanisms involved in the perception of object
motion by moving observers (Pauwels et al., 2010; Calabro and
Vaina, 2012).

In a recent review paper, Warren (2007) observed that the
visual control of action is turning out to be more interesting than
many of the original models suggest. Although he was referring to
models of locomotion over rough terrain, his observation applies
to models of visually guided interception and obstacle avoidance
as well. The affordance-based model may lack the simplicity of the
bearing angle model. But what it lacks in simplicity it more than
makes up in capturing adaptive behavior in complex dynamic
environments.
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APPENDIX
The distance in Equation 5, [zm(t∗) − zo(t)], is equal to the
difference between the distance along the z-axis from the
observer to the obstacle at time t and the change in the
position of the obstacle along the z-axis between t and t∗;
that is:

[
zm

(
t∗

) − zo(t)
] = [zm(t) − zo(t)] − [

zm(t) − zm
(
t∗

)]
(A1)

The change in obstacle position along the z-axis between t
and t∗ is:

[
zm(t) − zm

(
t∗

)] = −żm × TTC ×
[

1 − W

2xm − lead(t)

]
(A2)

−żm × TTC is the distance that the obstacle moves along the
z-axis between t and the time at which the leading edge of
the obstacle reaches the z-axis. Multiplying −żm × TTC by[

1 − W
2xm−lead(t)

]
gives us the distance that the obstacle moves

from t to t∗. Next, we substitute Equation A2 into Equation A1
and Equation A1 into Equation 5, which yields:

dfront(t) = [zm(t) − zo(t)] + żm × TTC ×
[

1 − W

2xm − lead(t)

]

(A3)

Lastly, we substitute 2 × k × E for W, which allows xm−lead to be
expressed in units of E, and divide both sides by E, which gives us
Equation 6.
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