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Learning and memory with neuropathic pain: impact of old
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Persistent neuropathic pain is a frequent consequence of peripheral nerve injuries,
particularly in the elderly. Using the IntelliCage we studied if sciatic nerve injury obstructed
learning and memory in young and aged mice, each in wild type and progranulin deficient
mice, which develop premature signs of brain aging. Both young and aged mice developed
long-term nerve injury-evoked hyperalgesia and allodynia. In both genotypes, aged mice
with neuropathic pain showed high error rates in place avoidance acquisition tasks.
However, once learnt, these aged mice with neuropathic pain showed a significantly
stronger maintenance of the aversive memory. Nerve injury did not affect place preference
behavior in neither genotype, neither in young nor aged mice. However, nerve injury
in progranulin deficient mice impaired the learning of spatial sequences of awarded
places, particularly in the aged mice. This task required a discrimination of clockwise and
anti-clockwise sequences. The chaining failure occurred only in progranulin deficient mice
after nerve injury, but not in sham operated or wildtype mice, suggesting that progranulin
was particularly important for compensatory adaptations after nerve injury. In contrast, all
aged mice with neuropathic pain, irrespective of the genotype, had a long maintenance
of aversive memory suggesting a negative alliance and possibly mutual aggravation of
chronic neuropathic pain and aversive memory at old age.
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INTRODUCTION
Chronic pain seriously reduces the quality of life and impacts on
many aspects of daily living. Particularly following nerve injury or
neuritis, elderly people have a higher risk to develop chronic neu-
ropathic pain than younger adults, for unknown reasons (Charest
and Kenny, 2000; Hochman et al., 2011; Bouhassira et al., 2012)
and hence older people may be at a higher risk for the seque-
lae of chronic pain including emotional and social disability.
Chronic pain has been suggested to constitute a kind of learning
phenomenon in that the nociceptive experience is engraved into
nociceptive signaling pathways by lowering activation thresholds,
eliciting spontaneous activity, alteration of synapses and glial acti-
vation (Melzack et al., 2001; Ji et al., 2003; Zhao et al., 2006; Zhuo,
2007; Denk and McMahon, 2012). While the concept of “pain-
memory” is well-accepted it has not been systematically studied
if chronic pain impacts on cognition and memory besides the
pain itself (Jongsma et al., 2011) and if chronic pain may consti-
tute a “pro-aging” risk factor. Conversely, there is some evidence
that the likelihood for chronic pain may be enhanced in neurode-
generative diseases, particularly Parkinson’s disease (Tinazzi et al.,
2008; Zambito Marsala et al., 2011; Borsook, 2012), but it is not
known whether chronic pain in afflicted patients may accelerate
disease progression.

Progranulin is a multi-functional secreted protein with neuro-
protective functions and its upregulation after nerve injury likely
contributes to those adaptations, which combat the development

of chronic pain (Lim et al., 2012). Loss-of-function mutations
of progranulin in humans are associated with ubiquitin posi-
tive, Tau-negative frontotemporal dementia and some other neu-
rodegenerative diseases (Baker et al., 2006; Cruts et al., 2006;
Mackenzie et al., 2006). It has not been studied if these patients
experience stronger or longer lasting pain. The exact functions
of progranulin in neurons are still unknown. From its interac-
tions with other proteins and the pathology of other forms of
frontotemporal dementia (Sleegers et al., 2010; Rademakers et al.,
2012) one may hypothesize that is it involved in protein quality
control and trafficking (Hu et al., 2010; Almeida et al., 2011).
Progranulin deficient mice develop a premature age-dependent
gliosis and lipofuscinosis, which is associated with mild deficits
of memory functions in old mice (>1.5 years) (Ahmed et al.,
2010; Yin et al., 2010a,b). Younger animals appear quite normal,
but we found previously that sciatic nerve injury causes stronger
motor dysfunctions and nociceptive hypersensitivity in progran-
ulin deficient mice as compared to the controls (Lim et al., 2012)
suggesting that they may also be more vulnerable to the patho-
logical sequelae of neuropathic pain and hence may represent a
model to study the potentially mutual negative impact of chronic
neuropathic pain and memory dysfunctions.

We therefore assessed the behavior in young and aged progran-
ulin deficient and control mice in place avoidance learning and
extinction, in place preference learning and in spatial sequenc-
ing tasks after a sciatic nerve injury as compared to sham treated
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mice. To find subtle differences, learning paradigms were tested in
home cage environments employing the IntelliCage (Voikar et al.,
2010; Endo et al., 2011; Codita et al., 2012). The data shows that
nerve injured aged mice have difficulties in avoidance acquisition,
but once learnt, retain the aversive memory longer than sham
treated or young mice. In addition, the performance in spatial
sequencing tasks was compromised in nerve injured progranulin
deficient mice, particularly in the aged group. The results suggest
that neuropathic pain at old age may negatively affect cognition
and memory functions and may impair the extinction of bad
memories, which in turn might further strengthen nociceptive
hypersensitivity.

METHODS
ANIMALS
The experiments adhered to the guidelines of the Committee
for Research and Ethical Issues of the International Association
for the Study of Pain (IASP). They were approved by the local
Ethics Committee for Animal Research (Darmstadt, Germany)
and adhered to the guidelines of GV-SOLAS for animal welfare
in science.

Female C57BL/6J mice (Harlan Winkelmann, Borchen,
Germany) and female homozygous progranulin deficient mice
(Grn−/−) (Yin et al., 2010a) were 9–12 weeks (young) or 10–
13 months old (aged) at the time of surgery. Female mice were
used to avoid losses due to male hostility, which regularly occurs
in groups of aged male mice. Progranulin deficient mice have a
pure C57BL/6 genetic background so that age-matched C57BL/6
mice were used as wild type control mice. To avoid alterations
due to age-dependent gliosis, which was found in progranulin
deficient mice at ages >18 months (Ahmed et al., 2010), we used
the middle-aged mice. Mice were housed three to five per cage at
constant room temperature (21 ± 1◦C) before the experiments,
standard diet and a regular light/dark schedule with light on from
7:00 a.m. to 7:00 p.m. Food and water was available ad libitum
except for the experimental sessions in the IntelliCage requiring
a restriction of drinking periods. The controls were housed for
3–4 weeks under identical conditions as the progranulin deficient
mice prior to the start of experiments to avoid housing or diet
dependent differences. The mean body weight was 20.4 ± 1.5 g
and 21.8 ± 1.0 g for young (12 weeks old) female C57BL/6J and
Grn−/− mice, respectively, and 26.8 ± 2.5 g and 29.3 ± 2.1 g for
aged (12 months) female C57BL/6J and Grn−/−mice, respec-
tively. Mice had a spared nerve injury of the sciatic nerve (SNI)
or sham surgery, then performed the IntelliCage experiments
and were subsequently analyzed for pain sensitivity. The time
course of nociception encompassing the period of the IntelliCage
experiments was additionally analyzed in a different group of
mice because mice must not be disturbed during the IntelliCage
experiments.

SPARED NERVE INJURY OF THE SCIATIC NERVE AND TRANSPONDER
IMPLANTATION
Surgery was carried out under 1.5–2% isoflurane anesthesia. Two
of the three peripheral branches of the sciatic nerve, the com-
mon peroneal and the tibial nerves, were ligated with silk (6–0)
and distally transected, leaving the sural nerve intact (Decosterd

and Woolf, 2000). In sham animals, the sciatic nerve was exposed
but not injured. Adaptation in the IntelliCage started 14 days
after surgery. Radio-frequency identification (FTID) transpon-
ders were subcutaneously implanted under isoflurane anesthesia
1 week after SNI surgery.

BEHAVIORAL ANALYSIS OF NOCICEPTION AND MOTOR FUNCTIONS
Behavioral tests were performed without knowledge of mouse age
and genotypes. After habituation to the testing cages, mice were
tested for their reaction latencies to mechanical, cold and heat
stimulation. A dynamic Plantar Aesthesiometer (Ugo Basile, Italy)
was used to assess mechanical nociception. In this test a von Frey-
like filament is pushed against the plantar side of the hind paw
with linear ascending force (0–5, 0.5 g/s) and is then maintained
at 5 g until a strong and immediate withdrawal occurs. The paw
withdrawal latency was the mean of three consecutive trials with
intervals of at least 30 s. The acetone test was used to measure cold
allodynia. After application of a drop of acetone to the plantar
hind paw nerve injured mice lick, lift and shake the paw. The time
spent with these reactions was monitored with a stop watch for
a period of 90 s starting immediately after application of acetone.
Heat hyperalgesia was assessed by recording the paw withdrawal
latency in the Hargreaves Test (IITC 390 Plantar Test), in which
a radiant heat source is placed underneath the hind paw with a
mirror system and applies radiant heat upon pressure of a but-
ton. The heating is automatically stopped upon paw withdrawal
and the latency time is monitored. Three tests with intervals of
at least 5 min were performed and results averaged. Motor func-
tions were analyzed by testing RotaRod running behavior (Ugo
Basile) at a constant speed. Mice were placed on a rotating bar
and the time until they fall off was recorded as the “fall off
latency,” with a cut off of 90 s. Four tests were performed and
averaged.

IntelliCage
The IntelliCage (NewBehavior AG, Zurich, Switzerland)
(Krackow et al., 2010; Voikar et al., 2010) consists of four
operant corners, each with two water bottles, sensors, light-
emitting-diodes (LEDs) and doors that control the access to
the water bottles (Figure 1). The system fits into a large cage
(20 × 55 × 38 cm, Tecniplast, 2000P). Four triangular red
shelters (Tecniplast) are placed in the middle to serve as sleeping
quarters and as stands to reach the food. The floor is covered
with thick bedding.

Mice are tagged with RFID-transponders, which can be read
with an RFID antenna, which is integrated at the corner entrance.
Inside the corners, there are two holes with water bottles, which
can be opened and closed by automated doors. Mice have to make
a nosepoke to open the doors for water access. The IntelliCage is
controlled by a computer with IntelliCage Plus software, which
executes pre-programmed experimental schedules. The number
and duration of corner visits, nosepokes, licks, and contact times
with the nipples of the water bottles are automatically recorded
without the need for any handling of the mice during the record-
ing times. Sixteen mice were housed in each cage. Mice were
grouped into young and aged mice with and without a sciatic
nerve lesion (SNI vs. sham). Each group consisted in 8 mice. One
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FIGURE 1 | Illustration of the IntelliCage and the time course of

experimental tasks. Cage: The IntelliCage consists of four operant corners,
each with two water bottles, sensors and doors that control the access to the
water bottles. Mice are tagged with radio-frequency identification
transponders (RFID), which are read at the corner entrance. Inside the
corners, there are two holes with water bottles, which can be opened and
closed by automated doors. Mice have to make a nosepoke to open the
doors for water access. The IntelliCage is controlled by a computer. The
number and duration of corner visits, nosepokes, licks, and contact times
with the nipples of the water bottles are automatically recorded. Time
schedule: The spared nerve injury and sham surgeries were performed 2
weeks before starting the free adaptation in the IntelliCage with free access
to water in all corners. During “nosepoke adaptation” mice had to perform a
nosepoke to get water, which was possible in every corner. In the “avoidance

acquisition” mice received an air-puff punishment and did not get water in
one of the corners. During “avoidance extinction” no air-puff punishments
were applied and water was available in every corner. In “drinking periods”
mice were adapted to get water only at 11–12 a.m. and 4–5 p.m. These
restricted drinking times were maintained up to the end of the experiments
and provided some synchronization of the behavior. During “place preference
learning” mice got water in only one corner. After learning to prefer this
corner, the water awarding corner was switched to the respective opposite
corner (“place preference reversal”). After cleaning the cage and removing
cues mice were then re-adapted to the drinking periods, which were
maintained for “chaining” and “reversed chaining” tasks. In these
experiments mice got water in one corner either in a clockwise or
anti-clockwise sequence of the corners. After 8 days the direction was
inverted. Tasks are summarized in Table 1.

mouse in the aged SNI-treated control and Grn−/− groups had
to be removed during the course of the experiments because of
RFID dysfunctions.

BEHAVIORAL TASKS
The time schedule for the IntelliCage experiments is shown in
Figure 1 and followed established protocols (Krackow et al., 2010;
Voikar et al., 2010; Endo et al., 2011). Two weeks after surgery
mice were adapted to the system for 3 days with free access to
every corner, with all doors open and water and food ad libi-
tum. This free adaptation was followed by 4-days “nosepoke
adaptation,” during which the doors were closed, the first nose-
poke of the visit opened the door for 5 s and in order to drink
more, the animals had to leave the corner and start a new visit.
After this “nosepoke adaptation,” corners were randomly assigned
to each 4 animals for the avoidance conditioning. In the assigned
corner, the nosepoke triggered an air-puff (∼0.8 bar, 1-s) until
the animal left the corner and the doors in this corner remained

closed. The “avoidance acquisition” lasted for 24 h. At comple-
tion, mice were returned to their home cages for 1 day with water
restriction for the last 18 h prior to the return to their IntelliCage
for the analysis of the extinction of the avoidance behavior. The
water restriction was used to ensure that the mice were immedi-
ately looking for water despite the previous punishments. In the
“avoidance extinction” no air-puff punishments were applied and
water was available in each corner upon nosepoking. At the end
of this test which lasted for 5 days, the IntelliCages were cleaned
and environmental cues thereby removed.

The mice were then adapted for 7 days to the “drinking-
session” protocol, in which drinking was allowed exclusively
between 11 and 12 a.m. and 4 and 5 p.m. Outside of these
times the doors remained closed. Subsequently, mice were condi-
tioned for 7 days to one corner, in which they got a water-reward.
Drinking during this “place preference learning” was allowed only
in the assigned corner at the restricted times. One corner was
assigned for each four mice and only these mice got water in the
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Table 1 | Behavioral tasks.

Task name Task description Punishment Duration Drinking time

Avoidance
acquisition

To avoid one corner where water access was blocked
and trials punished

Yes air puff 24 h No restriction

Avoidance extinction To remember the previously punished corner without
reinforcement, i.e., without punishment and free water
in each corner

No 4 days No restriction

Preference learning To prefer one corner where a water award was
provided

No 7 days Restricted to 11–12 a.m. and 4–5 p.m.

Preference reversal
(i.e., Relearning of
opposite corner)

To prefer a novel corner on the side opposite to the
previous awarding corner

No 7 days Restricted to 11–12 a.m. and 4–5 p.m.

Chaining learning To learn a clockwise (or anticlockwise) sequence of
awarding corners

No 8 days Restricted to 11–12 a.m. and 4–5 p.m.

Chaining reversal
(i.e., relearning of
opposite sequence
direction)

To relearn a novel chaining of awarding corners after
switch of the sequence (clockwise to anti-clockwise
and vice versa)

No 10 days Restricted to 11–12 a.m. and 4–5 p.m.

respective corner. At completion of the conditioning, the corner
in which the water-reward was applied was switched to the respec-
tive opposite corner and the re-learning of the newly assigned
corner was tested for another 7 days. During this “place prefer-
ence reversal” water access was confined to the 11–12 a.m. and
4–5 p.m. drinking times. At completion, the IntelliCages were
cleaned and cues removed.

Finally, mice learnt to get water in one corner in a clockwise
or anti-clockwise sequence of the corners (Endo et al., 2011).
They were again adapted to the restricted drinking times for
4 days before starting this session because cleaning of the cages
had removed the environmental cues. At the start of the chaining
protocol mice could start drinking in an arbitrary corner during
the restricted drinking times. The next corner, where they could
drink, was then in a clockwise or anti-clockwise sequence. Each 4
mice of each group were assigned to either chaining. After learn-
ing the chaining behavior for 8 days the direction of the chaining
was reversed in that clockwise trained mice got water in anti-
clockwise direction and vice versa. The reversal chaining behavior
was assessed for another 10 days.

STATISTICS
Behavioral data are presented as mean ± s.e.m unless stated oth-
erwise and were analyzed with SPSS 21 and Graphpad Prism. To
assess the time dependent increase of the error rates indepen-
dently of the inter-individual differences of the number of visits
and nosepokes all events of the respective group were combined
and plotted as cumulative percent errors (i.e., percent errors rela-
tive to all events) over time according to Kaplan Meier plots. For
comparison, a non-parametric log-rank (Mantel-cox) test was
used. In addition we used linear regression analyses for com-
parison of the slope of the cumulative error curves except for
the avoidance acquisition which were best fitted according to
non-linear saturation.

The time courses of the daily error percentages were submitted
to analysis of variance for repeated measurements (rm-ANOVA
and multifactorial rm-ANOVA). The within subject factor was
“time,” between subject factors were “treatment” (i.e., sham vs.
SNI), “age” (i.e., young vs. aged), and “genotype” (C57BL6/J vs.
Grn−/− mice). In addition, we used “group” as between subject
factor (i.e., sham-young, SNI-young, sham-aged, and SNI-aged)
separately for the genotypes. Although experiments in C57BL/6
mice and progranulin deficient mice were performed sequen-
tially, the protocols were identical. Therefore, “genotype” was also
used as between subject factor or added as a covariate. In case of
significant differences of ANOVAs, groups were mutually com-
pared with t-tests employing a correction of alpha according to
Dunnett, in which the sham-treated young mice of the respective
genotype were used as the reference group.

RESULTS
NOCICEPTION
Nociceptive hypersensitivity after SNI developed within 1 week
and was maintained for several months encompassing the period
of the IntelliCage experiments (Figures 2A–C,E) (rm-ANOVA
factor “time” for mechanical F = 23.92, df = 6,P < 0.001; for
heat F = 8.80, df = 6, P < 0.001; for cold F = 27.45, df =
6, P < 0.001). In contrast, RotaRod running behavior recov-
ered within 1 week after SNI showing that IntelliCage exper-
iments were not confounded by substantial motor function
deficits (Figure 2D). The time course of SNI-evoked nociceptive
hypersensitivity was similar in C57BL6/J and progranulin defi-
cient mice, which showed mildly heightened SNI-evoked heat
and cold hypersensitivity (Figures 2B,C). IntelliCage experiments
were performed within the time frame of constant nociceptive
hypersensitivity. Time course experiments were performed in a
separate group of animals because animals must not be dis-
turbed during the IntelliCage experiments. However, for further
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FIGURE 2 | Nociceptive behavior and motor functions in C57BL6/J and

progranulin deficient (Grn−/−) mice before and after injury of the

sciatic nerve in the Spared Nerve Injury (SNI) model. (A–C) Time
course of the nociceptive behavior upon mechanical, heat and cold
stimulation before and after SNI in young C57BL6/J and progranulin
deficient (Grn−/−) mice. (D) RotaRod running behavior before and after

SNI. (E) Nociceptive behavior at the end of the IntelliCage experiments
after sham or SNI surgery in young and aged C57BL6/J and progranulin
deficient mice. The asterisks (∗) denote significant differences between the
respective SNI and sham treated mice, and the crosses (#) show
significant differences between genotypes, P < 0.05. Data are means ±
s.e.m. of n = 8–12 per group for all tests.

confirmation of ongoing pain, nociception was assessed at com-
pletion of the IntelliCage experiments. SNI-evoked neuropathic
pain was maintained in young and aged mice (Figure 2E). Paw
withdrawal latencies of the paw ipsilateral to the sciatic nerve
lesion were reduced upon mechanical and heat stimulation as
compared to the contralateral side (not shown) and as com-
pared to sham treated mice in all groups and acetone evoked cold
pain responses were enhanced as compared to sham treated mice
in all groups. Statistical results of posthoc tests are depicted in
Figure 2E. Progranulin deficient aged mice showed an enhanced
SNI-evoked nociceptive hypersensitivity for thermal stimuli (rm-
ANOVA with “stimulus” as within subject factor and “genotype”
as between subject factor: F = 12.59, df = 7, P < 0.001, posthoc
for heat P < 0.05). The young SNI-treated mice did not signifi-
cantly differ between genotypes at that time point.

PLACE AVOIDANCE ACQUISITION
In the 24h-avoidance acquisition mice received an air-puff pun-
ishment in one corner. Most animals learned to avoid the corner,
in which air-puffs were applied (Figure 3), i.e., had an error
rate <25% at the end of the acquisition period, except each
two in the groups of SNI-treated aged mice of both genotypes.
These mice behaved normally in subsequent tasks. Progranulin-
deficient mice tended to make more place errors than the con-
trol mice in all treatment groups. Mean cumulative errors per
visit number are shown in Figures 3A,B. In aged mice, SNI
caused a significant increase of the error rates in both genotypes

(Figure 3C 24 h-means, E cumulative), with a similar result for
place errors (wrong corner) and nosepoke errors.

In young mice the SNI-effect manifested only in progran-
ulin deficient mice (Figure 3D cumulative). The 24-h means
for place errors (wrong corner) and nosepoke errors, however,
were similar in all young groups (Figure 3C). ANOVA revealed
significant differences between groups (univariate ANOVA of 8
groups for 24 h mean error rates; F = 2.630; df = 7, P = 0.020).
Results of posthoc analyses are shown in Figure 3C. Some animals
stopped nose-poking completely after receiving punishments and
the analysis of avoidance acquisition was therefore focused on
place errors.

EXTINCTION OF PLACE AVOIDANCE
The time courses of the extinction of the aversive memory were
tested by re-allowing water access in each corner without air-
puff punishments (task illustration Figure 4A). Acquisition and
extinction phases were separated by a 24 h home cage period with
water deprivation in the last 18 h to ensure immediate search
for water despite the previous punishments. All animals showed
an increase of the place and nosepoke error rates as compared
to the mean error rate of the acquisition period (Figures 4B,C)
(rm-ANOVA within subject factor “time”: F = 42.272, df = 5,
P < 0.001). The increase of the nosepoke error rate was stronger
in young than aged mice (“time × age”: F = 4.670, df = 5,
P < 0.001) and the memory for the aversive place was most
strongly retained in SNI-treated aged mice (Figure 4) (“time ×
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FIGURE 3 | Avoidance acquisition in the IntelliCage in young and aged

C57BL6/J and progranulin deficient (Grn−/−) mice. (A,B) Mean ± s.e.m
cumulative place errors per visit number in sham and SNI-treated (Spared
Nerve Injury of the sciatic nerve) in young and aged C57BL6/J and
progranulin deficient mice (n = 8 per group). (C) Group means of error
percentages during the 24 h-avoidance acquisition period for place errors and
nosepoke (NP) errors. The asterisks denote significant differences vs. the

reference group (sham-treated young) with P < 0.05, n = 8. (D,E) Cumulative
percentages of place errors over time in young and aged mice of both
genotypes during avoidance acquisition. All events of the group were
combined and plotted according to Kaplan Meier curves. Each vertical line is
an error and the horizontal lines indicate the percent error estimates of the
respective groups, where 25% (one wrong corner out of four) would be the
random level.

groups” i.e., sham-young, SNI-young, sham-aged, SNI-aged: F =
2.136, df = 15, P = 0.009). The latter showed the lowest cumu-
lative nosepoke error rates (Figures 4D,E) indicating that those
mice, which had shown the worst acquisition of aversive mem-
ory, showed the strongest retention thereof. This preservation of
aversive memory was observed in both genotypes (interaction:
“age × treatment × genotype” F = 0.149, df = 1, P = 0.700).
Analysis across treatment groups and ages revealed higher error
rates in progranulin deficient mice as compared to the controls
(rm-ANOVA for “genotype” F = 4.026; df = 1; P = 0.0492).

CONDITIONED PLACE PREFERENCE LEARNING
During this session mice learnt to get water in a specified corner
after performing a nosepoke during restricted “drinking times”
(task illustration Figure 5A). The time restrictions provided a
synchronization of the drinking behavior. After conditioning to
one corner, the awarding corner was switched to the opposite
corner. All treatment groups were able to perform this task and
had error rates below the 75% random level (Figures 5B,C).
There was an improvement over time in all groups both in the
first phase and in the reversal phase (rm-ANOVA for “time” for
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FIGURE 4 | Avoidance extinction in the IntelliCage in young and aged

C57BL6/J and progranulin deficient (Grn−/−) mice. (A) Illustration of
the avoidance acquisition and extinction tasks. Red circles indicate
nosepokes where air-puff punishments were applied and water access
was blocked. White circles show free water access. (B,C) Time courses
of nosepoke error percentages (mean ± s.e.m) per day in C57BL6/J (B)

and progranulin deficient (Grn−/−) mice (C); n = 8 per group. Time “0”
shows the error proportion achieved during the 24 h acquisition period
(mean over 24 h). rm-ANOVAs revealed significant differences between
groups. SNI-treated aged mice of both genotypes showed the lowest

error rates, P < 0.05. Asterisks denote time points which differed
significantly vs. sham treated young mice, which were used as the
reference group (P < 0.05, Dunnett post hoc). (D,E) Cumulative nosepoke
error rates over time in young and aged mice during avoidance extinction.
The step-wise day-to-day increase is due to preferred drinking times in
the morning. All events of the group were combined and plotted
according to Kaplan Meier curves. Each vertical line is an error and the
horizontal lines indicate the percent error estimates of the respective
groups. Aged mice of both genotypes showed the lowest nosepoke error
rates i.e., the strongest retention of the aversive memory.

both phases P < 0.001), but the aged animals of both genotypes
showed lower error rates than the young mice (Figures 5B,C)
(rm-ANOVA factor “age” F = 63.758, df = 1, p < 0.001). SNI
did not affect the place preference learning behavior, neither in
young nor aged mice and neither in control nor progranulin-
deficient mice (rm-ANOVA “treatment”: F = 1.785, df = 1, P =
0.178). Aged progranulin deficient mice showed stronger pref-
erence of the awarded corner than the respective aged controls,
irrespective of SNI treatment (rm-ANOVA for the interaction
“time × age × genotype” F = 3.146, df = 44, P = 0.002).

Upon switching the awarding corner to the opposite
site (“place preference reversal”), the error rates temporarily
increased. The time needed to recover preference was similar in
all groups except for young progranulin deficient mice, in which
error rates remained high up to the end of the reversal phase
(Figure 5C). Aged mice of both genotypes recovered stronger
preference of the awarded place than young mice (rm-ANOVA
factor “age” F = 51.668, df = 1, P < 0.001), which was, how-
ever, stronger in progranulin deficient aged mice (rm-ANOVA for
the interaction “age × genotype” F = 5.992, df = 1, P = 0.018).
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FIGURE 5 | Place “preference learning” and “reversed place preference

learning” in young and aged C57BL6/J and progranulin deficient

(Grn−/−) mice. (A) Illustration of the place preference learning and reversal
tasks. The blue circles indicate nosepokes where a water award was
provided. The crossed circles show non-awarding nosepokes, i.e., water
access was blocked, without punishment. (B,C) Time courses of nosepoke

error percentages (mean ± s.e.m) per day in C57BL6/J and progranulin
deficient (Grn−/−) mice, n = 8 per group, during place preference learning
and reversed learning. rm-ANOVA revealed significant differences between
young and aged mice in both genotypes, P < 0.05, n = 8 per group. Time
points which differed significantly vs. the sham treated young mice are
indicated per asterisks, P < 0.05.

Nerve injury had no significant impact on the “reversal prefer-
ence learning” in neither genotype. Overall, variability was higher
in progranulin deficient mice than in controls. Figure 5 indicates
the time points at which error rates were significantly differ-
ent from those of young sham-treated mice, which were used as
the reference group (comparison of 4 groups separately for each
genotype).

CHAINING AND REVERSED CHAINING
In this task mice had to learn a clockwise or anti-clockwise
sequence of awarded corners, the direction of which was switched
after 8 days (Figure 6A task illustration). Drinking was only
allowed in the specified periods (11–12 a.m. and 4–5 p.m.).
Progranulin deficient mice had higher nosepoke error rates in
all treatment groups as compared to the controls, which became
most obvious after reversal of the chaining direction (Figure 6C)
and was stronger in aged than young mice. rm-ANOVA revealed
significant differences between genotypes (F = 26.108, df = 1,
P < 0.001). In C57BL6/J mice all treatment groups were similar
during chaining and reversal thereof (Figure 6B), but SNI-treated
aged mice tended to show the worst performance after rever-
sal of the chaining direction. The effect of SNI was stronger in
progranulin deficient mice and also affected young SNI-treated
progranulin deficient mice (Figure 6C) (rm-ANOVA for “time ×
age × treatment × genotype” F = 1.625, df = 17, P = 0.05).
While all C57BL6/J mice were able to learn the reversed direction
within 4 days and returned to pre-reversal error rates, progran-
ulin deficient SNI-treated mice failed to recover this error rate.
Overall, aged mice had higher error rates than young mice (rm-
ANOVA for “age” F = 3.564, df = 1, P = 0.067) and SNI-treated

mice tended to make more errors than sham treated mice (rm-
ANOVA for “treatment” F = 3.38, df = 1, P = 0.072, “age ×
treatment” n.s.). Figure 6 indicates the time points at which error
rates for treatment groups were significantly different from those
of young sham-treated mice, which were used as the reference
group (comparison of 4 groups separately for genotypes).

In summary, the behavioral IntelliCage experiments revealed
that SNI in aged mice blocked the extinction of aversive mem-
ory, and that progranulin deficiency in combination with SNI
seriously impaired the learning of spatial sequences.

VISITS AND LICKINGS
The number of daily visits and nosepokes did not show differ-
ences between SNI and sham treated mice in neither genotype nor
age (not shown). However, in C57BL6/J mice, young mice visited
corners more frequently than aged C57BL6/J mice (rm-ANOVA
Visits: F = 15.1, df = 3, P < 0.001). Daily visits were, however,
similar in young and aged progranulin deficient mice.

DISCUSSION
In the present study we assessed the impact of chronic neuro-
pathic pain on learning and memory in mice and the influence
of age based on the hypothesis that chronic pain may narrow cog-
nition and experience, which in turn, may further increase pain.
We used progranulin deficient mice as a pro-aging model, because
they develop premature signs of brain aging (Ahmed et al., 2010;
Yin et al., 2010a,b). Our hypothesis was supported by recent stud-
ies, which found a decline of cognitive functions in rats with
neuropathy (Gregoire et al., 2012; Cardoso-Cruz et al., 2013) and
in patients with persistent pancreatic pain (Jongsma et al., 2011).
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FIGURE 6 | Spatial sequence learning in young and aged C57BL6/J and

progranulin deficient (Grn−/−) mice. (A) Illustration of the “chaining” and
“reversal of chaining” tasks. Mice were randomly allocated to either starting
with the clockwise or anti-clockwise direction. After 8 days the direction was
conversed. The blue circle indicates the awarding corner and the white circle
is the corner, in which the next water award was applied. The crossed circles
show the corners where water access was denied. (B,C) Time courses of

nosepoke error percentages (mean ± s.e.m) per day in C57BL6/J and
progranulin deficient (Grn−/−) mice, n = 8 per group during “chaining” and
“reversal of chaining.” rm-ANOVA revealed significant differences between
SNI-treated aged mice as compared to young mice, P < 0.05. In progranulin
deficient mice, SNI also caused an increase in the error rate in young mice.
Time points which differed significantly vs. the sham treated young mice are
indicated per asterisks, P < 0.05.

After SNI, all mice had persistent and relative constant noci-
ceptive hypersensitivity throughout the experiments. Our results
show that young mice with sciatic nerve injury behave normally
in all tasks i.e., learning and memory was not impaired by chronic
pain in young mice. However, aged mice with SNI needed longer
to learn avoidance of one punishing corner. However, once learnt,
the aged SNI-treated mice of both genotypes showed the slowest
extinction of aversive memory suggesting that ongoing pain in
these aged mice may deepen the memory for unpleasant experi-
ences. The result agrees with previous studies in rodents, which
demonstrated a long-term maintenance of aversive memory in
rats with chronic pain (Hummel et al., 2008) and inability of mice
with SNI to extinguish contextual fear (Mutso et al., 2012). If
translated into the human situation this could mean that chronic
pain may strengthen the memory for unpleasant experiences,
possibly because pain may absorb attention and narrow cogni-
tion so that learning of novel information may be compromised
(Lotsch et al., 2012). Such adaptations likely involve multiple
signaling networks, particularly of the cingulate cortex, anterior
insula cortex and amygdala. In addition, specific dopaminergic
neurons in the ventral tegmental area are involved in aversive
and appetitive learning (Cohen et al., 2012; Lammel et al., 2012)
and are important sites of opioid mediated analgesia and reward
(Ewan and Martin, 2011).

In contrast to aversive learning, nerve injury did not nega-
tively impact on reward-mediated place preference learning in

neither genotype nor age group. Indeed, aged mice with or with-
out nerve injury showed a stronger preference of the awarded
corner than the young mice, which agrees with a previous study in
the IntelliCage (Mechan et al., 2009). The age pattern was main-
tained throughout conditioning to one corner and reversal to the
opposite corner and was obvious in both genotypes. Old age may
increase the subjective cost of errors i.e., extra visits and loco-
motion, thereby increasing the motivation to learn. Old age may
also negatively impact on exploratory drive and thereby seemingly
reduce errors. This was also suggested by comparison of daily vis-
its, which were higher in young than aged C57BL6/J mice. This
age pattern of daily visits, however, was not evident in progran-
ulin deficient mice. Alternatively old age might also increase the
appetitive drive of the water award.

Award was also the driving force in the chaining experiment.
In this spatial sequencing task the aged progranulin deficient
mice with nerve injury, but not those with a sham injury, had
very high error rates after switching the direction of clockwise-
anticlockwise chaining. The effect of nerve injury was also evident
in young progranulin deficient mice but was not obvious in the
C57BL6/J mice, suggesting that this was an effect of “genotype
+ nerve injury.” The observation suggested that nerve injury in
combination with progranulin deficiency may reduce the cogni-
tive flexibility and ability to adjust behavior to novel situations
involving right-left discrimination. In contrast to place preference
learning, which is cognitively not demanding and learnt without
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problems even by mice with hippocampal lesions (Voikar et al.,
2010), chaining reversal is the cognitively most challenging of the
tests so that is not surprising that deficits emerged in this test.
The deficits were most obvious in aged progranulin deficient SNI-
treated mice. It may be hypothesized that the sciatic nerve injury
on one side and the subsequent restructuring of sensory and
motor neuronal networks might be particularly unfavorable for
tasks requiring discrimination of right and left. Progranulin defi-
cient mice likely lose more neurons after axonal injury because
lack of this neurotrophic factor reduces the ability of the neurons
to survive the neuronal stress (Van Damme et al., 2008; Gao et al.,
2010; Gass et al., 2012; Lim et al., 2012). The importance of pro-
granulin may increase with age. An enhanced neuronal loss may
cause more profound alterations of synaptic connectivity, which
may add on to the subtle alterations of synapse function, which
are present in progranulin deficient mice at baseline (Tapia et al.,
2011; Petkau et al., 2012). This may also contribute to the mildly
enhanced thermal nociceptive hypersensitivity in progranulin
deficient mice and explain the observed progranulin-dependent
difficulties in right-left discrimination after SNI.

In summary, aged mice with chronic neuropathic pain showed
the strongest maintenance of aversive memory as compared to
sham treated mice and as compared to younger SNI-treated mice
suggesting that chronic pain at old age may heighten the sus-
ceptibility for unpleasant experiences and possibly vice versa. In
addition, progranulin deficient mice with nerve injury showed
impaired right-left discrimination learning. The unfavorable
alliance of “age and nerve injury” and of “progranulin deficiency
and nerve injury” suggests that nerve injury evoked chronic pain
in combination with old age may impinge on the ability to give
up accustomed behavior and adapt it to novel situations.
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