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The central oxytocin system transformed tremendously during the evolution, thereby
adapting to the expanding properties of species. In more basal vertebrates (paraphyletic
taxon Anamnia, which includes agnathans, fish and amphibians), magnocellular
neurosecretory neurons producing homologs of oxytocin reside in the wall of the third
ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic
nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon
Amniota, which includes reptiles, birds, and mammals) into the paraventricular and
supraoptic nuclei with accessory nuclei (AN) between them. The individual magnocellular
neurons underwent a process of transformation from primitive uni- or bipolar neurons
into highly differentiated neurons. Due to these microanatomical and cytological changes,
the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by
vascular release. However, the most fascinating feature of the progressive transformations
of the oxytocin system has been the expansion of oxytocin axonal projections to
forebrain regions. In the present review we provide a background on these evolutionary
advancements. Furthermore, we draw attention to the non-synaptic axonal release in small
and defined brain regions with the aim to clearly distinguish this way of oxytocin action
from the classical synaptic transmission on one side and from dendritic release followed by
a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and
its homologs on pro-social reproductive behaviors in representatives of the phylogenetic
tree and will propose anatomically plausible pathways of oxytocin release contributing to
these behaviors in basal vertebrates and amniots.
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INTRODUCTION
The concept of neurosecretion (Scharrer and Scharrer, 1945) was
based on the discovery of large glandular cells (later named mag-
nocellular neurons) that contained colloid product and resided
in the hypothalamus of the teleost fish minnow Phoxinus lae-
vis (Scharrer, 1928)1. A similar glandular cell type containing
oxytocin (OT)- and vasopressin (VP)-like substances was—a
few decades later—visualized by histochemical reactions (such as
Gomori’s method with aldehyde-fuchsin; Puchtler et al., 1979)
in other vertebrates too. Indeed, the 60–80’s of the 20th cen-
tury were the time of extensive exploration of the phenomenon
of neurosecretion (Scharrer, 1978), the diversity of nonapeptides
(Acher, 1978) and the anatomy of hypothalamic neurosecre-
tory centers (Polenov, 1978). One of the main directions at
that time was the comparative anatomical analysis of hypothala-
mic nuclei in representatives of most vertebrate classes (Zeballos

1It is important to note that the observation of first gland-like neurons was
reported by Speidel (1919; cited from Watts, 2011) in the spinal cord of fish.
These cells (known as Dahlgren cells) and their axons form an unique cau-
dal neurosecretory system in fish, terminating in the urophysis and secreting
urotensins and CRH to the systemic blood in the same fashion as the release
of hypothalamic nonapeptides from the posterior pituitary (McCrohan et al.,
2007). For the history of the concept of neurosecretion and the establish-
ment of neuroendocrinology as a new discipline linking neuroscience and
endocrinology see the excellent review of Watts (2011).

et al., 1967; Watkins, 1975; Moor and Lowry, 1998). Furthermore,
the aspect of environmental physiology was excessively studied,
focusing on migrating and spawning animals and monitoring
challenges in the activity of their neurosecretory system during
reproduction (Peter, 1977; Polenov et al., 1979; Arshavskaya et al.,
1985). This direction of research led to fascinating environmen-
tal socio-biological insights into the contribution of hypothala-
mic neuropeptides on the formation of pair bonding in social
mammalian and non-mammalian species (Carter et al., 1995;
Goodson and Bass, 2000; Insel and Young, 2000; Goodson et al.,
2009). However, the continuing shift toward studying the genet-
ics, molecular biology and electrophysiology of the magnocellular
neurons (Murphy et al., 2012) resulted in a deep understanding
of detailed mechanisms but was lacking a general picture about
the phylogenetic transformations of magnocellular neurons. We
intend therefore to link the morphological transformations and
the route of oxytocin release with the behavior observed in more
basal vertebrates vs. amniots.

MACROANATOMICAL TRANSFORMATION OF THE
HYPOTHALAMIC-NEUROHYPOPHYSIAL SYSTEM IN VERTEBRATES
In more basal vertebrates (paraphyletic taxon Anamnia), com-
posed by agnathans, fish and amphibians, magnocellular neurose-
cretory neurons express homologs of OT (mesotocin, isotocin,
glumitocin, valitocin, aspargtocin) and VP (vasotocin) (Acher,
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1978; Donaldson and Young, 2008). These neurons reside in the
ancestral preoptic nucleus (PON; Diepen, 1962; Figure 1), which
became recently a subject of genetic studies, using transgenic fish
models (Gutnick et al., 2011; Herget et al., 2013). Magnocellular
neurons of adult Anamnia are quite randomly distributed within
the PON, existing intermingled with other types of cells. However,
there is a ventro-dorsal gradient in size and morphology of
neurons—while ventrally located neurons are rather small, more
dorsally residing ones are bigger, and neurons reaching the upper
pole of the PON are gigantic (Polenov, 1974; Garlov, 2005). This
gradient reflects a “physiological regeneration” of the nucleus,
which is caused by short periods of increased secretory activity
(migration in fish and seasonal changes in frogs) and subse-
quent death of the gigantic neurosecretory neurons (Polenov,
1974; Garlov, 2005). This cell loss is, hence, compensated by
newly born neurons (Chetverukhin and Polenov, 1993; Polenov
and Chetverukhin, 1993). Although in non-mammalian species
of vertebrates pronounced adult neurogenenesis is reported for
various brain regions (see Kaslin et al., 2008 and Refs therein), in
mammals this process is rather unique. Here it occurs only in spe-
cific areas, such as the subventricular zone and the dentate gyrus
of the hippocampus (Ming and Song, 2011) as well as in the pep-
tidergic hypothalamic arcuate nucleus, where cell turnover occurs
at a low rate (Kokoeva et al., 2005).

In advanced vertebrates (monophyletic taxon Amniota:
reptiles, birds, and mammals), there is a clear partition of mag-
nocellular neurons in two separate nuclei—the paraventricu-
lar (PVN) and supraoptic (SON) nuclei (Meyer, 1935; Diepen,
1962; Figure 1). Some authors further subdivide the SON into
main- and retrochiasmatic or postoptic part. However, the lat-
ter is absent in most evolutionarily conserved reptiles such
as turtles (Fernández-Llebrez et al., 1988), and the retrochias-
matic part exists only in ancient mammals, such as platypus,
that lack the typical SON. The PVN—in contrast to Anamnia’s
PON—is in rats composed by up to eight parts, and three
of them comprise predominantly the magnocellular neurons
(Swanson and Sawchenko, 1983; Armstrong, 2004; Simmons and

Swanson, 2008). Although such strict territorial segregation is
typical for rodents (especially for rats), but there are no reports on
such segregations in other mammalian species, including humans
(Swaab et al., 1993). Besides the main nuclei, PVN and SON,
Amniota also possess groups of magnocellular neurons, termed
accessory nuclei (AN)2, located in the territory between SON and
PVN. There is some inconsistency in the naming of groups and
their recognition as independent groups or parts of the PVN or
SON. Some authors, for example, consider the “anterior com-
missural nucleus” (ACN) as an independent AN (Rhodes et al.,
1981; Grinevich and Akmayev, 1997) while others classify it as
division of the PVN (Swanson and Kuypers, 1980). Importantly,
an AN of similar localization and composition (such as circular,
fornical, and dorsolateral) exists in reptiles and various mam-
mals (see Grinevich and Polenov, 1994). However, in birds—a
highly specialized group of Amniota—the main and AN are not
clearly bordered, and the subdivisions of PVN and SON as well
as the AN are not homologous to those in other representatives
of Amniota (Oksche and Farner, 1974; Grinevich and Polenov,
1994). Importantly, studies in rats (Rhodes et al., 1981) revealed
that about 1/3 of all magnocellular neurons locate in AN, thereby
pointing to their functional significance. In that line, we showed
recently that the dorsolateral AN is the main source of OT pro-
jections to the central amygdala and is certainly involved in the
attenuation of fear responses via OT release within this target
structure (Knobloch et al., 2012).

The cause of the formation of a polycentric OT system in evo-
lution is unclear. It could be speculated that the presence of the
AN intermediate to the PVN and SON reflects the process of sep-
aration of the ancestral PON into the PVN and SON, leaving
remnant cell groups in between. During this separation the dorsal
part of the PON—the magnocellular preoptic nucleus—likely
remained as PVN in amniotes as was recently shown in larval

2The AN (in rats) were first described by Peterson (1966). For the anatomy
of the AN in representatives of the phylogenetic row and their respective
nomenclature see the review of Grinevich and Polenov (1994).

FIGURE 1 | Schematic presentation of magnocellular hypothalamic

nuclei in representative examples of basal and advanced vertebrates

(drawings are based on Grinevich and Polenov, 1994). 3v, third ventricle; F,
columns of fornix; LV, lateral ventricle; MFB, medial forebrain bundle; OC,

optic chiasm; OT, optic tract; PON, preoptic nucleus; PVN, paraventricular
nucleus; SON, supraoptic nucleus. Accessory nuclei: 1—extrahypothalamic;
2—anterior commissural; 3—circular; 4—fornical; 5—nucleus of the medial
forebrain bundle; 6—dorsolateral.
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and adult zebra fish by comparing gene expression profiles with
mammals (Herget et al., 2013). As for the SON, it was speculated
that neurons located in the ventral PON migrate in ventro-lateral
direction to the place of the later SON (Herget et al., 2013), leav-
ing remaining cells of further AN. It is interesting that in one
of the most primitive modern mammals—monotreme platypus
Ornithorhynchus anatinus, most of the magnocellular OT neurons
reside in the stream between the PVN and the retrochiasmastic
part of the SON and never form the main nuclei found in other
mammals (Ashwell et al., 2006).

The process of PON divergence in reptiles (paralleled by the
first appearance of AN) coincides with the process of forebrain
development (encephalization) and the respective formation of
large fiber tracts connecting brainstem and spinal cord to the fore-
brain. The migrating magnocellular neurons and growing axonal
bundles, such as the medial forebrain bundle could have been
interfering with each other, as proposed in the following. During
the embryogenesis of Amniota, magnocellular neurons possibly
migrate along radial glia from the 3rd ventricle into ventro-lateral
direction; the association of radial glia and magnocellular neu-
rons was reported in the wallaby, the representative of marsupial
mammals (Cheng et al., 2002). Similar migrations are known
for the radial development of spinal cord, cerebellum and cor-
tex (Hatten, 1999; Nadarajah and Parnavelas, 2002; McDermott
et al., 2005) and are also observable in cell culture studies where
neuroblasts migrate back and forth until finding their destination
(Hatten, 1990). The bidirectional movement of magnocellular
neurons might have been physically blocked by the growing fibers
of the solid medial forebrain bundle (phylogenetically evolving
in amphibians and reptiles; Herrick, 1910; Nieuwenhuys et al.,
1982), thereby hindering neuronal migration from the supraoptic
region back to the 3rd ventricle and entrapping cells (i.e., SON)
latero-dorsally to the optic tract. This process of magnocellular
nuclei formation in the embryogenesis (resembling phylogenetic
development in accordance to Ernst Haeckel’s law), in any case,
requires further scientific investigations employing genetic and
viral approaches combined with time-lapse imaging.

CYTOLOGICAL CHANGES IN MAGNOCELLULAR NEURONS ALONG THE
EVOLUTION
Dendro-ventricular contacts 3

Like probably many other neuronal cell types (Arendt, 2008),
the hypothalamic magnocellular neurons underwent tremendous
modifications in term of location and cytological organization
during evolution (Polenov, 1978; Scharrer, 1978). The most
primitive neurosecretory neurons were observed in Amphioxus
(lancelet) (Obermüller-Wilén, 1979), which split from verte-
brate ancestors ∼550 million years ago (Gee, 2008; Figure 3).
In Amphioxus, the neurosecretory cell bodies are lying between
the ependymal cells and extend their axonal process through
the inner wall of the ventricle to the ventral brain surface
(Obermüller-Wilén, 1979). In fish, especially in the basal mem-
bers of Actinopterygii (ray-finned fish) (e.g., sturgeon, sterlet),
the cells extend their dendrites with expanded terminal parts

3Here we follow the terminology for contacts of magnocellular neurons from
Polenov (1978).

into the lumen of the ventricle while their axons run away from
the ventricle roughly at 90◦ angle. In addition, it seems that in
Anamnia these dendrites are not only capable to release neu-
ropeptides into the lumen of the third ventricle but also may
sense (at least in the case of vasotocin neurons) via cilia the
chemical content of the cerebro-spinal fluid (CSF, Tessmar-Raible
et al., 2007). In mammals, a portion of these ventricle con-
tacts seem to remain: using viral based technique the location
of OT fibers (axons and/or dendrites) could be shown in inti-
mate proximity to the 3rd ventricle and even in between of
ependymal cells, contacting directly with the CSF (Figure 4C).
Further along the phylogenic tree (see Figure 2) the majority
dendrites and cell bodies of magnocellular neurons move away
from the 3rd ventricle and undergo “neuronalization” 4 forming
rich dendritic trees and unique axonal specializations (the lat-
ter is described in great details in sections below). In respect of
progressive changes of dendritic trees in evolution, it should be
mentioned here that even in mammals (rats, dogs and monkeys)
a fraction of OT neurons carries features of relatively simply orga-
nized neurons (Hatton, 1990; Armstrong, 1995; and references
therein). These cells, visualized by Golgi (silver impregnation)
technique, mostly reside in the SON, representing about half
of neuronal population in this nucleus. They are bipolar neu-
rons, similar to those observed in basal vertebrates, fish and
frogs, while another half of SON neurons are multipolar cells
with elaborated dendritic trees (Hatton, 1990; Armstrong, 1995,
2004; and references therein). The number of spines (as well
as synapses) on dendrites of OT neurons is relatively modest
(∼500–600 synapses per OT neuron; William Armstrong, per-
sonal communication) especially compared to principle neurons
of hippocampus (∼10,000 synapses per single CA1 or CA3 neu-
ron; Megias et al., 2001; Hosseini-Sharifabad and Nyengaard,
2007). However, during maternity period OT neurons undergo
plastic changes (swelling, arborization) with ultrastructural reor-
ganization of synaptic contacts (Stern and Armstrong, 1998;
Theodosis and Poulain, 2001).

Axo-adenar contacts
Axo-adenar contacts are typical for magnocellular cells in
Anamnia. Cells are sending axonal terminals close to the adeno-
hypophysis (syn.: anterior pituitary, see Figure 3) where they are
forming a root-like structure directly contacting adenohypophy-
seal cells. Hence, released neuropeptides affect subsequently
the release of various pituitary hormones in paracrine fashion
(Denef, 2008). However, the density of such contacts is grad-
ually decreased in evolution. In fact, although we were able to
detect a few examples of such contacts in adult rats (see Figure 4),
only one paper reports on their presence in amniots: i.e., in
the adenohypophysis of fetal sheep (Hoffman et al., 1989). The

4The term “neuronalization” was introduced by Andrey L. Polenov about 40
years ago to describe the process of evolutionarily transformation of primitive
unipolar neurosecretory cells to typical neurons, which preserved capacity to
produce and secret neurohormones (Polenov, 1978). However, presently the
term “neuronalization” is used to name the appearance of neuron-like cells
from adult liver or bone marrow stem cells (Deng et al., 2006). Therefore—to
avoid confusion—we will not further use the term “neuronalization” in the
present review.
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FIGURE 2 | Anatomy and position (in relation to the lumen of the

ventricle) of magnocellular neurosecretory neurons in the

hypothalamus of representatives of the phylogenetic tree. v, ventricle.

paracrine action of OT on pituitary cells (Hoffman et al., 1989)
may occur during mammalian embryogenesis in the immature
portal blood system. In general, the regress of direct axo-adenar
contacts during evolution may parallel the process of anatomi-
cal separation of adenohypophysis and neurohypophysis by septal
connective tissue (Enemar, 1960) and coincides with the develop-
ment of an effective portal blood system from reptiles onwards
(Enemar, 1960). By exception, in some highly specialized teleost
fish (Baskaran and Sathyanesan, 1992) and advanced groups of
amphibians, like anurans (Cruz, 1956; Lametschwandtner and
Simonsberger, 1975), a portal system, albeit a primitive version,
may already exist. Via the portal route, OT reaches epithelial
cells of the adenohypophysis and modulates the release of ade-
notrophic hormones (Horn et al., 1985; Sheward et al., 1990;
Denef, 2008).

Axo-vasal contacts
Endocrine neurosecretion in its classical meaning refers to the
release of OT, VP and their homologs into the blood stream
(Figure 3), which carries it to peripheral target organs such as the
uterus, penis, mammary glands (also organs of the reproductive
tract of non-mammalian species), the heart and also the skin (van
Kesteren et al., 1995; Satake et al., 1999; Melis and Argiolas, 2011;
Garrison et al., 2012; Gutkowska and Jankowski, 2012; Deing
et al., 2013). Axo-vasal contacts are axonal terminals within the
posterior pituitary lying in close proximity to fenestrated capillar-
ies separated only by a basal membrane and the processes of pitu-
icytes. This general structure of the posterior pituitary remained
constant throughout the vertebrate evolution (Belenky, 1998)
down to the phylogenetically old Actinopterygii (ray-finned) fish
(Egorova et al., 2003). Besides this specialized structure, OT neu-
rons also form axonal contacts with primary capillaries of the
external zone of the median eminence (Figure 4). Hereby, OT

FIGURE 3 | Contacts of OT neurons and respective routes of OT release

in the brain of basal and advanced vertebrates. 1—dendro-ventricular
contacts (trans-ventricular route of OT action); 2—axo-vasal contacts
(release into systemic blood circulation); 3—axo-adenar contacts (paracrine
action on adenotrophes); 4—axovasal contacts with portal venes;
5—dendritic release; 6—axonal release. 3v, third ventricle; PV, portal
vessels.

is reaching the portal blood and directly acts on corticotrophes,
lactotrophes, gonadotrophes and other cell types (Horn et al.,
1985; Sheward et al., 1990; Denef, 2008).

Likely due to the vital importance of peripheral OT- and
VP (and their homologs) hormones for reproductive physiology
and water metabolism, the neurohypophysis exhibits a unique
capacity for regeneration. After axonal damage of magnocel-
lular neurons by pituitary stalk transection, the pituitary stalk
undergoes an extensive hypertrophy and transforms into a new
neurohemal organ, called “miniature neurohypophysis” (Spatz,
1958). This capacity of regeneration together with the astonish-
ing survival of the magnocellular somata after axonal transection
was demonstrated in both mammalian (including monkeys) and
non-mammalian species (Atunes et al., 1979; Polenov et al., 1981,
1997).

ROUTES OF OXYTOCIN RELEASE WITHIN THE BRAIN
As emphasized above, the evolutionarily oldest preserved OT pro-
cesses contact the ventricle system (Figures 2, 4C). But given
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FIGURE 4 | Rat oxytocin (OT) neurons residing in PVN and SON (and AN;

not depicted here) were visualized with the green fluorescence-protein

Venus in rats using recombinant adeno-associated virus technique,

thereby revealing the complexity of the central OT system (A) as well as

of single OT neurons (B; arrow: dendrite/dendritic collateral; asterisk:

likely axon/axonal collateral; double asterisk: contact to second OT cell;

arrow head: fiber below ventricular ependyma). The 3rd ventricle is
surrounded by OT fibers (C) that extend below the ventricle-lining ependymal
layer (arrow head) or reach the ventricle lumen (asterisk; C2 magnification of
ventral part of the 3rd ventricle shown in C1). Release of OT into the
circulation occurs via the median eminence (internal and external layer; D)

and the posterior pituitary (E; E2 inset shows a pituitary gland overview). Of
note are OT fibers innervating the pituitary intermediate lobe in rats of
reproductive state (E). OT forebrain innervation for central OT release is likely
the evolutionarily youngest features of the OT system (F). Exemplarily, fibers
in the medial amygdala (F1) and anterior olfactory nucleus (F2) are depicted
(insets: magnified fibers) both structures functionally linked to reproductive
and pro-social behaviors. 3V, 3rd ventricle; ac, anterior commissure; aL,
anterior lobe; AN, accessory nuclei; iL, intermediate lobe; MEe, medial
eminence, external layer; Mei, medial eminence, internal layer; opt, optic
tract; pL, posterior lobe; PVN, paraventricular nucleus; SON, supraoptic
nucleus.

their rather low rate in mammals, the high OT concentrations in
the CSF—exceeding those in blood (Kagerbauer et al., 2013)—
likely arises from another source. Due to the fact that the CFS
is composed of 1/3 extracellular fluid and 2/3 of blood plasma,
the extracellular fluid, enriched by OT released from somas and

dendrites of OT neurons (Ludwig and Leng, 2006) is most prob-
ably the main source of OT in the CSF (Landgraf and Neumann,
2004).

From an evolutionary point of view it is remarkable that OT
homologs are present in primitive invertebrates species (such as
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annelids, nematods, mollusks, insects; van Kesteren et al., 1995;
Satake et al., 1999; Stafflinger et al., 2008; Garrison et al., 2012),
although no pituitary or other typical neuropeptide pathway
through the body is available. Hence, the functional significance
of evolving diverse distribution modes is not clear. However, it has
been postulated that neuropeptides may initially have served as
primitive neurotransmitters or modulators of neurotransmission
(Jackson, 1980)—a functional implication that is still an aspect
in mammalian species. Importantly, about 80% of the brain
regions surrounding the ventricle system and the subarachnoid
space express OT receptors in mammals. Therefore, diffusion
of OT within the fluid of extracellular space (at least to a cer-
tain spatial extent) could be underlying behavioral effects of this
neuropeptide in mammals, as found in countless studies with
intracerebroventricular administration of OT during the last 30
years (Veening et al., 2010). It is assumed that intranasally applied
in pharmacological doses (which are ∼1000 times higher than
the OT blood concentration; Huang et al., 2013; Neumann et al.,
2013) OT may reach the CSF and exert substantially delayed and
long lasting effects (starting from 30 to 45 min after application
and lasting ∼60–90 min) as was shown for various neuropep-
tides by Born et al. (2002). However, due to the short half-life
of about 20 min of brain OT (Mens et al., 1983) it is unlikely that
somatodendritically released OT reaches distant extrahypothala-
mic regions within a narrow time frame to achieve defined and
rapid behavioral responses.

Simple uni- and bipolar cells forming ventricular contacts have
been replaced during evolution by cells with extended dendritic
trees (see Figure 2). This shift might have facilitated and inten-
sified somatodendritic release of OT (Pow and Morris, 1989;
Ludwig and Leng, 2006), which allows auto- and paracrine action
of OT within OT-ergic nuclei under specific demand such as lac-
tation (Landgraf and Neumann, 2004). Dendritically released OT
is stimulating coordinated OT neuron activity during lactation,
resulting in a pulsatile bolus release of OT into the blood (Lincoln
et al., 1973). In parallel, OT release might be induced from axons
in extrahypothalamic regions. This assumption was confirmed
experimentally with 30 Hz optical stimulation, resembling the
bursting activity of OT neurons during suckling (Wakerley and
Lincoln, 1973; Poulain and Wakerley, 1982) and inducing axonal
OT release in various brain regions (Knobloch et al., 2012, 2014)5.

There is a general agreement that parvocellular OT neurons
project extensively toward the brainstem and spinal cord to form
synaptic contacts with local neurons (Swanson and Sawchenko,
1983). However, these neurons are distinct from magnocellular
ones in that they are not releasing OT into the systemic blood cir-
culation. Although the presence of parvocellular OT-like neurons
within the PON of Anamnia, e.g., teleost fish, was sporadically
reported (Goodson et al., 2003; Thompson and Walton, 2013) the

5Early reports (Landgraf et al., 1988; Russel et al., 1992) showed that the local
osmotic or naloxone stimulation of the PVN or SON induces an increase
in OT concentrations in extrahypothalamic forebrain regions, such as lat-
eral septum, suggesting the central OT release from processes of OT neurons.
However, the anatomical and functional evidences for distant axonal OT
release were obtained relatively recently (Ross et al., 2009; Knobloch et al.,
2012).

evolutionary transformation of this cell lineage has not been stud-
ied. Therefore, we leave this subject for further analysis, which will
require the identification of genetic markers to specifically target
parvocellular OT neurons.

During the pioneer times of neuroendocrine pathway research,
ascending OT-ergic fibers were found in a limited number of
extrahypohalamic forebrain regions such as the amygdala, bed
nucleus of stria terminalis (BNST) and septal nuclei of rats
(Buijs, 1978; Sofroniew, 1980), non-human primates (Atunes and
Zimmerman, 1978; Kawata and Sano, 1982; Caffé et al., 1989;
Wang et al., 1997) and human (Fliers et al., 1986) in addition to
prominent descending brain stem- and spinal cord-innervating
fiber tract. However, these studies suffered from technical lim-
itations (such as deficient immunohistochemical feasibility) so
that ascending fibers could only be revealed to a minor extent
(Buijs, 1978; Sofroniew, 1980; Fliers et al., 1986). However, recent
reports from Larry J. Young’s (Ross et al., 2009) and our group
(Knobloch et al., 2012), employing fluorogold- and viral-vector
based techniques, respectively, clearly demonstrated that magno-
cellular OT neurons extensively innervate major forebrain regions
in voles and rats. Interestingly, the number of OT axons in most
forebrain regions is rather limited (Knobloch et al., 2012), hence
explaining that they had been overlooked. The enormous num-
ber of OT molecules per large dense core vesicle (∼85,000; Leng
and Ludwig, 2008) and the extremely high (nM range) OT recep-
tor affinity (Akerlund et al., 1999) still allows OT to sufficiently
exert its effects in various forebrain regions. In line with this
assumption, we demonstrated the functionality of sparse OT
fibers in vitro and in vivo, as we showed that OT is released
focally within the structure of demand, e.g., the lateral division
of the central amygdala, and, hence, is capable to modify both
microcircuit activity and amygdala-dependent behavior, namely
conditioned fear response (Knobloch et al., 2012).

Interestingly, the focal, axonal OT release is, in spite of
its spatial precision, not defined to a direct (synaptic) cell
communication—a finding which is consonant with the initial
idea of the Scharrers, who believed that the neurosecretory col-
loid can be released along the axon into the peri-axonal space
(Scharrer, 1936; cited from Watts, 2011). Our hypothesis that
OT acts non-synaptically is based on the fact that the onset of
both electrophysiological and behavioral responses occur delayed,
thereby exceeding the time typically needed for synaptic transmis-
sion (1–10 ms) and ranging within seconds in the central amyg-
dala (Knobloch et al., 2012, 2014) and other brain regions, for
example, in the anterior olfactory nucleus (personal communica-
tion from Dr. Wolfgang Kelsch, Central Institute of Mental Health
and Heidelberg University). Importantly, a similar second-range
delay of cellular responses was recently demonstrated after evoked
somatodendritic release of VP from magnocellular PVN neurons,
pointing on a similar non-synaptic, diffusion-like neuropeptide
pathway that allows for interpopulational crosstalk within about
100 µm distance (Son et al., 2013). Besides the kinetics, the spatial
distribution of large dense core vesicles, containing OT, also point
on a non-synaptic transmission. The vesicles are not located in
the active zones of pre-synapses in the few OT synapses found in
the SON (Theodosis, 1985; Knobloch et al., in preparation) and
ventromedial hypothalamic nucleus (Griffin et al., 2010) and OT
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receptors could not be attributed to the postsynaptic mem-
brane. Taking all these arguments in account we propose that
OT release from axons of magnocellular neurons in forebrain
regions occurs by non-synaptic fashion. However, this should
be further confirmed by the time-lapse imaging, implement-
ing recently developed techniques for monitoring, docking and
release of large dense core vesicles (de Wit et al., 2009; van de
Bospoort et al., 2012). These techniques will also allow to dissect
the role of glutamate-containing synaptic vesicles in OT neurons
(Hrabovszky et al., 2006; Kawasaki et al., 2006), which remain
enigmatic as no one was able to show fast synaptic transmission
from axons of magnocellular OT neurons either in the hypotha-
lamus or extrahypothalamic places (Knobloch et al., 2012, 2014).

Axonal projections to diverse brain areas are likely provided
by distinct subgroups of OT neurons, implying an anatomical
heterogeneity of OT neurons (Knobloch and Grinevich, personal
observation). It is remarkable that there have been few if any
studies on collaterals of OT neurons to different areas. Despite
this, our ongoing research (manuscript in preparation) allows us
to assume that in certain situations of life, such as love or fear,
distinct populations of OT neurons may be activated, which—
via specialized axonal projections—modulate specific brain areas
and ultimately distinct behaviors in a pro-social or in-group sup-
porting way. Indeed, recently we could show that associative fear
learning induces the activation of a small subset of OT neurons,
which specifically project to the central nucleus of the amygdala
and, furthermore, evoked OT release from their axons within
the central nucleus of amygdala readily attenuates fear response
(Hasan et al., 2013; Kernert et al., 2013).

With respect to the evolution, there is a unique observation
in a representative of the highly specialized and diverse group of
teleost fish: in trout several mesotocin (and vasotocin) neurons
project toward the forebrain (Saito et al., 2004). In analogy to rats
(Knobloch et al., 2012), the authors furthermore demonstrated,
using in vitro electrophysiology combined with biocytin-filling of
cells, that magnocellular neurons of trout project to the posterior
pituitary and—at the same time—to telencephalon and thalamus
(Saito et al., 2004). This unique feature can be seen as an evo-
lutionarily early advancement that later re-appeared in amniots.
Indeed, ascending mesotocin or OT projections have been clearly
demonstrated only in reptiles (Thepen et al., 1987; Silveira et al.,
2002) and different mammals (Sofroniew, 1980; Fliers et al., 1986;
Ross et al., 2009; Knobloch et al., 2012).

EFFECTS OF OT AND ITS HOMOLOGS ON PRO-SOCIAL AND
REPRODUCTIVE BEHAVIOR OF BASAL AND ADVANCED VERTEBRATES
Since the turn of the last century the extract of the posterior pitu-
itary has been known to stimulate contractions of the uterus and
mammary glands (Oliver and Schäfer, 1895; Dale, 1909; Ott and
Scott, 1910; Schäfer and Mackenzie, 1911). Subsequent compar-
ative studies between numerous species conducted in the first
half of the 20th century revealed that in both mammalian and
non-mammalian species OT/mesotocin stimulates the activity of
smooth muscle in reproductive tracts (Figure 5), furthermore
the egg laying, sperm movement, ejaculation, as well as uterus
contraction and milk let down in placental and non-placental
mammals (Moore, 1992; Sebastian et al., 1998). Importantly, in

FIGURE 5 | Main pathways of OT release reflect its peripheral and

central effects on reproduction in basal and advanced vertebrates.

While OT release into systemic blood circulation (via axo-vasal contacts)
modulates motility of the reproductive tract, central OT release either into
the cerebro-spinal fluid (via dendro-ventricular contacts) or into brain tissue
(via axonal release) orchestrates reproductive behavior. Peripheral release of
OT into the blood occurs in all vertebrates, however, release into the
cerebro-spinal fluid is prevailing in basal vertebrates, which exhibit rather
simple, stereotyped forms of OT-dependent reproductive behavior. In
contrast, axonal OT release seemed to appear only in advanced
vertebrates, especially in mammals. Taking in consideration the parallelism
of appearance of OT axons in the forebrain and complex OT-mediated forms
of reproductive and pro-social behavior, we speculate about a causative
relation between these two processes in high vertebrates. 3v, 3rd ventricle;
BV, blood vessels.

non-placental marsupials OT and its homolog mesotocin co-exist
in the hypothalamus. Together, they stimulate long lasting milk
ejection (Nicholas, 1988), thereby prevailing different phases
of the milk secretion to regulate lactation from neighboring
breasts asynchronously, which is necessary for the contempora-
neous development of offspring of different age (Nicholas, 1988;
Sebastian et al., 1998).

Beside these neuroendocrine effects, countless publications
convincingly demonstrate that in mammals OT is a key peptide
for orchestrating reproductive, pro-social and in-group support-
ing behavior (Bosch and Neumann, 2012; Lukas and Neumann,
2013 and references therein). Based on that, OT is considered
as a positive factor for species propagation (Lee et al., 2009)
in all vertebrates. We here give a brief overview on aspects of
OT involvement without providing a comprehensive analysis but
rather a correlative view on the central OT pathways and the
corresponding non-apeptide-mediated behaviors in vertebrates.

In a specialized marine teleost fish, the plainfin midshipman
fish, Goodson and colleagues showed that central isotocin and
vasotocin modulate social vocalization, in a sex- and type-specific
manner (Goodson and Bass, 2000). Isotocin applied to the pre-
optic area of the anterior hypothalamus (the primary regions
for endocrine and behavioral integration, e.g., in vocal produc-
tion) modulates reproduction-unrelated social vocalization in
females and type I males, both of which typically do not dis-
play parental care. In contrast, vasotocin applied to type II males,
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which are parental, modulates social vocalization according to the
reproductive context—a courtship situation or the defense of the
nest, eggs and hatchlings. Furthermore, isotocinergic axons were
found in the ventral telencephalon and numerous hypothalamic
and brainstem regions, which are components of ascending audi-
tory pathways (Goodson et al., 2003). Unfortunately, there are
no studies on the contribution of OT homologs to reproductive
behaviors in agnathans, such as hagfish and lampreys, in cartilagi-
nous fish (e.g., sharks and rays) or in primitive actinopterygians
(e.g., sturgeon, beluga etc.). This gap makes it impossible to draw
any definite conclusion about behavioral role of isotocin and its
homologs in the first steps of vertebrate evolution.

In amphibians, especially in the evolutionarily advanced
Anura, receptors for mesotocin are spread over brain regions
implicated in reproductive behavior (Do-Rego et al., 2006). In
addition, mesotocin is thought to stimulate the synthesis of
neurosteroids, which target brain circuits controlling male call-
ing and, again, reproductive behaviors (Do-Rego et al., 2006).
Since in fish (except teleost) and amphibians isotocin/mesotocin
projections reaching extrahypothalamic or reproduction-related
brain regions could not be demonstrated, it is likely that these
nonapeptides act trans-ventricularly, especially since courtship
and reproductive behaviors do not require immediate effects and
may last several days or weeks, depending on the species.

In reptiles, reports on OT effects are limited to nesting behav-
ior (Carr et al., 2008). As in other nesting animals, typical nesting
behavior in turtles consists of a sequence of actions such as
nest-site selection, nest-site preparation, egg-cavity construction,
oviposition and nest covering (Carr et al., 2008 and refs therein).
Surprisingly, systemic application of OT (intramuscular injec-
tion) led to an atypical behavior with decoupled oviposition and
nesting behavior, a phenomenon termed “false nesting” (Tucker
et al., 1995). In turtles OT application evokes nest-covering
behavior that precedes oviposition for up to 417 h (Carr et al.,
2008). This study demonstrates that OT is powerful enough to
induce nesting behavior even without egg laying. Involved cen-
tral OT targets have yet not been dissected yet, and our literature
search revealed only limited report on OT effects in reptilian
reproductive behavior. However, further inside to this uniquely
located group of animals—situated between basal vertebrates and
mammals—would indisputably be beneficial for our understand-
ing of the evolutionary role of OT homologs on the formation
of behaviors as reptiles being the first group that carry a poly-
centric OT system with advanced multipolar neurons projecting
extrahypothalamically. Presumably due to these achievements,
reptiles display an extreme divergency of sexual behaviors, rang-
ing from monogamous to “harem” behaviors (Bull, 2000; Godwin
and Crews, 2002).

In birds, as shown in zebra finches, mesotocin seems to be a
key peptide for the prolongation of time spent in large groups
and—most importantly—with familiar conspecifics (Goodson
et al., 2009). Furthermore, pro-social behavior elicited by cen-
tral mesotocin infusion was dependent on the mesotocin receptor
density in the lateral septum of female birds (Goodson et al.,
2009). In fact, the reported effects of mesotocin resemble effects
of OT on pair bonding observed in voles (Carter et al., 1995;
Insel and Young, 2000). As in mammals with their specific OT

fiber pattern, it is likely that also mesotocin-expressing species
possess long-range axons to respective brain regions, such as to
the lateral septum in birds, and regulate behavior with spatial
precision.

In non-mammalian vertebrates vasotocin and its homologs
modulate reproductive behavior and, in fact, seem to hold an
even more important role than OT-like neuropeptides. Vasotocin
is involved in the induction of vocalization, courtship behavior
(like male amplectic clasping behavior), female sexual receptivity,
alternative mating and many more social behaviors (Moore, 1983;
Wilczynski et al., 2005; Balment et al., 2006; Soares et al., 2012).
Such diverse effects in non-mammalians are not surprising since
many extrahypothalamic vasotocin-expressing regions and the
arising wide-spread projections are comparable to the extrahy-
pothalamic VP system of mammals (de Vries and Miller, 1998).
Summing up the impact of both peptides—OT/OT homologs
and VP/VP homologs—in different species, it seems that the
latter holds a dominant role in regulating reproductive behav-
ior in fish and amphibians, while OT-like peptides are more
important in birds (Goodson et al., 2012) and mammals (Lee
et al., 2009), which display more complicated reproductive rit-
uals. Nevertheless, the picture seems to be very complex as in
many behavioral and cognitive aspects both peptides modula-
tory interact (Neumann, 2009; Bosch and Neumann, 2012; Stoop,
2012) and furthermore, as constituting a sexual dimorphic sys-
tems, vary in their relative priority in males or females (Veenema
et al., 2013).

CONCLUSIONS
During evolution OT-like genes and peptides remained highly
conserved, which could be demonstrated via genomic integration
of the OT homolog isotocin of the teleost Fugu rubripes (blowfish)
in rat (Venkatesh et al., 1997; Murphy et al., 1998) and mouse
(Gilligan et al., 2003), resulting in correct expression in hypotha-
lamic OT neurons and furthermore preserved responsiveness to
physiological stimuli. Despite the gene conservation, neurons
expressing OT-like peptides underwent tremendous evolutionary
transformations. Compared to primitive OT neurons contacting
the ventricle system or acting in paracrine manner on epithe-
lial cells of the pituitary, OT neurons in advanced vertebrates
acquired a voluminous dendritic tree and bifurcating/branching
axons supplementary to the preserved early features. The classi-
cal neuroendocrine action of systemic release via the posterior
pituitary to affect, e.g., the reproductive system and basal reflex-
like reproduction was here expanded to influence also cognitive
processes in favor of reproduction-related and pro-social behav-
iors, e.g., to impact partner preference and pair bonding as well as
parental care and gregarious socialization. It is difficult to assess
when in evolution neurohormonal effects of OT on the reproduc-
tive physiology were supplemented by its effects on reproductive
behavior. It seems that all vertebrates successfully operate both
mechanisms. At least in mammals there is anatomical evidence
for dual projection of OT neurons to the systemic release site (the
posterior pituitary) and central release sites (the nucleus accum-
bens and central amygdala) (Ross et al., 2009; Knobloch et al.,
2012). Accordingly, synergistic effects of peripherally and cen-
trally released OT were reported for some situations, including
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stress (Neumann and Landgraf, 2012 and references therein).
Such correlation and its functional significance should be further
explored in the context of reproduction-related and pro-social
behavior, especially in primates.

Going back to the central effects of OT on behavior, it should
be noted that in basal vertebrates the behavioral responses are
rather slow and stereotypic, therefore, it is likely that they are
mostly mediated by trans-ventricular action of OT homologs. In
mammals, the evolution established social effects of OT, which
exceed classical mating and reproductive behaviors (Figure 5).
To exemplify, it was recently reported that central administra-
tion of OT in marmoset fathers facilitates food sharing with
their infants (Saito and Nakamura, 2011). Such complex and
rapidly occurring paternal behavior is likely mediated by tar-
geted OT axonal release (Knobloch et al., 2012) in high brain
areas, allowing for modulation of higher order social processing.
OT is supposed to preferentially act on interneurons (Knobloch
et al., 2012; Owen et al., 2013), which, in turn, relatively rapidly
(i.e., within the range of seconds) modify the network activity
of certain brain region(s), resulting in fast emotional, behavioral
or cognitive responses. Following this idea, the demonstration
of universality of the axonal route for central OT release in the
context of modulating forebrain activity and elaborate behaviors
should be further explored and extended to the advanced pla-
cental mammals, namely primates. One day, the stimulation of
endogenous OT in the brain might be one approach helping to
cure or simply improve the situation of humans afflicted with
autism spectrum disorders (Meyer-Lindenberg et al., 2011)—
a disease characterized by a deficient social competence on the
recognition- as well as the prospecting level, accompanied by
reproductive problems reaching up to asexuality (Gilmour et al.,
2012).
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