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Animals and humans make decisions based on their expected outcomes. Since relevant
outcomes are often delayed, perceiving delays and choosing between earlier vs. later
rewards (intertemporal decision-making) is an essential component of animal behavior.
The myriad observations made in experiments studying intertemporal decision-making and
time perception have not yet been rationalized within a single theory. Here we present a
theory—Training-Integrated Maximized Estimation of Reinforcement Rate (TIMERR)—that
explains a wide variety of behavioral observations made in intertemporal decision-making
and the perception of time. Our theory postulates that animals make intertemporal choices
to optimize expected reward rates over a limited temporal window which includes a past
integration interval—over which experienced reward rate is estimated—as well as the
expected delay to future reward. Using this theory, we derive mathematical expressions
for both the subjective value of a delayed reward and the subjective representation of
the delay. A unique contribution of our work is in finding that the past integration interval
directly determines the steepness of temporal discounting and the non-linearity of time
perception. In so doing, our theory provides a single framework to understand both
intertemporal decision-making and time perception.
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INTRODUCTION
Survival and reproductive success depends on beneficial decision-
making. Such decisions are guided by judgments regarding
outcomes, which are represented as expected reinforcement
amounts. As actual reinforcements are often available only
after a delay, measuring delays and attributing values to rein-
forcements that incorporate the cost of time is an essential
component of animal behavior (Stephens and Krebs, 1986;
Stephens, 2008). Yet, how animals perceive time and assess the
worth of delayed outcomes—the quintessence of intertemporal
decision-making—though fundamental, remains to be satisfac-
torily answered (Frederick et al., 2002; Kalenscher and Pennartz,
2008; Stephens, 2008). Rationalizing both the perception of time
and the valuation of outcomes delayed in time in a unified
framework would significantly improve our understanding of
basic animal behavior, with wide-ranging applications in fields
such as economics, ecology, psychology, cognitive disease, and
neuroscience.

In the past, many theories including Optimal Foraging Theory
(Stephens and Krebs, 1986; Stephens, 2008) (OFT), Discounted
Utility Theory (Samuelson, 1937; Frederick et al., 2002;
Kalenscher and Pennartz, 2008) (DUT), Ecological Rationality
Theory (Bateson and Kacelnik, 1996; Stephens and Anderson,
2001; Stephens, 2008) (ERT), as well as other psychological mod-
els (Frederick et al., 2002; Kalenscher and Pennartz, 2008; Peters
and Büchel, 2011; Van den Bos and McClure, 2013) have been
proposed as solutions to the question of intertemporal choice.
Of these, OFT, DUT, and ERT attempt to understand ultimate

causes of behavior through general optimization criteria, whereas
psychological models attempt to understand its proximate bio-
logical implementation. The algorithms specified by these prior
theories and models for intertemporal decision-making are all
defined by their temporal discounting function—the ratio of
subjective value of a delayed reward to the subjective value
of the reward when presented immediately. These algorithms
come in two major forms: hyperbolic (and hyperbolic-like) dis-
counting functions (e.g., OFT and ERT) (Stephens and Krebs,
1986; Frederick et al., 2002; Kalenscher and Pennartz, 2008;
Stephens, 2008), and exponential (and exponential-like, e.g., β-δ
Frederick et al., 2002; Peters and Büchel, 2011; Van den Bos and
McClure, 2013) discounting functions (e.g., DUT) (Samuelson,
1937; Frederick et al., 2002; Kalenscher and Pennartz, 2008).
Hyperbolic discounting functions have been widely considered
to be better fits to behavioral data than exponential functions
(Frederick et al., 2002; Kalenscher and Pennartz, 2008).

None of these theories and models can systematically explain
the breadth of data on intertemporal decision-making; we argue
that the inability of prior theories to rationalize behavior stems
from the lack of biologically-realistic constraints on general opti-
mization criteria (see next section). Further, while intertem-
poral decision-making necessarily requires perception of time,
theories of intertemporal decision-making and time perception
(Gibbon et al., 1997; Lejeune and Wearden, 2006) are largely
independent and do not attempt to rationalize both within a
single framework. The motivation for our present work was
to create a biologically-realistic and parsimonious theory of
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intertemporal decision-making and time perception which pro-
poses an algorithmically-simple decision-making process to (1)
maximize fitness and (2) to explain the diversity of behavioral
observations made in intertemporal decision-making and time
perception.

PROBLEMS WITH CURRENT THEORIES AND MODELS
Intertemporal choice behavior has been modeled using two dis-
similar approaches. The first approach is to develop theories
that explore ultimate (Alcock and Sherman, 1994) causes of
behavior through general optimization criteria (Samuelson, 1937;
Stephens and Krebs, 1986; Bateson and Kacelnik, 1996; Stephens
and Anderson, 2001; Frederick et al., 2002; Stephens, 2008).
In ecology, there are two dominant theories of intertemporal
choice, OFT and ERT. The statement of OFT posits that the
choice behavior of animals should result from a global maximiza-
tion of a “fitness currency” representing long-term future reward
rate (Stephens and Krebs, 1986; Stephens, 2008). However, how
animals could in principle achieve this goal is unclear, as they
face at least two constraints: (1) they cannot know the future
beyond the currently presented options, and (2) they have lim-
ited computational/memory capacity. Owing to these constraints,
prior algorithmic implementations of OFT assume that the cur-
rent trial structure repeats ad-infinitum. Therefore, maximizing
reward rates over the indefinite future can be re-written as max-
imizing reward rates over an effective trial (including all delays
in the trial) (Stephens and Krebs, 1986; Bateson and Kacelnik,
1996; Stephens and Anderson, 2001; Stephens, 2008). Thus, OFT
predicts a hyperbolic discounting function. ERT, on the other
hand, states that it is sufficient to maximize reward rates only
over the delay to the reward in the choice under consideration,
(i.e., locally) to attain ecological success (Bateson and Kacelnik,
1996; Stephens and Anderson, 2001; Stephens, 2008), also pre-
dicting a hyperbolic discounting function. In economics, DUT
(Samuelson, 1937; Frederick et al., 2002) posits that animals max-
imize long-term exponentially-discounted future utility so as to
maintain temporal consistency of choice behavior (Samuelson,
1937; Frederick et al., 2002).

The second approach, mainly undertaken by psychologists
and behavioral analysts, is to understand the proximate (Alcock
and Sherman, 1994) origins of choices by modeling behavior
using empirical fits to data collected from standard laboratory
tasks (Kalenscher and Pennartz, 2008). An overwhelming num-
ber of these behavioral experiments, however, contradict the
above theoretical models. Specifically, animals exhibit hyperbolic
discounting functions, inconsistent with DUT (Frederick et al.,
2002; Kalenscher and Pennartz, 2008; Stephens, 2008; Pearson
et al., 2010), and violate the postulate of global reward rate
maximization, inconsistent with OFT (Stephens and Anderson,
2001; Kalenscher and Pennartz, 2008; Stephens, 2008; Pearson
et al., 2010). Further, there are a wide variety of observa-
tions like (1) the variability of discounting steepness within and
across individuals (Frederick et al., 2002; Schweighofer et al.,
2006; Luhmann et al., 2008), and many “anomalous” behav-
iors including (2) “Magnitude Effect” (Frederick et al., 2002;
Kalenscher and Pennartz, 2008) (the steepness of discount-
ing becomes lower as the magnitude of the reward increases),

(3) “Sign Effect”(Frederick et al., 2002; Kalenscher and Pennartz,
2008) (gains are discounted more steeply than losses), and (4)
differential treatment of punishments (Loewenstein and Prelec,
1992; Frederick et al., 2002; Kalenscher and Pennartz, 2008), that
are not explained by ERT (nor OFT and DUT). It must also be
noted that none of the above theories are capable of explaining
how animals measure delays to rewards, nor do prior theories of
time perception (Gibbon et al., 1997; Lejeune and Wearden, 2006)
attempt to explain intertemporal choice. Though psychology and
behavioral sciences attempt to rationalize the above observa-
tions by constructing proximate models invoking phenomena like
attention, memory, and mood (Frederick et al., 2002; Kalenscher
and Pennartz, 2008; Van den Bos and McClure, 2013), ultimate
causes are rarely proposed. As a consequence, these models of
animal behavior are less parsimonious, and often ad-hoc.

In order to explain behavior, an ultimate theory must consider
appropriate proximate constraints. The lack of appropriate con-
straints might explain the inability of the above theories to
rationalize experimental data. By merely stating that animals
maximize indefinitely-long-term future reward rates or dis-
counted utility, the optimization criteria of OFT and DUT
requires animals to consider the effect of all possible future
reward-options when making the current choice (Stephens and
Krebs, 1986; Kalenscher and Pennartz, 2008). However, such a
solution would be biologically implausible for at least three rea-
sons: (1) animals cannot know all the rewards obtainable in the
future; (2) even if animals knew the disposition of all possible
future rewards, the combinatorial explosion of such a calculation
would present it with an untenable computation (e.g., in order to
be optimal when performing even 100 sequential binary choices,
an animal will have to consider each of the 2100 combinations);
(3) animals cannot persist for indefinitely long intervals without
food in the hope of obtaining an unusually large reward in the dis-
tant future, even if the reward may provide the highest long-term
reward rate (e.g., option between 11,000 units of reward in 100
days vs. 10 units of reward in 0.1 day). On the other hand, ERT,
although computationally-simple, expects an animal to ignore its
past reward experience while making the current choice.

To contend with uncertainties regarding the future, an ani-
mal could estimate reward rates based on an expectation of the
environment derived from its past experience. In a world that
presents large fluctuations in reinforcement statistics over time,
estimating reinforcement rate using the immediate past has an
advantage over using longer-term estimations because the corre-
lation between the immediate past and the immediate future is
likely high. Hence, our TIMERR theory proposes an algorithm
for intertemporal choice that aims to maximize expected reward
rate based on, and constrained by, memory of past reinforcement
experience. As a consequence, it postulates that time is subjec-
tively represented such that subjective representation of reward
rate accurately reflects objective changes in reward rate (see sec-
tion TIMERR Theory: Time Perception). In doing so, we are
capable of explaining a wide variety of fundamental observations
made in intertemporal decision-making and time perception.
These include hyperbolic discounting (Stephens and Krebs, 1986;
Stephens and Anderson, 2001; Frederick et al., 2002; Kalenscher
and Pennartz, 2008), “Magnitude”(Myerson and Green, 1995;
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Frederick et al., 2002; Kalenscher and Pennartz, 2008) and “Sign”
effects (Frederick et al., 2002; Kalenscher and Pennartz, 2008),
differential treatment of losses (Frederick et al., 2002; Kalenscher
and Pennartz, 2008), scaling of timing errors with interval dura-
tion (Gibbon, 1977; Gibbon et al., 1997; Matell and Meck, 2000;
Buhusi and Meck, 2005; Lejeune and Wearden, 2006), and, obser-
vations that impulsive subjects (as defined by abnormally steep
discounting) under-produce (Wittmann and Paulus, 2008) time
intervals and show larger timing errors (Wittmann et al., 2007;
Wittmann and Paulus, 2008) (see “Summary” for a full list). It
thereby recasts the above-mentioned “anomalies” not as flaws,
but as features of reward-rate optimization under experiential
constraints.

MOTIVATION BEHIND THE TIMERR ALGORITHM
To illustrate the motivation and reasoning behind our theory,
we consider a simple behavioral task. In this task, an animal
must make decisions on every trial between two randomly cho-
sen (among a finite number of possible alternatives) known
reinforcement-options. Having chosen an option on one trial,
the animal is required to wait the corresponding delay to obtain
the reward amount chosen. An example environment with three
possible reinforcement-options is shown in Figure 1A. We assert
that the goal of the animal is to gather the maximum total
reward over a fixed amount of time, or equivalently, to attain
the maximum total (global) reward rate over a fixed number of
trials.

Assuming a stationary reinforcement-environment in which it
is not possible to directly know the pattern of future reinforce-
ments, an animal may yet use its past reinforcement experience
to instruct its current choice. Provisionally, suppose also that an
animal can store its entire reinforcement-history in the task in its
memory. So rather than maximizing reward rates into the future
as envisioned by OFT, the animal can then maximize the total
reward rate that would be achieved so far (at the end of the cur-
rent trial). In other words, the animal could pick the option that
when chosen, would lead to the highest global reward rate over all
trials until, and including, the current trial, i.e.,

Pick option with the highest value for
R + ri

T + ti
(1)

where T is the total time elapsed in the session so far, R is the total
reward accumulated so far and (ri, ti) is the reward magnitude
and delay, respectively, for the various reinforcement-options on
the current trial. This ordered pair notation will be followed
throughout the paper.

Under the above conditions, this algorithm yields the highest
possible reward rate achievable at the end of any given num-
ber of trials. In contrast, previous algorithms for intertemporal
decision-making (hyperbolic discounting, exponential discount-
ing, two-parameter discounting), while being successful at fitting
behavioral data, fail to maximize global reward rates. For the
example reinforcement-environment shown in Figure 1A, sim-
ulations show that the algorithm in Equation (1) outperforms
other extant algorithms by more than an order of magnitude
(Figure 1B).

The reason why extant alternatives fare poorly is that they
do not account for opportunity cost, i.e., the cost incurred in
the lost opportunity to obtain better rewards than currently
available. In the example considered, two of the reinforcement-
options are significantly worse than the third (Figure 1C). Hence,
in a choice between these two options, it is even worth incur-
ring a small punishment ($−0.01) at a short delay for sooner
opportunities of obtaining the best reward ($5) (Figure 1C).
Previous models, however, pick the reward ($0.1) in favor
of the punishment since they do not have an estimate of
opportunity cost. In contrast, by storing the reinforcement
history, Equation (1) accounts for the opportunity cost, and
picks the punishment. Recent experimental evidence suggests
that humans indeed accept small temporary costs in order to
increase the opportunity for obtaining larger gains (Kolling et al.,
2012).

The behavioral task shown in Figure 1A is similar to stan-
dard laboratory tasks studying intertemporal decisions (Frederick
et al., 2002; Schweighofer et al., 2006; Kalenscher and Pennartz,
2008; Stephens, 2008). However, in naturalistic settings, ani-
mals commonly have the ability to forgo any presented option.
Further, the number of options presented on a given trial can
vary and could arise from a large pool of possible options. An
illustration of such a task is displayed in Figure 1D, showing
the outcomes of five past decisions. Decision 2 illustrates an
instance of incurring an opportunity cost. Decision 3 shows the
presentation of a single option that was forgone, leading to the
presentation of a better option in decision 4. Though the options
presented in decision 5 are those in decision 1, the animal’s
choice behavior is the opposite, as a result of changing esti-
mations of opportunity cost. Results of performance in such a
simulated task (with no punishments) are shown in Figure 1E,
again showing Equation (1) outperforming other models (see
Methods).

TIMERR THEORY: INTERTEMPORAL CHOICE
It is important to note that while the extent to which Equation
(1) outperforms other models depends on the reinforcement-
environment under consideration, its performance in a stationary
environment will be greater than or equal to previous decision
models. However, biological systems face at least three major
constraints that limit the appropriateness of Equation (1): (1)
their reinforcement-environments are non-stationary; (2) inte-
grating reinforcement-history over arbitrarily long intervals is
computationally implausible, and, (3) indefinitely long intervals
without reward cannot be sustained by an animal (while main-
taining fitness) even if they were to return the highest long-term
reward rate (e.g., choice between 100,000 units of food in 100
days vs. 10 units of food in 0.1 day). Hence, in order to be
biologically-realistic, TIMERR theory states that the interval over
which reinforcement-history is evaluated, the past-integration-
interval (Time; ime stands for in my experience), is finite. Thus,
the TIMERR algorithm states that animals maximize reward
rates over an interval including Time and the learned expected
delay to reward (t) [Equation (2), Figures 2A,B]. This modi-
fication renders the decision algorithm shown in Equation (1)
biologically-plausible.
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FIGURE 1 | A schematic illustrating the problem of intertemporal

decision-making and the rationale for our solution. (A) Flow chart of
a simple behavioral task, showing the possible reinforcement options.
(B) The performance of four decision-making agents using the four
decision processes as shown in the legend (see Methods). The
parameters of the three previous models were tuned to attain
maximum performance. The error bar shows standard deviation. Since
the decision rules of these models operate only on the current trial,
the corresponding performances have no variability and hence, their
standard deviations are zero. (C) Illustration of the reason for
performance failure, showing a choice between the two worst options.
The reward rate so far is much higher than the reward rates provided
by the two options under consideration. Since these models do not
include a metric of opportunity cost, they pick ($0.1, 100 s). However,
on an average, choosing ($-0.01, 1 s) will provide a larger reward at the
end of 100 s. (D) A schematic illustrating a more natural behavioral

task, with choices involving one or two options chosen from a total of
four known reinforcement-options. The choices made by the animal are
indicated by the bold line and are numbered 1–5. Here, we assume
that during the wait to a chosen reinforcement-option, other
reinforcement-options are not available (see Expected Reward Rate Gain
during the Wait in Appendix for an extension). Reinforcement-options
connected by dotted lines are unknown to the animal either because
they are in the future, or because of the choices made by the animal
in the past. For instance, deciding to pursue the brown option in the
second choice causes the animal to lose a large reward, the presence
of which was unknown at the moment of decision. (E) Performance of
the models in an example environment as shown in (D) (see Methods,
for details). Error bars for the previous models are not visible at this
scale. For the environment chosen here, a hyperbolic model (mean
reward rate = 0.0465) is slightly worse than exponential and β-δ
models (mean reward rate = 0.0490).

If the estimated average reward rate over the past integration
window of Time is denoted by aest, the TIMERR algorithm can be
written as:

Pick option with the highest value for
aestTime + ri

Time + ti
(2)

Therefore, the TIMERR algorithm acts as a temporally-
constrained, experience-based, solution to the optimization
problem of maximizing reward rate. It is thus a better imple-
mentation of the statement of OFT than prior implementa-
tions. It requires that only experienced magnitudes and times
of the rewards following conditioned stimuli are stored, there-
fore predicting that intertemporal decisions of animals will
not incorporate post-reward delays due to limitations in asso-
ciative learning (Kacelnik and Bateson, 1996; Stephens and
Anderson, 2001; Pearson et al., 2010; Blanchard et al., 2013)

consistent with prior experimental evidence showing the insen-
sitivity of choice behavior to post-reward delays (Stephens and
Anderson, 2001; Kalenscher and Pennartz, 2008; Stephens, 2008;
Pearson et al., 2010; Blanchard et al., 2013) (see Animals do
not Maximize Long-Term Reward Rates in Appendix for a
detailed discussion). It is important to note, however, that
indirect effects of post-reward delays on behavior (Blanchard
et al., 2013) can be explained as resulting from the implicit
effect of post-reward delays on past reward rate; the higher the
post-reward delays become, the lower will be the past reward
rate.

From the TIMERR algorithm, it is possible to derive the sub-
jective value of a delayed reward (Figure 2C)—defined as the
amount of immediate reward that is subjectively equivalent to the
delayed reward.

This is calculated by asserting that reward rate for (SV(r, t),
0) = reward rate for (r, t)
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FIGURE 2 | Solution to the problem of intertemporal choice as

proposed by TIMERR theory. (A) Past reward rate is estimated (aest)
by the animal over a time-scale of Time [Calculation of the Estimate of
Past Reward Rate (aest) in Appendix]. This estimate is used to evaluate
whether the expected reward rates upon picking either current option is
worth the opportunity cost of waiting. (B) The decision algorithm of
TIMERR theory shows that the option with the highest expected reward
rate is picked Equation (2), so long as this reward rate is higher than

the past reward rate estimate (aest). Such an algorithm automatically
includes the opportunity cost of waiting in the decision. (C) The
subjective values for the two reward options shown in (A) (time-axis
scaled for illustration) as derived from the decision algorithm Equation
(3) are plotted. In this illustration, the animal picks the green option. It
should be noted that even if the orange option were to be presented
alone, the animal would forgo this option since its subjective value is
less than zero. Zero subjective value corresponds to ERR = aest.

i.e.,

aest + SV(r, t)
Time

1 + 0
Time

= aest + r
Time

1 + t
Time

where SV(r, t) is the subjective value of reward r delayed by time
t. Simplifying, the expression for SV(r, t) is given by

SV (r, t) = r − aestt

1 + t
Time

(3)

where aest is an estimate of the average reward rate in the past over
the integration window Time with the reward option specified by
a magnitude r and a delay t.

Equation (3) presents an alternative interpretation of the algo-
rithm: the animal is estimating the net worth of pursuing each
delayed reward by subtracting the opportunity cost incurred by
forfeiting potential alternative reward options during the delay
to a given reward and normalizing by the explicit temporal cost
of waiting. This is because the numerator in Equation (3) rep-
resents the expected reward gain but subtracts this opportunity
cost, aestt, which corresponds to a baseline expected amount of
reward that might be acquired over t. The denominator is the
explicit temporal cost of waiting.

THE TEMPORAL DISCOUNTING FUNCTION
The temporal discounting function—the ratio of subjective
value to the subjective value of the reward when presented
immediately—is given by [based on Equation (3)]

D (r, t) = SV (r, t)

r
= 1 − aest

r t

1 + t
Time

(4)

This discounting function is hyperbolic with an additional,
dynamical (changing with aest) subtractive term. The effects
of varying the parameters, viz. the past integration interval
(Time), estimated average reward rate (aest) and reward magni-
tude (r), on the discounting function are shown in Figure 3.
The steepness of this discounting function is directly gov-
erned by Time, the past integration interval (Figure 3A). In
other words, the longer one integrates over the past to esti-
mate reinforcement history, the higher the tolerance to delays
when considering future rewards, thus rationalizing abnor-
mally steep discounting (characteristic of impulsivity) as result-
ing from abnormally low values of Time. As opportunity costs
(aest) increase, delayed rewards are discounted more steeply
(Figure 3B). Also, as the magnitude of the reward increases
(Figure 3C), the steepness of discounting becomes lower, referred
to as the “Magnitude Effect” (Myerson and Green, 1995; Frederick
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FIGURE 3 | The dependence of the discounting function on its

parameters Equation (4). (A) Explicit temporal cost of waiting: As the past
integration interval (Time) increases, the discounting function becomes less
steep, i.e., the subjective value for a given delayed reward becomes higher
(aest = 0 and r = 20). (B) Opportunity cost affects discounting: As aest

increases, the opportunity cost of pursuing a delayed reward increases and
hence, the discounting function becomes steeper. The dotted line indicates
a subjective value of zero, below which rewards are not pursued, as is the
case when the delay is too high. (r = 20 and Time = 100). (C) “Magnitude
Effect”: As the reward magnitude increases, the steepness of discounting
decreases (Myerson and Green, 1995; Frederick et al., 2002; Kalenscher
and Pennartz, 2008) (Time = 100 and aest = 0.05). (D) “Sign Effect” and
differential treatment of losses: Gains (green and brown) are discounted
steeper than losses (cyan and orange) of equal magnitudes (Frederick et al.,
2002; Kalenscher and Pennartz, 2008) (Time = 100 and aest = 0.05). Note
that as the magnitude of loss decreases, so does the steepness of
discounting (Figure 4). In fact, for losses with magnitudes lower than aestT,
the discounting function will be greater than 1, leading to a differential
treatment of losses (Frederick et al., 2002; Kalenscher and Pennartz, 2008)
(see text, Figure 4).

et al., 2002; Kalenscher and Pennartz, 2008) in prior exper-
iments. Further, it is shown that gains are discounted more
steeply than losses of equal magnitudes in net positive environ-
ments (Figure 3D), as shown previously and referred to as the
“Sign Effect” (Frederick et al., 2002; Kalenscher and Pennartz,
2008). It must also be pointed out that the discounting func-
tion for a loss becomes steeper as the magnitude of the loss
increases, observed previously as the reversal of the “Magnitude
Effect” for losses (Hardisty et al., 2012) (Figure 4A). In fact,
when forced to pick a punishment in a net positive environ-
ment, low-magnitude (below aest × Time) losses will be preferred
immediately while higher-magnitude losses will be preferred
when delayed (Figure 4B), as has been experimentally observed
(Frederick et al., 2002; Kalenscher and Pennartz, 2008; Hardisty
et al., 2012) (for a full treatment of the effects of changes
in variables, see Consequences of the Discounting Function in
Appendix).

FIGURE 4 | “Magnitude Effect” and Differential treatment of losses in a

net positive environment. (A) The discounting function plotted for losses
of various magnitudes (as shown in Figure 3D; aest = 0.05 and Time = 100).
As the magnitude of a loss increases, the discounting function becomes
steeper. However, the slope of the discounting steepness with respect to
the magnitude is minimal for large magnitudes (100 and 1000; see
Consequences of the Discounting Function in Appendix). At magnitudes
below aestTime, the discounting function becomes an increasing function of
delay. (B) Plot of the signed discounting function for the magnitudes as
shown in (A), showing that for magnitudes lower than aestTime, a loss
becomes even more of a loss when delayed. Hence, at low magnitudes
(< aestTime), losses are preferred immediately. No curve crosses the dotted
line at zero, showing that at all delays, losses remain punishing.

TIMERR THEORY: TIME PERCEPTION
Attributing values to rewards delayed in time necessitates rep-
resentations of those temporal delays. These representations of
time are subjective, as it is known that time perception varies
within and across individuals (Gibbon et al., 1997; Matell and
Meck, 2000; Buhusi and Meck, 2005; Lejeune and Wearden, 2006;
Wittmann and Paulus, 2008), and that errors in representation of
time increase with the interval being represented (Gibbon et al.,
1997; Matell and Meck, 2000; Buhusi and Meck, 2005; Lejeune
and Wearden, 2006). While there are many models that address
how timing may be implemented in the brain (Gibbon, 1977;
Killeen and Fetterman, 1988; Matell and Meck, 2000; Buhusi and
Meck, 2005; Simen et al., 2011a,b), our aim in this section is to
present an “ultimate” theory of time perception, i.e., a theory of
the principles behind time perception.

Since TIMERR theory states that animals seek to maximize
expected reward rates, we posit that time is represented sub-
jectively (Figure 5A) so as to result in accurate representations
of changes in expected reward rate. In other words, subjective
time is represented so that subjective reward rate (subjective
value/subjective time) equals the true expected reward rate less
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FIGURE 5 | Subjective time mapping and simulations of performance

in a time reproduction task. (A) A schematic of the representation of the
reward-environment by two animals with different values of Time. Lower
values of Time generate steeper discounting (higher impulsivity), and hence,
smaller subjective values. (B) Subjective time mapping: The subjective time
mapping as expressed in Equation (6) is plotted for the two animals in (A).
Subjective time representation saturates at Time for longer intervals. This
saturation effect is more pronounced in the case of higher impulsivity,
thereby leading to a reduced ability to discriminate between intervals (here,
40 and 50 s). (C) Bias in time reproduction: A plot of reproduced median
intervals for a case of high impulsivity in a simulated time reproduction task
as generated by the simple accumulator model (see Methods; Figure 6) for
sample intervals ranging between 1 and 90 s. At longer intervals, there is an
increasing underproduction. The dashed line indicates perfect reproduction.
(D) The bias in timing (difference between reproduced interval and sample
interval) a 90 s sample interval is shown for different values of Time,
demonstrating that as impulsivity reduces, so does underproduction.

the baseline expected reward rate (aest). Hence, if the subjective
representation of time associated with a delay t is denoted by
ST(t),

SV (r, t)

ST (t)
=

( r

t
− aest

)
(5)

Combining Equation (5) with Equation (3), we get

ST (t) = t

1 + t
Time

(6)

Such a representation has the property of being bounded
[ST(∞) = Time], thereby making it possible to represent very
long durations within the finite dynamic ranges of neuronal firing
rates. Plots of the subjective time representation of delays between
1 and 90 s are shown in Figure 5B for two different values of Time.
As mentioned previously (Figure 3A), a lower value of Time cor-
responds to steeper discounting, characteristic of more impulsive

decision-making. It can be seen that the difference in subjective
time representations between 40 and 50 s is smaller for a lower
Time (high impulsivity). Hence, higher impulsivity corresponds to
a reduction in the ability to discriminate between long intervals (a
decrease in the precision of time representation) (Figures 5A,B).

Internal time representation has been previously modeled
using accumulator models (Buhusi and Meck, 2005; Simen et al.,
2011a,b) that incorporate the underlying noisiness in informa-
tion processing. We used a simple noisy accumulator model (see
Methods, Figure 6A) that represents subjective time according
to Equation (6) to simulate a time interval reproduction task
(Buhusi and Meck, 2005; Lejeune and Wearden, 2006). In this
model, we assumed that the noise in the slope of the accu-
mulator was proportional to the square root of the signal and
that there is a constant read-out noise (see Methods for details).
Such noise in the accumulator slope (i.e., proportional to the
square root of the signal) occurs in spiking neuronal models that
assume Poisson statistics, having been used in prior accumulator
models (Simen et al., 2011b). The results of time interval repro-
duction simulations (see Methods) are shown in Figures 5C,D.
Lower values of Time correspond to an underproduction of time
intervals (i.e., decreased accuracy of reproduction), with the mag-
nitude of underproduction increasing with increasing durations
of the sample interval (Figure 5C). When attempting to repro-
duce a 90 s sample interval, the magnitude of underproduction
decreases with increases in Time, or equivalently, with decreas-
ing impulsivity (Figure 5D). These predictions are supported by
prior experimental evidence (Wittmann and Paulus, 2008).

ERRORS IN TIME PERCEPTION
Prior studies have observed that the error in representation of
intervals increases with their durations (Gibbon et al., 1997;
Matell and Meck, 2000; Buhusi and Meck, 2005; Lejeune and
Wearden, 2006). Such an observation is consistent with the
subjective time representation presented here (Figures 5A,B).
TIMERR theory predicts that the representation errors will be
larger when Time is smaller (higher impulsivity) (Figures 5A,B),
as observed experimentally (Wittmann et al., 2007; Wittmann
and Paulus, 2008). Prior studies investigating the relationship
between time duration and reproduction error have observed a
linear scaling (“scalar timing”) within a limited range (Gibbon
et al., 1997; Matell and Meck, 2000; Buhusi and Meck, 2005;
Lejeune and Wearden, 2006).

Calculating the error in reproduced intervals by the accu-
mulator model mentioned above cannot be done analytically.
However, we present an approximate analytical solution below.
Assuming that the representation of subjective time, ST(t), has a
constant infinitesimal noise of dST(t) associated with it, the noise
in representation of a true interval t, denoted as dt will obey

dST (t)

dt
= d

dt

⎛
⎝ t(

1 + t
Time

)
⎞
⎠ = 1(

1 + t
Time

)2

If one assumes that the neural noise in representing ST(t) is lin-
early related to the signal, with a term proportional to the signal
in addition to a constant noise [i.e., dST(t) = kST(t) + c], then
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FIGURE 6 | Noisy accumulator model (see Methods). (A) The subjective
representation of time, as plotted in Figure 5B, is simulated using a noisy
accumulator model as described in Methods. The accumulated value is
stored at the interval being timed (here 90 s), stored in memory, and used
as a threshold for later time reproduction. The reproduced interval (as in
Figures 5C,D) is defined by the moment of first threshold-crossing. (B) A
plot of the scaling of noise in the accumulator with the signal. The y-axis is
the standard deviation of the accumulated signal at every ST (t) shown in
the x-axis. The standard deviation was calculated by running the
accumulator 2000 times. The near-linear relationship seen here is used to
calculate an approximate analytical solution for the error in the
representation of subjective time as shown in Equation (8). (C) Plot of the
coefficient of variation (Cv ) of reproduced intervals (measurement of
precision) with respect to the interval being reproduced shows a
near-constant value over a large range of durations for Time = 300 s. An
analytical approximation is expressed in Equation (8). Each data point is the
result of averaging over 2000 trials.

the corresponding error in real time is

dt = k
t(

1 + t
Time

)
(

1 + t

Time

)2

+ c

(
1 + t

Time

)2

= k

(
t + t2

Time

)
+ c

(
1 + t

Time

)2

(7)

The coefficient of variation (error/central tendency) expected
from such a model is then

Cv ≈ dt

t
=

k
(

t + t2

Time

)
+ c

(
1 + t

Time

)2

t

This can be simplified as

Cv ≈ k

(
1 + t

Time

)
+

c
(

1 + t
Time

)2

t
(8)

In the above expression, c can be thought of as a constant addi-
tive noise in the memory of subjective representation of time,
ST(t), whereas the noise proportional to the signal could result
from fluctuations in the slope of accumulation. In fact, for the
accumulator mentioned above (that exhibits a square root depen-
dence of the noise in slope with respect to the signal), the net
relationship between the noise of the signal and the signal itself,
is approximately linear (Figure 6B). Hence, our earlier assump-
tion is a good approximation to the more realistic, yet analytically
intractable, accumulator model considered above. The results of
numerical simulations on Cv are shown in Figure 6C, showing a
near-constant value for a large range of sample durations.

The above equation results in a U-shaped Cv curve. If the con-
stant additive noise (c) is small compared to the linear noise, the
second term will dominate only for very low time intervals. At
these very low time intervals, this will lead to a decrease in Cv as
durations increase from zero. At longer intervals, Cv will appear
to be a constant before a linearly increasing range. Importantly,
the slope of the linear range will depend on the value of Time.
Hence, though the accumulator model considered here predicts
an increase in Cv at long intervals, it nonetheless will appear con-
stant within a range determined by Time. For larger values of
Time, Cv will tend toward a constant. For the simulations shown
in Figure 6C with a Time of 300 s, Cv is near constant over a
very wide range of durations. While Cv is generally considered
to be a constant, experimental evidence examining a wide range
of sample durations analyzed across many studies (Gibbon et al.,
1997; Bizo et al., 2006) accords with the specific prediction of a
U-shaped coefficient of variation (spread/central tendency) for
the production times Equation (8). We do note, however, that
a more realistic model representing neural processing could lead
to quantitative deviations from the simple approximations pre-
sented here. Such involved calculations are beyond the scope of
this work. Nevertheless, the most important falsifiable prediction
of our theory regarding timing is that the error in time per-
ception will show quantitative deviations from Weber’s law in
impulsive subjects (with aberrantly low values of Time). It must
also be emphasized that the above equations only apply within an
individual subject when Time can be assumed to be a constant,
independent of the durations being tested. Pooling data across
different subjects, as is common, would lead to averaging across
different values of Time, and hence a flattening of the Cv curve.

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 61 | 8

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Namboodiri et al. Theory: temporal decision-making and perception

TEMPORAL BISECTION
Time perception is also studied using temporal bisection exper-
iments (Allan and Gibbon, 1991; Lejeune and Wearden, 2006;
Baumann and Odum, 2012) in which subjects categorize a sam-
ple interval as closer to a short (ts) or a long (tl) reference interval.
The sample interval at which subjects show maximum uncer-
tainty in classification as short or long is called the point of
subjective equality, or, the “bisection point.” The bisection point
is of considerable theoretical interest. If subjects perceived time
linearly with constant errors, the bisection point would be the
arithmetic mean of the short and long intervals. On the other
hand, if subjects perceived time in a scalar or logarithmic fashion
or used a ratio-rule under linear mappings, it has been pro-
posed that the bisection point would be at the geometric mean
(Allan and Gibbon, 1991). However, experiments studying tem-
poral bisection have produced ambiguous results. Specifically, the
bisection point has been shown to vary between the geometric
mean and the arithmetic mean and has sometimes even been
shown to be below the geometric mean, closer to the harmonic
mean (Killeen et al., 1997).

The bisection point as calculated by TIMERR theory is derived
below. The calculation involves transforming both the short and
long intervals into subjective time representations and expressing
the bisection point in subjective time (subjective bisection point)
as the mean of these two subjective representations. The bisection
point expressed in real time is then calculated as the inverse of the
subjective bisection point.

ST (ts) = ts

1 + ts
Time

; ST (tl) = tl

1 + tl
Time

Therefore, the bisection point in subjective time is given by

Subjective bisection point (SBP) = ST (ts) + ST (tl)

2

=
ts

1+ ts
Time

+ tl

1+ tl
Time

2

The value of the bisection point expressed in real time is given by
the inverse of the subjective bisection point, viz.

Bisection point in real time = SBP

1 − SBP
Time

= Time
( ts + tl

2

) + tstl

Time + ( ts + tl
2

) (9)

From the above expression, it can be seen that the bisection
point can theoretically vary between the harmonic mean and
the arithmetic mean as Time varies between zero and infinity,
respectively.

Hence, TIMERR theory predicts that when comparing bisec-
tion points across individuals, individuals with larger values of
Time will show bisection points closer to the arithmetic mean
whereas individuals with smaller values of Time will show lower
bisection points, closer to the geometric mean. If Time was smaller

still, the bisection point would be lower than the geometric mean,
approaching the harmonic mean. This is in accordance with
the experimental evidence mentioned above showing bisection
points between the harmonic and arithmetic means (Allan and
Gibbon, 1991; Killeen et al., 1997; Baumann and Odum, 2012).
Further, we also predict that the steeper the discounting func-
tion, the lower the bisection point, as has been experimentally
confirmed (Baumann and Odum, 2012). Predictions similar to
ours have been made previously (Balci et al., 2011) regarding the
location of the bisection point by assuming variability in tempo-
ral precision. If one assumes that impulsive subjects show larger
timing errors, the previous model can also explain a reduction in
the bisection point for subjects showing steeper discounting func-
tions. However, it must be pointed out that the key contribution
of our work is in deriving this result. This relationship is not an
assumption in our work, but rather is an integral part of its con-
tribution [see Equation (8) for relationship between impulsivity
and Cv].

SUMMARY: PREDICTIONS OF TIMERR THEORY SUPPORTED
BY EXPERIMENTS
All the predictions mentioned below result from Equations (3)
and (6).

1. The discounting function will be hyperbolic in form
(Frederick et al., 2002; Kalenscher and Pennartz, 2008).

2. The discounting steepness could be labile within and across
individuals (Loewenstein and Prelec, 1992; Frederick et al.,
2002; Schweighofer et al., 2006; Luhmann et al., 2008; Van
den Bos and McClure, 2013).

3. Temporal discounting could be steeper when average delays
to expected rewards are lower (Frederick et al., 2002;
Schweighofer et al., 2006; Luhmann et al., 2008) [see Effects
of Plasticity in the Past Integration Interval (Time)].

4. “Magnitude Effect”: as reward magnitudes increase in a net
positive environment, the discounting function becomes less
steep (Frederick et al., 2002; Kalenscher and Pennartz, 2008)
(Figure 3C).

5. “Sign Effect”: rewards are discounted steeper than punish-
ments of equal magnitudes in net positive environments
(Frederick et al., 2002; Kalenscher and Pennartz, 2008).

6. The “Sign Effect” will be larger for smaller magnitudes
(Loewenstein and Prelec, 1992; Frederick et al., 2002) (see
Consequences of the Discounting Function in Appendix).

7. “Magnitude Effect” for losses: as the magnitudes of losses
increase, the discounting becomes steeper. This is in the
reverse direction as the effect for gains (Hardisty et al., 2012).
Such an effect is more pronounced for lower magnitudes
(Hardisty et al., 2012) (see Consequences of the Discounting
Function in Appendix).

8. Punishments are treated differently depending upon their
magnitudes. Higher magnitude punishments are preferred at
a delay, while lower magnitude punishments are preferred
immediately (Loewenstein and Prelec, 1992; Frederick et al.,
2002; Kalenscher and Pennartz, 2008) (Figure 4).

9. “Delay-Speedup” asymmetry: Delaying a reward that you
have already obtained is more punishing than speeding up
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the delivery of the same reward from that delay is reward-
ing. This is because a received reward will be included in the
current estimate of past reward rate (aest) and hence, will
be included in the opportunity cost (Frederick et al., 2002;
Kalenscher and Pennartz, 2008).

10. Time perception and temporal discounting are correlated
(Wittmann and Paulus, 2008).

11. Timing errors increase with the duration of intervals (Gibbon
et al., 1997; Matell and Meck, 2000; Buhusi and Meck, 2005;
Lejeune and Wearden, 2006).

12. Timing errors increase in such a way that the coefficient of
variation follows a U-shaped curve (Gibbon et al., 1997; Bizo
et al., 2006).

13. Impulsivity (as characterized by abnormally steep tempo-
ral discounting) leads to abnormally large timing errors
(Wittmann et al., 2007; Wittmann and Paulus, 2008).

14. Impulsivity leads to underproduction of time intervals, with
the magnitude of underproduction increasing with the dura-
tion of the interval (Wittmann and Paulus, 2008).

15. The bisection point in temporal bisection experiments will
be between the harmonic and arithmetic means of the refer-
ence durations (Allan and Gibbon, 1991; Killeen et al., 1997;
Baumann and Odum, 2012).

16. The bisection point need not be constant within and across
individuals (Baumann and Odum, 2012).

17. The bisection point will be lower for individuals with steeper
discounting (Baumann and Odum, 2012).

18. The choice behavior for impulsive individuals will be more
inconsistent than for normal individuals (Evenden, 1999).
This is because their past reward rate estimates will show
larger fluctuations due to a lower past integration interval.

19. Post-reward delays will not be directly included in the
intertemporal decisions of animals during typical labora-
tory tasks (Stephens and Anderson, 2001; Kalenscher and
Pennartz, 2008; Stephens, 2008; Pearson et al., 2010). Variants
of typical laboratory tasks may, however, lead to the inclu-
sion of post-reward delays in decisions (Stephens and
Anderson, 2001; Kalenscher and Pennartz, 2008; Stephens,
2008; Pearson et al., 2010). Post-reward delays can further
indirectly affect decisions as they affect the past reward rate
(Blanchard et al., 2013).

DISCUSSION
Our theory provides a simple algorithm for decision-making in
time. The algorithm of TIMERR theory, in its computational sim-
plicity, could explain results on intertemporal choice observed
across the animal kingdom (Stephens and Krebs, 1986; Frederick
et al., 2002; Kalenscher and Pennartz, 2008), from insects to
humans. Higher animals, of course, could evaluate subjective
values with greater sophistication to build better models of the
world including predictable statistical patterns of the environ-
ment and estimates of risks involved in waiting (Extensions
of TIMERR Theory in Appendix). It must also be noted that
other known variables influencing subjective value like satiety
(Stephens and Krebs, 1986; Doya, 2008), the non-linear utility
of reward magnitudes (Stephens and Krebs, 1986; Doya, 2008)
and the non-linear dependence of health/fitness on reward rates

(Stephens and Krebs, 1986) have been ignored. Such factors,
however, can be included as part of an extension of TIMERR the-
ory while maintaining its inherent computational simplicity. We
derived a generalized expression of subjective value that includes
such additional factors Equation (A7), capturing even more vari-
ability in observed experimental results (Frederick et al., 2002;
Kalenscher and Pennartz, 2008) (Non-Linearities in Subjective
Value Estimation to Generalized Expression for Subjective Value
in Appendix). It must also be noted that while we have ignored
the effects of variability in either delays or magnitudes, expla-
nations of such effects have previously been proposed (Gibbon
et al., 1988; Kacelnik and Bateson, 1996) and are not in con-
flict with our theory. Also, since the exclusion of post-reward
delays in decisions in TIMERR theory is borne out of lim-
itations of associative learning, it allows for the inclusion of
these delays in tasks where they can be learned. Presumably,
an explicit cue indicating the end of post-reward delays could
foster a representation and inclusion of these delays in deci-
sions. Accordingly, it has been shown in recent experiments
that monkeys include post-reward delays in their decisions when
they are explicitly cued (Pearson et al., 2010; Blanchard et al.,
2013).

In environments with time-dependent changes of reinforce-
ment statistics, animals should have an appropriately sized
past integration interval depending on the environment so as
to appropriately estimate opportunity costs [e.g., integrating
reward-history from the onset of winter would be highly mal-
adaptive in order to evaluate the opportunity cost associated with
a delay of an hour in the summer; also see Effects of Plasticity
in the Past Integration Interval (Time) in Appendix]. In keep-
ing with the expectation that animals can adapt past integration
intervals to their environment, it has been shown that humans
can adaptively assign different weights to previous decision out-
comes based on the environment (Behrens et al., 2007; Rushworth
and Behrens, 2008). As Equations (3) and (4) show (Figure 3A),
changes in Time would correspondingly affect the steepness of dis-
counting. This novel prediction has two major implications for
behavior: (1) the discounting steepness of an individual need not
be a constant, as has sometimes been implied in prior literature
(Frederick et al., 2002); (2) the longer the past integration inter-
val, the higher the tolerance to delays when considering future
rewards. In accordance with the former prediction, several recent
reviews have suggested that discounting rates are variable within
and across individuals (Loewenstein and Prelec, 1992; Frederick
et al., 2002; Schweighofer et al., 2006; Luhmann et al., 2008;
Van den Bos and McClure, 2013). The latter prediction states
that impulsivity (Evenden, 1999), as characterized by abnormally
steep discounting, could be the result of abnormally short win-
dows of past reward rate integration. This may explain the obser-
vation that discounting becomes less steep as individuals develop
in age (Peters and Büchel, 2011), should the longevity of memo-
ries increase over development. Past integration intervals could
also be related to and bounded by the span of working mem-
ory. In fact, recent studies have shown that working memory and
temporal discounting are correlated within subjects (Shamosh
et al., 2008; Bickel et al., 2011) and also that improving work-
ing memory capacity decreases the steepness of discounting in
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stimulant addicts (Bickel et al., 2011). Further, Equation (6) states
that changes in Time would lead to corresponding changes in sub-
jective representations of time. Hence, we predict that perceived
durations may be linked to experienced reward environments, i.e.,
“time flies when you’re having fun.”

It is important to point out that the TIMERR algorithm for
decision-making only depends on the calculation of the expected
reward rate, as shown in Figure 2B. While this algorithm is
mathematically equivalent to picking the option with the highest
subjective value Equation (3), the discounting of delayed rewards
results purely from the effect of those delays on the expected
reward rate. Hence, as has been previously proposed (Pearson
et al., 2010; Blanchard et al., 2013), we do not think of the dis-
counting steepness as a psychological constant of an individual.
Instead, we posit that apparent discounting functions are the con-
sequence of maximizing temporally-constrained expected reward
rates, and that abnormalities in temporal discounting result from
abnormal adaptations of Time.

Reward magnitudes and delays have been shown to be rep-
resented by neuromodulatory and cortical systems (Platt and
Glimcher, 1999; Shuler and Bear, 2006; Kobayashi and Schultz,
2008), while neurons integrating cost and benefit to represent
subjective values have also been observed (Kalenscher et al., 2005;
Kennerley et al., 2006). Recent reward rate estimation (aest) has
been proposed to be embodied by dopamine levels over long
time-scales (Niv et al., 2007). Interestingly, it has been shown that
administration of dopaminergic agonists (antagonists) leads to
underproduction (overproduction) (Matell et al., 2006) of time
intervals, consistent with a relationship between recent reward
rate estimation and subjective time representation as proposed
here. Average values of foraging environment have also been
shown to be represented in the anterior cingulate cortex (Kolling
et al., 2012). In light of these experimental observations neurobi-
ological models have previously proposed that decisions, similar
to our theory, result from the net balance between values of the
options currently under consideration and the environment as
a whole (Kennerley et al., 2006; Kolling et al., 2012). However,
these models do not propose that the effective interval (Time) over
which average reward rates are calculated directly determines the
steepness of temporal discounting.

While there have been previous models that connect time per-
ception to temporal decision making (Staddon and Cerutti, 2003;
Takahashi, 2006; Balci et al., 2011; Ray and Bossaerts, 2011),
TIMERR theory is the first unified theory of intertemporal choice
and time perception to capture such a wide array of experi-
mental observations including, but not limited to, hyperbolic
discounting (Stephens and Krebs, 1986; Stephens and Anderson,
2001; Frederick et al., 2002; Kalenscher and Pennartz, 2008),
“Magnitude” (Myerson and Green, 1995; Frederick et al., 2002;
Kalenscher and Pennartz, 2008) and “Sign” effects (Frederick
et al., 2002; Kalenscher and Pennartz, 2008), differential treat-
ment of losses (Frederick et al., 2002; Kalenscher and Pennartz,
2008), as well as correlations between temporal discounting,
time perception (Wittmann and Paulus, 2008), and timing
errors (Gibbon et al., 1997; Matell and Meck, 2000; Buhusi and
Meck, 2005; Lejeune and Wearden, 2006; Wittmann et al., 2007;
Wittmann and Paulus, 2008) (see “Summary” for a full list).

While the notion of opportunity cost long precedes TIMERR,
TIMERR’s unique contribution is in stating that the past inte-
gration interval over which opportunity cost is estimated directly
determines the steepness of temporal discounting and the non-
linearity of time perception. This is the major falsifiable predic-
tion of TIMERR. As a direct result, TIMERR theory suggests
that the spectra of aberrant timing behavior seen in cogni-
tive/behavioral disorders (Buhusi and Meck, 2005; Wittmann
et al., 2007; Wittmann and Paulus, 2008) (Parkinson’s disease,
schizophrenia, and stimulant addiction) can be rationalized as
a consequence of aberrant integration over experienced reward
history. Hence, TIMERR theory has major implications for the
study (see Implications for Intertemporal Choice in Appendix)
of decision-making in time and time perception in normal and
clinical populations.

METHODS
All simulations were run using MATLAB R2010a.

SIMULATIONS FOR FIGURE 1
Figure 1B: Each of the four decision-making agents ran a total of
100 trials. This was repeated 10 times to get the mean and stan-
dard deviation. Every trial consisted of the presentation of two
reinforcement-options randomly chosen from the three possible
alternatives as shown in Figure 1A.

Figure 1E: The following four possible reward-options were
considered, expressed as (r, t): (0.1, 100), (0.0001, 2), (5, 2),
(5, 150). The units are arbitrary. To create the reinforcement-
environment, a Poisson-process was generated for the availability-
times of each of the four options. These times were binned into
bins of size 1 unit, such that each time bin could consist of zero
to four reward-options. The rate of occurrence for each option
was set equally to 0.2 events/unit of time. For the three pre-
vious decision-making models, the parameters were tuned for
maximum performance by trial and error. Forgoing an avail-
able reward-option was not possible for these models since their
subjective values are always greater than zero for rewards.

SIMULATIONS FOR FIGURES 5, 6
An accumulator model described by the following equation was
used for simulations of a time reproduction task.

dST (t) = dt(
1 + t

Time

)2
+ σ

√
ST(t)dWt

where Wt is a standard Wiener process and σ is the magnitude of
the noise. σ was set to 10%. Without the noise term in the R.H.S,
this equation is consistent with the subjective time expression
shown in Equation (6) since integrating for ST(t) exactly yields
Equation (6). This equation can also be rewritten to be in terms
of ST(t) as below.

dST (t) =
(

1 − ST(t)

Time

)2

dt + σ
√

ST(t)dWt

The above equation was integrated using the Euler-Maruyama
method. In this method, ST(t) is updated using the following
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equation for a random walk

ST (t + �t) = ST(t) +
(

1 − ST(t)

Time

)2

�t

+σ
√

ST(t)
√

�t N(0, 1)

where N(0, 1) is the standard normal distribution. The step size
for integration, �t, was set so that there were 1000 steps for
every simulated duration in the time interval reproduction task
(Figures 5, 6).

Every trial in the time reproduction task consisted of two
phases: a time measurement phase and a time production phase.
During the time measurement phase, the accumulator inte-
grates subjective time until the expiration of the sample duration
(Figure 6A). The subjective time value at the end of the sample
duration is stored in memory after the addition of a constant
Gaussian noise as the threshold for time production, i.e.,

Threshold (t) = ST (t) + c N(0, 1)

During the time production phase, the accumulator integrates
subjective time until the threshold is crossed for the first time.
This moment of first crossing represents the action response
indicating the end of the sample duration, i.e.,

Reproduced interval = t : ST (t) ≥ Threshold (t)

For the simulations resulting in Figures 5C,D, 6, σ = 0.1 and c =
0.001. For Figure 5C, sample interval durations ranged between
1 and 90 s over bins of 1 s. A total of 2000 trials were performed
for each combination of sample duration and Time to calculate
the median production interval as shown in Figures 5C,D. While
calculating the moment of reproduction, the integration was car-
ried out up to a maximum time equaling 10 times the sample
duration.
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APPENDIX
RESULTS
Extensions of TIMERR theory
Alternative version (store reward rates evaluated upon the
receipt of reward in memory). An alternative version of TIMERR
theory could be appropriate for very simple life forms with lim-
ited computational resources that are capable of intertemporal
decision making (e.g., insects). Rather than representing both
the magnitude and delay to rewards separately and making deci-
sions based on real time calculations, upon the receipt of reward,
such animals could store subjective value directly in memory.
In such a case, the reward rate at the time of reward receipt
would be calculated over Time + t and converted to subjec-
tive value. The decision between reward options is then simply
described as picking the option with the highest stored subjec-
tive value. Mathematically, such a calculation is exactly equivalent
to the calculation presented in Extensions of TIMERR Theory in
Appendix.

While the advantage of this model is that it is computation-
ally less expensive, the disadvantages for the model are that (1)
subjective values in memory are not generalizable, i.e., the subjec-
tive value in memory for an option will fundamentally depend on
the reward environment in which it was presented; and (2) rep-
resentations of the reward delays could be useful for anticipatory
behaviors.

Evaluation of risk. Until now, we have assumed that a delayed
reward will be available for consumption, provided the animal
waits the delay, i.e., there are no explicit risks in obtaining the
reward. In many instances in nature, however, such an assump-
tion is not true. If the animal could build a model of the risks
involved in obtaining a delayed reward, it could do better by
including such a model in its decision making. Given informa-
tion about a delayed reward (r, t), if the animal could predict the
expected reward available for consumption after having waited
the delay [ER(r, t)], the subjective value of such a reward could be
written as

SV (r, t) = ER (r, t) − aestt

1 + t
Time

(A1)

This is based on Equation (3).
It is important to note that this equation can still be expressed

in terms of subjective time as defined in the Main Text, viz.

SV (r, t) =
(

ER (r, t)

t
− aest

)
t

1 + t
Time

Generally speaking, building such risk models is difficult,
especially since they are environment-specific. However, there
could be statistical patterns in environments for which ani-
mals have acquired corresponding representations over evolution.
Specifically, decay of rewards arising from factors like natural
decay (rotting, for instance) or due to competition from other
foragers could have statistical patterns. During the course of travel
to a food source, competition poses the strongest cause for decay
since natural decay typically happens over a longer time-scale, viz.

days to months. In such an environment with competition from
other foragers, a forager could estimate how much a reward will
decay in the time it takes it to travel to the food source.

Suppose the forager sees a reward of magnitude r at time t = 0,
the moment of decision. The aim of the forager is to calculate how
much value will be left by the time it reaches the food source, and
to use this estimate in its current decision. Let us denote the time
taken by the forager to travel to the food source by t.

We assume that the rate of decay of a reward in competi-
tion is proportional to a power of its magnitude, implying that
larger rewards are more sought-after in competition and hence,
would decay at a faster rate. We denote the survival time of a typ-
ical reward by tsur and consider that after time tsur, the reward
is entirely consumed. If, as stated above, one assumes that tsur is
inversely related to a power α of the magnitude of a reward at any
time [r(t)], we can write that tsur = 1

kr(t)α where k is a constant of
proportionality.

Hence, the rate of change of a value with initial magnitude r,
will be

dr (t)

dt
= − r (t)

tsur
= − (

kr (t)α
)

r (t)

Solving this differential equation for r(t),

r (t) = r

(1 + kαrαt)
1/α

Here we set r(0) = r.
A forager could estimate the parameters k and α based on

the density of competition and other properties of the environ-
ment. In such a case, the subjective value of a delayed reward (r,
t) should be calculated as

SV (r, t) =

r

(1 + kαrαt)
1/α

− aestt

1 + t
Time

(A2)

The discounting function in this case is

D (r, t) =

1

(1 + kαrαt)
1/α

− aestt
r

1 + t
Time

(A3)

Such a discounting function can be thought of as a quasi-
hyperbolic discounting function, and is a more general form than
Equation (3) since k = 0 returns Equation (3).

Non-linearities in subjective value estimation. Animals do not
perceive rewards linearly (e.g., 20 L of juice is not 100 times more
valuable than 200 mL). Non-linear reward perception may reflect
the non-linear utility of rewards: too little is often insufficient
while too much is unnecessary. Further, the value of a reward
depends on the internal state of an animal (e.g., 200 mL of juice
is more valuable to a thirsty animal than a satiated animal). We
address such non-linearities as applied to TIMERR theory here.

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 61 | 14

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Namboodiri et al. Theory: temporal decision-making and perception

If the non-linearities and state-dependence of magnitude per-
ception can be expressed by a function f (r, state), then this
function can be incorporated into Equation (3) to give

SV (r, t) = f (r, state) − aestt

1 + t
Time

(A4)

The introduction of such state-dependence and non-linearities
may account for the anomalous “preference for spread”
(Frederick et al., 2002; Kalenscher and Pennartz, 2008) and
“preference for improving sequences” (Frederick et al., 2002;
Kalenscher and Pennartz, 2008) seen in human choice behavior.

Expected reward rate gain during the wait. We have not yet
considered the possibility that animals could expect to receive
additional rewards during the wait to delayed rewards, i.e., while
animals expect to lose an average reward rate of aest during the
wait, there could be a different reward rate that they might, never-
theless, expect to gain. If we denote that this additional expected
reward rate is a fraction f of aest, then we can state that the net
expected loss of reward rate during the wait is (1 – f )aest. This fac-
tor can also be added to expressions of subjective value calculated
above in Equations (3), (A2), and (A4). Specifically, Equation (3)
becomes

SV (r, t) = r − (
1 − f

)
aestt

1 + t
Time

(A5)

Such a factor is especially important in understanding prior
human experiments. In abstract questions like “$100 now or $150
a month from now?” human subjects expect an additional reward
rate during the month and are almost certainly not making deci-
sions with the assumption that the only reward they can obtain
during the month is $150.

State-dependence of discounting steepness. In the basic version
of TIMERR theory, the time window over which the algorithm
aims to maximize reward rates is the past integration interval
(Time) plus the time to a delayed reward. However, non-linearities
in the relationship between reward rates and fitness levels [as
discussed in Effects of Plasticity in the Past Integration Interval
(Time) in Appendix] could lead to state-dependent consumption
requirements. For example, in a state of extreme hunger, it might
be appropriate for the decision rule to apply a very short time
scale of discounting so as to avoid dangerously long delays to
food. However, integrating past reward rates over such extremely
short timescales could compromise the reliability of the estimated
reward rate. Hence, as a more general version of TIMERR theory,
the window over which reward rate is maximized could incor-
porate a scaled down value of the interval over which past reward
rate is estimated, with the scaling factor governed by consumption
requirements. If such a scaling factor is represented by s(state),
Equation (3) would become

SV (r, t) = r − aestt

1 + t
Times(state)

(A6)

Generalized expression for subjective value. Combining
Equations (A2), (A4)–(A6), we can write a more general
expression for the subjective value of a delayed reward, includ-
ing a model of risk along with additional reward rates, state
dependences, and non-linearities in the perception of reward
magnitude

SV (r, t) =

f (r, state)
(
1 + kαf (r, state)α t

)1/α
− (

1 − f
)

aestt

1 + t

Times (state)

(A7)

Equation (A7) is a more complete expression for the subjective
value of delayed rewards. Such an expression could capture almost
the entirety of experimental results, considering its inherent flex-
ibility. However, it should be noted that even with as simple an
expression as Equation (3), many observed experimental results
can be explained.

DISCUSSION
Implications for intertemporal choice
Consequences of the discounting function. We rewrite Equation
(4) below followed by its implications for intertemporal choice
in environments with positive and negative past reward rate
estimates.

D (r, t) = SV (r, t)

r
= 1 − aest

r t

1 + t
Time

In an environment with positive aest, the following predictions
can be made

1. “Magnitude Effect” for gains: as noted in the Main Text, as r
increases, the numerator increases in value, effectively mak-
ing the discounting less steep (Figure 3C). This effect has been
experimentally observed and has been referred to as the “mag-
nitude” effect (Frederick et al., 2002; Kalenscher and Pennartz,
2008). TIMERR theory makes a further prediction, however,
that the size of the “magnitude” effect will depend on the size
of aest and t. Specifically, as aest and t increase, so does the size
of the effect.

2. “Magnitude Effect” for losses/punishments: if r is negative
(i.e., loss/punishment), the discounting function will become
more steep as the magnitude of r increases (Figures 3D, 4).
Hence, in a rewarding environment (aest > 0), the “magni-
tude” effect for punishments is in the opposite direction as the
“magnitude” effect for gains.

3. “Sign Effect”: gains are discounted more steeply than pun-
ishments of equal magnitudes. A further prediction is that
this effect will be larger for smaller reward magnitudes. This
prediction has been proven experimentally (Loewenstein and
Prelec, 1992; Frederick et al., 2002).

4. Differential treatment of losses/punishments: As the “mag-
nitude” of the punishment decreases below aestTime(r > –
aestTime), the discounting function becomes a monotonically
increasing function of delay. This means that the punish-
ment would be preferred immediately when the magnitude of
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punishment is below this value. Above this value, a delayed
punishment would be preferred to an immediate punishment.
This prediction has experimental support (Frederick et al.,
2002; Kalenscher and Pennartz, 2008).

5. A reward of r delayed beyond t = r/aest will lead to a negative
subjective value. Hence, given an option between pursuing or
forgoing this reward, the animal would only pursue (forgo) the
reward at shorter (longer) delays.

When understanding the reversal of the “Magnitude Effect” for
losses, it is important to keep in mind that as |r|→ ∞, both losses
and gains approach the same asymptote.

D (r, t; |r| → ∞) = 1

1 + t
Time

Hence, as the magnitude of a loss increases, the size of
the “Magnitude Effect” becomes lower and harder to detect
(Figure 4).

In an environment with negative aest (i.e., net punishing envi-
ronment), all the predictions listed above would reverse trends.
Specifically,

1. “Magnitude Effect” for gains: as r increases, the discounting
becomes steeper

2. “Magnitude Effect” for losses: as the magnitude of a pun-
ishment increases, the discounting function becomes less
steep.

3. “Sign Effect”: Punishments are discounted more steeply than
gains of equal magnitudes.

4. Differential treatment of gains: as the magnitude of the gain
decreases below aestTime(r < –aestTime), it would be pre-
ferred at a delay. Beyond this magnitude, the gain would be
preferred immediately.

5. A punishment of magnitude r will be treated with positive
subjective value if it is delayed beyond t = r/aest.

Animals do not maximize long-term reward rates. In typical ani-
mal intertemporal choice experiments, in order to ensure that
different reward options do not lead to a marked difference
in overall experiment duration, a post-reward delay is intro-
duced for all options such that the net duration of each trial is
constant. In such experiments, a global-reward-rate-maximizing
agent should always choose the larger reward, irrespective of the
cue-reward delay, since the net time spent per trial in collecting
any reward equals the constant trial duration. However, a pre-
ponderance of experimental evidence shows that animals deviate
from such ideal behavior of maximizing reward rates over the
entire session (Stephens and Anderson, 2001; Kalenscher and
Pennartz, 2008; Stephens, 2008). Such experimental results are
typically interpreted to signify that animals do not, in fact, act
as reward-rate-maximizing agents (Stephens and Anderson, 2001;
Kalenscher and Pennartz, 2008; Stephens, 2008). TIMERR the-
ory proposes that even though animals are maximizing reward
rates, albeit under constraints of experience, post-reward delays
are not incorporated into their decision process due to limitations

of associative learning (Kacelnik and Bateson, 1996). As a conse-
quence, animal choice behavior in such laboratory tasks would
appear not to maximize global reward rates.

TIMERR theory, however, allows for the possibility that in a
variant of standard laboratory tasks that makes a post-reward
delay immediately precede another reward included in the choice
behavior would result in animals not ignoring post-reward delays.
Prior experiments evince this possibility (Stephens and Anderson,
2001). Specifically, post-reward delays are included in the decision
process by birds performing a patch leave-stay task that is eco-
nomically equivalent to standard laboratory tasks on intertem-
poral choice (Stephens and Anderson, 2001). Also, as mentioned
in the main text, TIMERR theory also allows for the inclusion of
these delays in tasks where they can be learned e.g., when they are
explicitly cued (Pearson et al., 2010; Blanchard et al., 2013).

Effects of plasticity in the past integration interval (Time)
The most important implication of the TIMERR theory is that the
steepness of discounting of future rewards will depend directly on
the past integration interval, i.e., the longer you integrate over the
past, the more tolerant you will be to delays, and vice-versa. In the
above sections, the past integration interval (Time) was treated as
a constant. However, the purpose of the past integration interval
is to reliably estimate the baseline reward rate expected through
the delay until a future reward. Further, since Time determines
the temporal discounting steepness, it will also affect the rate at
which animals obtain rewards in a given environment. Hence,
depending on the reinforcement statistics of the environment, it
would be appropriate for animals to adaptively integrate reward
history over different temporal windows so as to maximize rates
of reward.

In this section, we qualitatively address the problem of opti-
mizing Time. We consider that an optimal Time would satisfy four
criteria: (1) obtain rewards at magnitudes and intervals that max-
imize the fitness of an animal, which is accomplished partially
through (2) reliable estimation of past reward rates leading to
(3) appropriate estimations of opportunity cost for typical delays
faced by the animal with (4) minimal computational/memory
costs.

Before considering the general optimization problem for
Time, it is useful to consider an illustrative example. This
example ignores the last three criteria listed above and only
considers the impact of Time on the fitness of an animal.
Consider a hypothetical animal that typically obtains rewards
at a rate of 1 unit per hour. Suppose such an animal is pre-
sented with a choice between (a) 2 units of reward available
after an hour, and (b) 20 units of reward available after 15 h.
The subjective values of options “a” and “b” are calculated
below for four different values of Time, as per Equation (3).

Subjective Subjective Chosen
value of “a” value of “b” option

Time = ∞ h 1 5 b
Time = 10 h 0.91 2 b
Time = 2.5 h 0.71 0.71 Both equal
Time = 1 h 0.50 0.31 a

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 61 | 16

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Namboodiri et al. Theory: temporal decision-making and perception

As is apparent, larger Time biases the choice toward option “b.”
This is appropriate in order to maximize long-term reward rate
since the long term reward rate is higher for option “b,” as shown
below.

Reward rate having chosen option “b” = 20 units in 15 h =
20/15 units/h.

Reward rate having chosen option “a” = 2 units in 1 h + 14
units in the remaining 14 h = 16/15 units/h.

However, if we presume that this animal evolved so as to
require a minimum reward of 2 units within every 10 h in
order to function in good health, choosing option “b” would
be inappropriate. Hence, it is clear that for this hypotheti-
cal animal, Time should be much lower than 10 h. In sum-
mary, so as to meet consumption requirements, it is inap-
propriate to integrate past reward rate history over very long
times even if the animal has infinite computational/memory
resources. Keeping in mind the above example and the four cri-
teria listed for an optimal Time, we enumerate the following
disadvantages for setting inappropriately large or inappropriately
small Time.

Integrating over inappropriately large Time has at least four
disadvantages to the animal: (1) a very long Time is inappro-
priate given consumption requirements of an animal, as illus-
trated above; (2) the computational/memory costs involved in
this integration are high; (3) integrating over large time scales
in a dynamically changing environment could make the esti-
mate of past reward rate inappropriate for the delay to reward
(e.g., integrating over the winter and spring seasons as an esti-
mate of baseline reward rate expected over a delay of an hour
in the summer might prove very costly for foragers); (4) the
longer the Time, the harder it is to update aest in a dynamic
environment.

Integrating over inappropriately small Time, on the other hand,
presents the following disadvantages: (1) estimate of baseline
reward rate would be unreliable since integration must be carried
out over a long enough time-scale so as to appreciate the station-
ary variability in an environment; (2) estimate of baseline reward
rate might be highly inappropriate for the future delay (e.g., inte-
grating over the past 1 min might be very inappropriate when the
delay to a future reward is a day); (3) the animal would more
greatly deviate from global optimality [as is clear from Equation
(3)].

In light of the above discussion, we argue that the following
relationships should hold for Time. In each of these relationships,
all factors other than the one considered are assumed constant.

R1. Time-dependent changes in environmental reinforcement
statistics: if an environment is unstable, i.e., the reinforce-
ment statistics of the environment are time- dependent, we
predict that Time would be lower than the timescale of the
dynamics of changes in environmental statistics.

R2. Variability of estimated reward rate: if an environment is
stable and has very low variability in the estimated reward
rate it provides to an animal, integrating over a long Time

would not provide a more accurate estimate of past reward
rate than integrating over a short Time. Hence, in order to be
better at adapting to potential changes in the environment

and minimize computational/ memory costs, we predict
that in a stable environment, Time will reduce (increase)
as the variability in the estimated reward rate reduces
(increases).

R3. Mean of estimated reward rate: in a stable environment with
higher average reward rates, the benefit of integrating over
a long Time will be smaller when weighed against the com-
putational/memory cost involved. As an extreme example,
when the reward rate is infinity, the benefit of integrating
over long windows is infinitesimal. This is because the ben-
efit of integrating over a longer Time can be thought of as
the net gain in average reward rate over that achieved when
decisions are made with the lowest possible Time. If the
increase in average reward rate is solely due to an increase
in the mean (constant standard deviation) of reward mag-
nitudes, the proportional benefit of integrating over a large
Time reduces. If the increase in average reward rate is solely
due to an increase in frequency of rewards, the integra-
tion can be carried out over a lower time to maintain the
estimation accuracy. Hence, we predict that, in general, as
average reward rates increase (decrease), Time will decrease
(increase).

R4. Average delays to rewards: as the average delay between
the moment of decision and receipt of rewards increases
(decreases), Time should increase (decrease) correspond-
ingly. This is because reward history calculated over a low
Time might be inappropriate as an estimate of baseline
reward rate for the delays until future reward.

In human experiments, it is common to give abstract ques-
tionnaires to study preference (e.g., “which do you prefer: $100
now or $150 a month from now?”). In such tasks, setting Time

to be of the order of seconds or minutes might be very inap-
propriate to calculate a baseline expected reward rate over the
month to a reward (R4 above). Hence, we predict that Time might
increase so as to match the abstract delays to allow humans to
discount less steeply as these delays increase. Similarly, when the
choice involves delays of the order of seconds, integrating over
hours might not be appropriate and therefore, the discounting
steepness would be predicted to be higher in such experiments.
Thus, in prior experimental results (Loewenstein and Prelec,
1992; Frederick et al., 2002; Schweighofer et al., 2006; Luhmann
et al., 2008), Time might have changed to reflect the delays
queried.

Calculation of the estimate of past reward rate (aest)
It must be noted that even though the calculation of aest is
performed over a time-scale of Time, yet unspecified is the par-
ticular form of memory for past reward events. The simplest
form of a memory function is one in which rewards that were
received within a past duration of Time are recollected perfectly
while any reward that was received beyond this duration is com-
pletely forgotten. A more realistic memory function will be such
that a reward that was received will be remembered accurately
with a probability depending on the time in the past at which
it was received, with the dependence being a continuous and
monotonically decreasing function. For such a function, Time
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will be defined as twice the average recollected duration over
the probability distribution of recollection. The factor of two is
to ensure that in the simplest memory model presented above,
the longest duration at which rewards are recollected (twice the
average duration) is Time.

If we define local updating as updating aest based solely on
the memory of the last reward (both magnitude and time elapsed
since its receipt), the constraint of local updating when placed on

such a general memory function necessitates it to be exponential
in time. In this case, aest is updated as:

aest → aest + 2r
Time

; upon receipt of reward

aest → aest exp(− 2tlastreward
Time

); otherwise

where tlastreward is the time elapsed since the receipt of the last
reward.
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