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We introduce a computational model describing rat behavior and the interactions of
neural populations processing spatial and mnemonic information during a maze-based,
decision-making task. The model integrates sensory input and implements working
memory to inform decisions at a choice point, reproducing rat behavioral data and
predicting the occurrence of turn- and memory-dependent activity in neuronal networks
subserving task performance. We tested these model predictions using a new software
toolbox (Maze Query Language, MQL) to analyse activity of medial prefrontal cortical
(mPFC) and dorsal hippocampal (dCA1) neurons recorded from six adult rats during task
performance. The firing rates of dCA1 neurons discriminated context (i.e., the direction
of the previous turn), whilst a subset of mPFC neurons was selective for current turn
direction or context, with some conjunctively encoding both. mPFC turn-selective neurons
displayed a ramping of activity on approach to the decision turn and turn-selectivity in
mPFC was significantly reduced during error trials. These analyses complement data from
neurophysiological recordings in non-human primates indicating that firing rates of cortical
neurons correlate with integration of sensory evidence used to inform decision-making.
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INTRODUCTION
Single cell recordings from frontal and parietal cortical areas dur-
ing simple choice tasks indicate that the activity levels of neurons
in these areas integrate sensory evidence for the available alter-
natives over time (Kim and Shadlen, 1999; Schall, 2001; Shadlen
and Newsome, 2001; Hanks et al., 2012); decisions are made
when accumulated activity in these neurons reaches a thresh-
old (Roitman and Shadlen, 2002). This view of decision-making
has been formalized in computational models that capture data
describing both behavior and neural activity (e.g., Usher and
McClelland, 2001; Wang, 2002; Mazurek et al., 2003; Ditterich,
2006; Beck et al., 2008). One such example is the leaky competing
accumulator (LCA) model, which uses a set of differential equa-
tions to describe the interactions and behavior of populations of
neurons during a simple choice between two alternatives (Usher
and McClelland, 2001).

Computational approaches like the LCA model have been
developed for perceptual choice tasks, but are not directly able to
describe maze-based spatial tasks typically used in rodent studies

where decisions about turn direction are based on information
held in memory. An example of such a spatial decision-making
task, and the focus of this paper, is the end-to-end T-maze task
illustrated in Figure 1 (Jones and Wilson, 2005a,b). In general,
T-maze tasks rely on the integrity of dCA1 and mPFC net-
works (Wang and Cai, 2006); this particular end-to-end version
has been used to study dCA1-mPFC activity and interactions
(Jones and Wilson, 2005a,b) and performance is impaired fol-
lowing their pharmacological disruption (Kucewicz et al., 2011).
Neurophysiological recordings in rats performing similar tasks
corroborate the nature of dCA1-mPFC population activity corre-
lated with spatial decisions (Benchenane et al., 2010; Hyman et al.,
2010) and have begun to delineate trial- and task stage-dependent
ensemble coding (Baeg et al., 2003). However, the extent to which
diverse turn-, route- and memory-dependent firing correlates in
rodent mPFC parallel decision-related activity in primate data
remains unclear.

To establish a framework for the study of how the brain might
control behavior in such maze-based tasks, we develop a minimal
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FIGURE 1 | (A) Visualization of choice trial starting at the R2 reward
point. Black arrows demonstrate the trajectory of a “correct trial”
consisting of two turns in the same direction resulting in a reward at
reward point R4. Gray arrows show the trajectory of the “error trial” of
two different turns resulting in no reward at reward point R3. (B) Guided
trial starting at R4. The barrier placed in the upper left arm, shows that a
trajectory from right to left starting at reward point R4 would result in a
guided left turn. Panels (C–E): Queries from MQL toolbox used to select
specific trajectories from tracking data: Query lines are shown in green,
avoid lines in red, all position data is shown in gray and trajectories

satisfying the MQL query are shown in blue. (C) Query to return error
trials that begin at the lower left reward point. Query lines give intervals
for the central arm and choice turn. In MQL query lines are numbered in
a listbox and can be selected and amended using the GUI, for details on
this process see the MQL website. (D) One of the 16 turn queries for
the maze. This query returns trajectories from a left turn to the top right
reward point. (E) A query which selects trajectories of correct trials
starting at the lower left reward point, note the additional vertical query
lines in the central arm that return the timestamps of intervals a–j
leading up to and after the choice turn (see also Figure 4).

model that can successfully perform the above task in simulations.
The main benefit of developing the computational model is that
it provides a mechanistic description of how neural circuits can
control behavior in the task that can be validated in simulations,
and generates specific predictions on response patterns of neu-
rons that can be tested in the data. The model is based on the LCA
model (Usher and McClelland, 2001) and includes neural pop-
ulations selective for different choices (i.e., movement patterns)
integrating inputs from sensory neurons (indicating position in
the maze), but additionally includes neural populations encoding
the direction of previous turns. We then analyse data previ-
ously recorded during the above task from rat dCA1 and mPFC
(Jones and Wilson, 2005a) to investigate whether these brain areas
include neurons with response properties corresponding to those
of different populations in the model. In order to expedite analy-
ses requiring selection of time series data segments corresponding
to specific trajectories or exact regions of a maze, we introduce
Maze Query Language (MQL), a generalizable MATLAB software
toolbox that enables intuitive querying of experimental behav-
ioral and neurophysiological data via a Graphical User Interface.
Using MQL, we analyse the model’s predictions of neurons with

particular firing rates in specific areas of the maze, demonstrating
novel behavioral correlates of mPFC activity likely to contribute
to decision-making.

MATERIALS AND METHODS
THE END-TO-END T-MAZE
The task is schematized in Figure 1 and comprises two main types
of trial, which we refer to as “choice trials” and “guided trials.” On
a choice trial the rat starts at either R1 or R2 reward points, runs
along the connected arm, makes an initial guided turn enforced
by the barrier into the central arm, runs along the central arm
toward the choice T-junction and must then choose the same
turn direction again in order to get a reward. So, as shown in
Figure 1A, in trials starting from R2, the rat needs to go to R4
to get rewarded; conversely, on the trials starting from R1 the
rat needs to reach R3. On the guided trials (Figure 1B) the rat
continues from either R3 or R4 and is guided by barriers back
to the starting reward points R1 or R2. The guided trials act as
control trials because the rat performs the same running behav-
ior as in the choice trials, but is not required to make any active
decisions.
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COMPUTATIONAL MODEL
To carry out the decision process for the T-maze task, the model
shown in Figure 2A was developed. This is a population level
model (McClelland, 1979; Usher and McClelland, 2001) compris-
ing populations of neurons selective for particular aspects of the
task (denoted by circles in Figure 2A). The model is structured
into three main layers: inputs providing sensory information,
working memory to recall previous movements, and outputs
defining actions to be taken. The populations in the working
memory and output layers were modeled as leaky integrators (i.e.,
with slowly decreasing excitation in the absence of any input),
which accumulated their inputs and additional noise (account-
ing for random fluctuations in neuronal activity). The activity of
inputs to the model was set according to the current position in a
simulated maze.

The connections in this model encode the optimal policy for
solving the T-maze task. For example, if the rat is in the straight
part of the maze it is most likely to go straight: motor output
was limited by the constraints of the linear maze, hence turn-
ing behavior was only allowed at maze corners or ends (see
Figure 2A). All turns were treated equally by the model, regardless
of running direction and choice/guided context. The inclusion of
a separate working memory component is vital to this task, as
the subject must remember the direction of the previous guided
turn in order to receive a reward. When the simulated rat is at a
turn, sensory input from the population encoding this turn will
increase the representation of this turn in the working memory
layer and the representation of the other turn will be suppressed
due to mutual inhibition between working memory populations.
The activity of the working memory populations is used within
the model to bias the decision of a left or right hand turn when a
T-junction (choice turn) is encountered.

It should be noted that our model of this task describes a
learned state, where the connections between populations of
neurons are established and static. Other models have been pro-
posed that describe how these connections are developed and
how the task is learnt, e.g., by incorporating reinforcement learn-
ing to modify cognitive policies (Zilli and Hasselmo, 2008; Lloyd
et al., 2012). However, these processes were not the focus of this
work.

Actions were performed when excitation of the associated
integrator in the output layer exceeded a threshold value and
integrator excitations remained fixed while the action took place.
This could in some cases lead to the same action being executed
multiple times in succession when leakiness was small. These
actions were constrained by the maze geometry, ensuring the rat
maintained the same position while integrators updated to the
new position’s stimuli. In addition, as multiple integrators could
exceed their threshold at a particular point in time, the integra-
tor with the greatest excitation was chosen. Mutual inhibition was
used to establish competition between integrators and lead to the
ultimate choice of a single action.

The dynamics for each integrator were described using the
following general form:

dA = (Ext1 + · · · + Extn − kA − w (Inh1 + . . . + Inhm)) dt + cdW
(1)

Where dA is the change in integrator excitation, Ext1to Extn are
the values of excitatory inputs, k is the decay rate, A is the inte-
grators current excitatory level, w is the inhibition rate, Inh1 to
Inhm are the values of inhibitory inputs, dt is the time step, and
c is a scaling factor of the noise dW . A Wiener process was used
to model noise and ensure appropriate scaling with the time step
dt. A full model for output and working memory integrators is
given by:

dO1 = (I1 − kO1 − w (O2 + O3 + O4)) dt + cdW, (2)

dO2 = (I2 − kO2 − w (O1 + O3 + O4)) dt + cdW, (3)

dO3 = (I3 + I4 + M1 − kO3 − w (O1 + O2 + O4)) dt + cdW, (4)

dO4 = (I4 + I5 + M2 − kO4 − w (O1 + O2 + O3)) dt + cdW, (5)

dM1 = (I3 − kM1 − wM2) dt + cdW, (6)

dM2 = (I5 − kM2 − wM1) dt + cdW, (7)

where M1 and M2 are working memory integrators and I1 to I5

are external inputs based on the rats current position and ori-
entation within the maze. When k = w and c = 0, there is no
decay of working memories (Bogacz et al., 2006) because under
this condition the change in the difference between M1 and M2

[that can be obtained by subtracting Equations (6) and (7)] is
simply d(M1 − M2) = (I3 − I5)dt. Thus, the change in M1 − M2

only depends on inputs, and M1–M2 remains constant in their
absence.

Sensory inputs were calculated by allowing for this model to
drive the behavior of a virtual rat in a simulated T-maze envi-
ronment. This environment was two-dimensional, consisting of
a set of vertical and horizontal line segments over which the
rat was able to move. In addition, junctions between these seg-
ments were defined, providing information about possible paths
through the maze (see Figure 2B for the full maze geometry).
We made the simplifying assumptions that the rat has one of
four possible orientations (north, east, south or west) and that
it moves at a constant speed (2 virtual length units/second)
when performing an action. This speed was estimated from
recordings of rat movements during experiments and scaled
appropriately for the virtual maze. Variation in trial durations
(for example during error trials) was accommodated by the
virtual rat pausing during the choice process, i.e., while the
activity of all accumulators in the output layer was below the
threshold. If the rat attempted to move outside a line segment
(e.g., into a wall), the position remained unchanged. On the
basis of current position, line segment and orientation, one
of the inputs (I1, I2, I3, I4, I5) was set to 1, while others were
set to 0.

Unless stated otherwise, simulations used the parameter values
w = 0.2, k = 0.2, c = 0.0001, and decision threshold was set to 1.
To account for statistical variation in simulations, 300 duplicates
of 1000 time units were executed for the parameter set tested in
Figure 2. In all cases the rat was initially placed in the center of the
maze facing west toward the guided turn (see Figure 2B) and all
model variables were initialized to Oi = Mi = 0. Equations (2)–
(7) were solved using the Euler method with dt = 0.1, and if any
of the model variables became negative after an integration step,
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FIGURE 2 | (A) Connectionist model for the T-maze task. Arrows represent
excitatory connections and arcs ended with circles represent inhibitory
connections between all pairs of integrator within a specific group (indicated by
dashed rectangles). Each input, denoted In, relates to scenarios that the rat may
encounter: I1 straight corridor, I2 dead end, I3 right-hand bend, I4 T-junction, I5
left-handbend.Actions that the ratcan takeare representedby:O1 movestraight

ahead, O2 turn around, O3 right turn and O4 left turn. The M1 and M2 integrators
act as a working memory. (B) Geometry of the 2D virtual environment made up
of 9 separate line segments. Initial position and orientation of the rat is shown.
(C) Average % of successful trials with c (standard deviation as overall noise of
all integrators) varied. (D) Average % of successful trials with standard
deviation as leakiness of working memory integrators, k, is varied.

their value was reset to 0. The performance of the animals was
characterized by a fraction of correct trials, so this single statistic
was not sufficient to constrain multiple parameters of the model.
Therefore, we used a sample combination of parameter values for
which the model was able to recapitulate the range of behavioral
performance observed across animals.

EXPERIMENTAL DATA
We re-analyse data recorded by Jones and Wilson (2005a,b).
dCA1 pyramidal cell layer (−3.6 mm, +2.2 mm from bregma)
and deep-layer prelimbic cortical (mPFC +3.2 mm, +0.6 mm)
action potential spike times were recorded from multiple tetrode
electrodes (implanted under isoflurane anaesthesia) in 6 male
Long-Evans rats running the end-to-end T-maze, alongside
video-tracked head position sampled at 30 Hz. Rats were food
restricted (to 85% of free-feeding weight) and trained in the task
until consistent >85% performance prior to tetrode implanta-
tion; reward was chocolate-flavored milk drink. Data from an
entire single recording session at least 7 days post-surgery from
each rat are analyzed here; sessions lasted 18–35 min per rat
(average 21 min) and include spike times from a total of 77
dCA1 place cells and 78 putative pyramidal neurons in mPFC,
recorded during a total of 16 error trials and 77 correct tri-
als. The average task success rate during these sessions was

83 ± 5% (s.e.m). See Jones and Wilson (2005a,b) for complete
details.

SELECTING TRIALS
The experimental data were analyzed using MQL, a new soft-
ware toolbox for analysing time series data recorded during
maze-based tasks. The toolbox aids analysis by correcting for
loss of positional signal from video camera tracking of rats
(described in detail by Jahans-Price, 2010) and flexibly selecting
a subset of recorded trajectories on the basis of user speci-
fied constraints called “queries.” The MQL toolbox is written
in MATLAB and is downloadable with additional documenta-
tion, screenshots and tutorials, from http://www.cs.bris.ac.uk/
Research/MachineLearning/mql/

Queries created in MQL consist of a number of constraints
and return the subset of position data (and associated spike-
times) which meet all of them. Each constraint is a horizon-
tal or vertical “query line” that intersects with part of the
maze. The query lines specify a desired trajectory, as MQL only
selects trajectories which intersect the query lines in a speci-
fied order. Namely, when the query is run, MQL collects series
of chronological position data which cross all the query lines
in the order they are defined, i.e., the line defined by query
line 1 must be crossed first. Additional “avoid” queries can
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also be added to fine-tune trajectory selection (shown in red in
Figures 1C,E).

Figure 1C illustrates how queries are constructed to return
a specific trajectory, e.g., retrieving all error choice trials (see
Section The End-to-End T-maze for details) starting from R2
that make an incorrect left turn down to reward point R3. The
first query line, intersecting with the lower left arm, ensures
that trajectories start in that arm, i.e., from R2. The second
and third query lines in the central arm make sure the trajec-
tory passes through the central arm. The fourth and final query
line ensures the run is an incorrect trial, finishing at R3. Query
lines 3 and 4 are precisely placed to give the timestamps for the
beginning and end of the choice turn. MQL uses query lines
to export the timestamps at which they are crossed, providing
data to calculate timings and firing rates occurring between query
lines.

Using timestamps from queries like that shown in Figure 1C,
it was possible to compare timing and neural activity on correct
vs. error trials for the run along the central arm and during the
choice turn. Jones and Wilson (2005a,b) define the central arm
as the central three-quarters of the arm. So as to define the cen-
tral arm in the same way, vertical query lines were placed one
eighth into the arm at both ends giving timestamps for the cen-
tral three-quarters. We define the choice turn as the final eighth
of the central arm and the same distance into either the upper
or lower arm. Therefore, horizontal query lines were placed in
the upper and lower arms the same distance from the center of
the T-junction as the vertical query line defining the end of the
central arm.

Our model’s prediction of turn-selective neural activity on the
maze was tested by analysing activity from individual neurons
during all the turns. In order to achieve this MQL was used to
create 16 queries for each maze, a left turn and right turn query
for each of the possible 8 turns in the maze. Each of these queries
returned the start and the finish of each trajectory during a partic-
ular turn allowing the calculation of the firing rates of all neurons
during this turn. A sample query is shown in Figure 1D. Query
lines into and out of the central arm used the same query line
placement defined by the central arm and choice turn, turns into
or out of reward points used the same x-coordinate as the cen-
tral arm query lines where possible. However, due to different
rats following different trajectories whether entering or exiting
the reward point, query lines had to be adjusted in order to fully
capture the turn.

To examine the activity of turn selective neurons leading up to
and during the choice turn queries similar to those used for analy-
sis of the choice turn were used. Again four queries that select the
four types of choice trial were used (example of one trial shown in
Figure 1E). In order to analyse firing rates as the choice turn was
approached along the central arm addition vertical query lines
were added. This created a number of intervals approximately
6 cm in length along the central arm at which timestamps could
be obtained.

The validity of position data is calculated by MQL, this
information can be used to exclude position data which is
potentially inaccurate (See website http://www.cs.bris.ac.uk/
Research/MachineLearning/mql/ for code and method). For the

analysis of the firing rate or the time between two query lines,
we used trajectories in which both points of intersection with the
query lines are valid. When for example analysing the firing rate of
neurons during the choice turn (Figure 1C), only the timestamps
for entering and exiting the turn need to be accurate. Validity at
query line also allows other areas in the maze to have signal loss if
they are not required for the current analysis.

D-PRIME ANALYSIS
To investigate how much information neurons encode about the
direction of a turn, we used d-prime analysis as a measure of how
accurately two conditions could be discriminated based on a neu-
ron’s firing rate. This approach assumes the distributions of firing
rates across trials in two conditions a and b are approximately
Gaussian and have the same variance σ2, but differing means μa

and μb. The d-prime value gives the distance between the means
and therefore the separation between the distributions (Dayan
and Abbott, 2001).

d
′=μa − μb

σ
(8)

The larger the d-prime value, the higher the discriminability
between these two distributions and the greater the selectivity of
a neuron for one condition over the other.

We first used d-prime analysis to investigate how well indi-
vidual neurons discriminated between left and right turns, using
MQL queries (Figure 1D) to select the timestamps for the two
turn directions. We calculated the average firing rates for neu-
rons during each of these trajectories returned by MQL, giving
left and right turn distributions of firing rates for each neuron (see
Figure 5 for examples of such distributions for two neurons). We
then computed the means of the left turn and right turn firing rate
distributions for each neuron. To calculate the common variance
we subtracted the mean from each distribution and combined
them. Substituting these means and variance into Equation (8),
we obtained a d-prime measure of turn selectivity for all analyzed
neurons.

Secondly, we used an analogous approach to determine how
well central arm firing rates of individual neurons discriminated
between trials originating from reward point R1 and reward
point R2.

In order for neurons to be included in both d-prime anal-
yses they were required to demonstrate either turn selectivity
or trajectory selectivity. Neurons that passed a two factor anal-
ysis of variance: left-turn activity vs. right-turn activity with
p < 0.05 were categorized as turn selective. Neurons that passed
a t-test comparing firing rates in the central arm on trials
from R1 vs. from R2 (p < 0.05) were categorized as trajectory
selective.

RESULTS
COMPUTATIONAL MODEL
Simulations were run to test if the computational model summa-
rized in Figure 2A could generate similar behavior to that seen
under experimental conditions. Without noise, the model was
able to make correct choices on all trials, whereas rats showed
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an average accuracy of 83 ± 5%. We therefore added a noise
component by setting c > 0, introducing errors in the form of
unavoidable fluctuations in neural activity and enabling a more
accurate simulation of experimental behavior. We observed that
the accuracy of the model could be reduced in two ways: (i) by
increasing the level of noise (Figure 2C), or (ii) by increasing
the leakiness of working memory [k in Equations (6)–(7)] and
thus reducing the ability for information to be retained for long
periods of time (Figure 2D).

TURN SELECTIVE NEURONS
Our model predicts that in the spatial task we should expect to
find turn-selective neurons (shown in the output layer of the
model) with firing rates significantly different on left vs. right
turns. To test for this, we compared activity during the 8 left
and 8 right turns of the maze (Figure 3A) for every neuron
using a two factor analysis of variance. A neuron was con-
sidered to be turn selective if there was a significant effect of
the direction factor (p < 0.05). We did not demand a mini-
mum firing rate of a neuron for inclusion in the turn selectivity
analysis, as two factor analysis of variance requires a sufficient fir-
ing rate during at least one turn direction in order to support
significance.

Figure 3B shows a sample neuron selective for left turns, fir-
ing at a consistently higher rate than during right turns (p =
0.0005). We found a total of 19 prefrontal neurons (24% of the
population recorded) selective for a particular turn direction. 10
of the 19 turn neurons were left- and 9 right-turn selective. In
what follows we refer to the turn direction associated with higher
firing rates as “preferred turn” and the opposite direction as the
“unpreferred turn.” CA1 neurons were not turn-selective by this
measure, although some neurons did show limited selectivity on
a subset of the 8 possible turns.

As the prefrontal cortex is suggested to encode the learning
of rules and strategies that guide behavior (e.g., Wallis et al.,
2001) it is possible that the firing rate differences of turn neu-
rons could be driven by differential activity around a single turn
that is particularly important to the task, e.g., the choice turn. For
example, if firing rates during the choice turns were preferentially
influencing the previous analyses, we would expect to see higher
average firing rates for left and right turn-preferring neurons on
exit from the central arm during choice runs (at corners 6 and 7
on Figure 3A respectively). However, Figures 3C,D illustrate that
average firing rates over all 19 turn-selective neurons are similar
across all 8 turns during both the preferred and unpreferred turn
directions.

FIGURE 3 | mPFC activity is turn dependent. (A) Visualization of all the left
and right turns in the maze, left turns shown with light blue arrows, right
turns shown with light red arrows, choice right turn shown in solid red, choice
left turn shown in solid blue. (B) Example of a neuron with activity selective
for left turns. It shows higher average firing rates during all 8 left turns than

during all 8 right turns. (C,D) Turn selectivity does not appear to be a result of
one turn being over represented (C) The average activity at each of the turns
for all 9 right turn preferring neurons, turn 7 is the choice turn. (D) The
average activity at each of the turn for all 10 left turn preferring neurons, turn
6 is the choice turn. Error bars show the standard error of the mean.
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PROSPECTIVE mPFC ACTIVITY DURING APPROACHES TO THE CHOICE
TURN
Our computational model suggests that turn-selective neurons
are influenced by working memory neurons, and as part of the
decision-making process should therefore increase their firing
rates prospectively before a decision to ensure a turn in their
preferred direction is made. Conversely, due to mutual inhi-
bition between the neuron populations representing alternative
actions (Figure 2A), we would expect that neurons selective for
the unpreferred turn should also decrease their firing rates.

Figure 4 shows the average activity of turn selective neurons as
the rat approaches the choice turn. Each position on the Figure 4
x-axis represents from left to right the intervals between query
lines in Figure 1E, with position h being the interval at which
the rat makes the choice turn. The activity value gives the aver-
age firing rate of all 19 turn-selective neurons calculated from
their individual average activity during the given interval. The
four lines plotted on Figure 4 represent the average firing rates
during the intervals for the four types of choice trial (two cor-
rect trials and two error trials). The preferred and unpreferred
terms define the direction of the choice turn and whether it is the
direction a turn-selective neuron is associated with. Specifically, a
correct preferred trial for a right turn selective neuron is a choice
trial starting from the bottom left reward point (R2) with a right
choice turn, while for a left turn selective neuron it is during a trial
starting at the top left reward point (R1) involving a left choice
turn. Using the preferred and unpreferred terms allowed us to
combine the firing rates from both sets of turn-selective neurons.

Figure 4 shows a prospective ramping in activity of turn-
selective neurons during the “preferred correct” condition and
reduction of activity during the “unpreferred correct” condi-
tion. This is consistent with turn-selective neurons representing
future turn direction and inhibiting the alternative choice. The
same effect can be seen for the error conditions although in a
reduced manner. A two-factor analysis of variance was used to
compare the conditions preferred vs. unpreferred and correct
vs. error. The turn-selective neurons showed a significant selec-
tivity for preferred vs. unpreferred during the choice turn (p =
0.0083; position h). This selectivity was reduced during error
trials (factor: interaction, p = 0.0424).

CONJUNCTIVE CODING: ARE TURN- AND TRAJECTORY-SELECTIVE
NEURONS SEPARATE POPULATIONS?
In order to make a correct choice, information about the past
trajectory needs to be maintained while the rat is in the central
arm until the choice point is reached. For all neurons recorded,
we investigated whether their firing rates in the central arm were
significantly different depending on whether the trajectory was
initiated from R1 or R2. We found 12 such “trajectory-selective
neurons,” 8 in mPFC and 4 in dCA1.

Our model, for conceptual simplicity, assumes that turn-
selective and trajectory-selective neurons (in the working
memory layer) constitute separate populations. However, we
now investigate whether the mPFC populations of turn- and
trajectory-selective neurons revealed by the above analyses are
in fact separate or overlapping, with some neurons conjunctively
coding for both turn and trajectory. We used a method of signal

FIGURE 4 | Turn selective mPFC neurons display prospective ramping

of activity before a choice turn in their preferred turn direction. The
curves show the average firing rates during intervals leading to the choice
turn labeled as shown in Figure 1E. Interval h encompasses the choice turn
per se, with intervals i and j directly following the choice turn. Solid lines
show the average activity of turn-selective neurons from trials when the rat
turned in direction preferred by the neuron, while dashed lines are based on
trials when the rat turned in the opposite direction. Please note that
selectivity for the preferred direction during the choice turn is significantly
reduced during error trials (shown in gray, P < 0.05).

detection called d-prime (see Methods) to calculate the selectivity
of individual neurons for a given condition.

Figure 5 illustrates that dCA1 contained neurons that were
exclusively trajectory-selective with high d-prime values only
present for trajectory (Figure 5C). In contrast, the mPFC
contained an array of neuron types with 3 showing trajectory
selectivity, 14 showing turn selectivity, and 5 mPFC neurons
showing selectivity for the conjunction of turn and trajectory with
high d-prime in both cases.

DISCUSSION
The analysis in the present manuscript extends the original analy-
ses of the data made by Jones and Wilson (2005a) in several ways.
Jones and Wilson reported trial-dependent activity in mPFC on
the central arm of the maze, and here we additionally exam-
ine neural activity at corners. We identified prefrontal neurons
selective for turn direction during a spatial task and observed a
prospective ramping of activity for the preferred direction before
a decision. During error trials we saw a reduction in the selectivity
for turn direction suggesting a lower confidence in the decision.
We found that the mPFC turn-selective neurons overlapped with
a population of trajectory-selective (working memory) neurons,
with neurons from both populations encoding both concepts.

COMPUTATIONAL MODEL
For conceptual simplicity, our computational model assumed
separate neural populations selective for turns direction and
previous trajectory. By contrast, our analyses revealed neurons
selective for both. To include this experimental observation, one
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FIGURE 5 | D-prime values for turn direction and trajectory reveal an

overlap between mPFC neurons encoding turn and trajectory. (A)

D-prime score for a mPFC turn selective neuron, measuring separation of
distributions of average firing rates (spikes/s), during left turns (blue) and
right turns (red). (B) D-prime score for a mPFC trajectory selective neuron
during trajectories making a left turn into the central arm (blue) and
trajectories making a right turn into the central arm (red). D-prime values
of 1.1632 and 3.2196 (left to right), plots correspond to two mPFC neurons
shown in panel (C). (C) D-prime values for mPFC and dCA1 neurons

measuring selectivity for turn direction and maze trajectory. Each symbol
corresponds to one neuron, its y-coordinate is equal to the d-prime
measuring the difference in firing rate distributions during turns left and
right, the x-coordinate is equal to d-prime measure of difference in firing
rates during the central arm, between trajectories from top and bottom of
the maze. Neurons identified as turn selective are shown in red (mPFC),
neurons identified as trajectory selective shown in blue (mPFC) and green
(HPC), Neurons which were identified as both turn and trajectory selective
are shown as blue with red in the center.

could develop a model inspired by that of Machens et al. (2005)
which uses mutual inhibition to implement both decision mak-
ing and working memory as a single state variable. This model
demonstrates that by using non-linear dynamics, simple modules
of neurons are able to change the configuration of their dynamical
properties and Machens et al. (2005) propose this as a possible
explanation for the frontal lobes ability to switch between differ-
ent rules quickly. Alternatively, one could develop a model on a
different scale, i.e., including description of individual neurons,
rather than populations. This would be an interesting direction
for future work. In our model it is not clear specifically where
errors in the task result from. They could be explained by a failure
either in the working memory layer or in the output layer. Errors
in our model resulting from increased noise or working memory
leak both fit the behavioral data but make different predictions;
working memory leak predicts that the working memory neurons

should be less selective on error trials. We found no significant
difference in the selectivity between error and correct trials, how-
ever the number of working memory neurons we found did not
provide sufficient statistical power to establish if these neurons
decrease their selectivity on errors. This would be an interesting
question to address in the future with a larger dataset.

TURN SELECTIVE NEURONS
We are not aware of any previous reports of prefrontal turn selec-
tive neurons in the rat mPFC, although neurons selective for
parts of a maze associated with particular behaviors (Jung et al.,
1998) and neurons with contextual dependent activity (Hyman
et al., 2012) have been observed. Similar turn-selectivity has been
reported in other regions known to process spatial information,
including posterior parietal cortex (Whitlock et al., 2008; Nitz,
2009). One hypothesis explaining the presence of mPFC turn
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selective neurons is that combinations of turns are important for
success in the T-maze. Therefore, the ability to remember the
turns made everywhere in the maze is part of a strategy that devel-
ops over time as the rat learns the task. As all data were collected
from rats already trained in the T-maze task an experience-
dependent analysis examining the evolution of turn-selectivity
was not possible here.

RAMPING ACTIVITY OF TURN-SELECTIVE NEURONS
Analysis of mPFC turn-selective neuron activity during preferred
trials showed an increase before and during the choice turn.
Similar increases in firing rate have been observed by Ramus
and Eichenbaum (2000) and Narayanan and Laubach (2009),
who found similar ramping firing rates in rats during an odor-
matching task and reaction time task respectively. It is also con-
sistent with Baeg et al. (2003) where an elevation in firing rate
of prefrontal neurons is found in rats during a working mem-
ory task. Ramping of mPFC firing rates on the central arm of the
T-maze overlaps with regions of the maze where CA1-mPFC theta
coherence peaks (Jones and Wilson, 2005a,b), and may reflect
integration of spatial information into working memory and/or
decision-making. Recently, a gradual increase in firing rate has
been demonstrated in posterior parietal cortex in a task where a
rat was required to make a decision on the basis of information
it integrated from auditory stimuli (Hanks et al., 2012). Gradual
build-up of activity before a decision observed in rats is similar
to the experimental results of Shadlen and Newsome (2001) who
demonstrated that neurons in lateral intraparietal area of monkey
integrate sensory information during decision making tasks.

The firing rate of turn-selective neurons during the correct tri-
als also appears to support our computational model. Specifically,
during the correct trials unpreferred neurons did not increase
their firing rates, but instead appeared to show lateral inhibi-
tion from the preferred neurons leading to significant differences
in their activity during the choice turn. This is an example in
the model of evidence favoring one choice being greater and
thus resulting in neurons representing the other choice becom-
ing inhibited, making the turn neurons highly selective for the
correct choice. Consistent with a role of mPFC inhibitory mech-
anisms, periods of turn-selective mPFC firing coincide with
periods of augmented CA1-mPFC interactions, which have in
turn been linked to enhanced interneuron-pyramidal cell coor-
dination on during similar spatial tasks (Benchenane et al.,
2010). On error trials the difference in activity between the two
groups of neurons is not significant and the turn neurons are
significantly less selective than during correct trials. This is a
potential explanation for errors consistent with the model as
similar activity on preferred and unpreferred error trials indi-
cates a much closer competition between the two choices and
similar levels of evidence for each choice. When the choice is
more difficult, according to the model evidence is integrated
more slowly with one choice taking over and inhibiting the
other. This is demonstrated firstly with error trials taking longer
on average (Median error trials 2.08 s, median correct 1.06 s,
Wilcoxon rank sum p = 0.02132), and secondly by results present
in Figure 4. Figure 4 shows the gray lines representing pre-
ferred and unpreferred neurons, both increase their firing rate,

but while the solid gray line continues to increase the dashed
gray slows and eventually drops during the choice turn indicat-
ing increased inhibition from the opposing turn-selective neu-
rons.

The difference in selectivity when comparing correct and error
trials is, however, in contrast with the findings of Roitman and
Shadlen (2002). Their experiment showed that in a decision mak-
ing task, similar levels of activity were recorded during correct
and error trials from neurons in the parietal cortex. They saw a
consistent decision threshold that was reached by both correct
and error trials. However, Kiani and Shadlen (2009) showed a
reduction in selectivity for low confidence decisions, which is con-
sistent with our findings. It is also worth noting that the precise
point at which the decision is made is more difficult to define in
the T-maze task compared to Roitman and Shadlen (2002), which
involved an eye movement to make a decision. Additionally, in
our analysis we group the neural activity by position on the maze
rather than by time before the decision is made. It could therefore
be possible that we simply are not seeing the common decision
threshold reached due to imprecise time aligning of the trials.

CONJUNCTIVE CODING
From the turn-selective neurons identified in mPFC, 5 were also
shown to be trajectory selective. This is likely a product of the way
data is encoded in the mPFC, whereby neurons are used to encode
multiple different concepts (Wallis et al., 2001). Hence, neurons
responsible for remembering the direction of the last turn can also
be selective for the direction of the current turn. Furthermore,
finding groups of neurons in the mPFC selective for turns, trajec-
tory and both these functions, fits with the idea that the mPFC
codes for individual components of a task and also the conjunc-
tion (Wallis et al., 2001; Rigotti et al., 2013). Conjunctive coding
can provide computational advantages to a randomly connected
neural network encoding a number of task rules. As the number
of rules is increases, the neural network can scale linearly in size
if the neurons are able to respond to a large proportion of events
(Rigotti et al., 2010). Conjunctive coding is also suggested play
a role in the flexibility of the prefrontal cortex facilitating quick
adaption to execute new tasks (Rigotti et al., 2013)

FUTURE WORK
It would be interesting to replicate some of the analyses here
for a variation of the task that included variable difficulty (as
in the study of Hanks et al., 2012). This would generate more
error trials and allow us to test a prediction of our model, that
the rate at which turn selective mPFC neuronal activity ramps
would slow as task difficultly increases. Recording from the pre-
frontal cortex while the T-maze task is being learnt by rats would
enable us to test whether turn-selective neurons develop over
time as hypothesized. With an increased dataset that included
more working memory neurons, it could be possible to test
model predictions regarding causes of errors. Namely, with addi-
tional working memory neurons we could examine whether they
exhibit a reduction in selectivity during error trials, implicating
the leak parameter in creating errors. It would be also interesting
to study a modified version of the task in which the rule deter-
mining which direction the rats should take at the choice point
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switches thorough experiment (as considered by Lloyd et al.,
2012). Recording of neural activity in this task would enable
us to examine the role information coding plays in regard to
prefrontal flexibility (Miller and Cohen, 2001) and switches in
behavioral strategy (Rigotti et al., 2013). Posterior parietal cortex
and prefrontal cortex receive spatial input from the hippocampus
and now turn direction selective neurons have been observed in
both regions. Recording in these areas together would allow us to
compare information coding and observe any correlates between
these regions.

CONCLUSIONS
This study demonstrates that neurons in mPFC can encode indi-
vidual concepts or the conjunction of multiple concepts, as we
show that mPFC cells encode either turn direction, maze tra-
jectory or both of these task aspects. Information about turn
direction is important for completion of our task and is repre-
sented in mPFC by turn selective cells. These turn selective cells
show activity suggesting they may correspond to the accumu-
lators in our computational model and integrate the evidence
before making the choice. This suggests that we may be able to
study decision making processes in rodents, in a similar way as
previously studied in non-human primates.
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