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The purpose of this review is to describe how the function and connections of
the paraventricular thalamic nucleus (Pa) may play a role in the regulation of stress
and negative emotional behavior. Located in the dorsal midline thalamus, the Pa is
heavily innervated by serotonin, norepinephrine, dopamine (DA), corticotropin-releasing
hormone, and orexins (ORX), and is the only thalamic nucleus connected to the group
of structures comprising the amygdala, bed nucleus of the stria terminalis (BNST),
nucleus accumbens (NAcc), and infralimbic/subgenual anterior cingulate cortex (sgACC).
These neurotransmitter systems and structures are involved in regulating motivation and
mood, and display abnormal functioning in several psychiatric disorders including anxiety,
substance use, and major depressive disorders (MDD). Furthermore, rodent studies show
that the Pa is consistently and potently activated following a variety of stressors and has
a unique role in regulating responses to chronic stressors. These observations provide
a compelling rationale for investigating the Pa in the link between stress and negative
emotional behavior, and for including the Pa in the neural pathways of stress-related

psychiatric disorders.
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INTRODUCTION

Stressful life events can facilitate and exacerbate anxiety disor-
ders (ADs), substance use disorder (SUD), and major depressive
disorder (MDD; Hammen, 2005; Andersen and Teicher, 2009;
Nugent et al., 2011). Identifying a neuronal pathway by which
stressors can influence motivation and mood is critical to under-
standing the development and maintenance of these disorders.
In this review, we focus on the paraventricular nucleus of the
thalamus (Pa) and its strong and specific connections with the
amygdala, bed nucleus of the stria terminalis (BNST), nucleus
accumbens (NAcc), and infralimbic/subgenual anterior cingulate
cortex (sgACC) as shown in rodent and nonhuman primate
studies. These connections represent pathways by which the Pa,
strongly activated by a wide variety of stressors, may influence
structures that regulate motivation and mood. Evidence from
animal models suggest that peptidergic innervation of the Pa may
play a role in anxiety and drug relapse, and the role of the Pa in
chronic stress is discussed in relation to possible contributions to
MDD. In addition, emerging neuroimaging studies suggest that it
is possible to study the function of the Pa in humans.

ANATOMY AND CONNECTIONS OF THE PARAVENTRICULAR
NUCLEUS OF THE THALAMUS (Pa)

ANATOMY

The Pa is an elongated nucleus composed of small, densely
packed neurons spanning the anterior-posterior extent of the

dorsal midline thalamus (Figure 1A). It can be distinguished
from surrounding nuclei by its moderate to dense staining
for acetylcholinesterase and light staining for myelin both in
monkeys (Figures 1B, C) and humans (Ohye, 1990; Uroz
et al, 2004). An anterior and posterior portion has been
described in animal models (Moga et al., 1995; Jones, 2007;
Vertes and Hoover, 2008; Li and Kirouac, 2012), however this
distinction is not easily identified in humans (Uroz et al.,
2004; Jones, 2007). Some classify the Pa as part of the epi-
thalamus, which includes the habenular nuclei and pineal
body (Jones, 2007), while others include it in the midline
and intralaminar group of thalamic nuclei (Morel et al.,
1997).

An outline of Pa connections in rats and monkeys is described
below. Across species, Pa connections are nearly identical except
in specific structures in which the relative strength of connections
differs. For example, in rats the Pa has strong projections to
the central and basolateral amygdala (CeA, BLA; Moga et al,
1995; Li and Kirouac, 2008; Shin et al., 2008; Vertes and Hoover,
2008), whereas in monkeys the Pa projects primarily to the basal
amygdala, with weak projections to the CeA (Hsu and Price,
2009). Differences in the connections between the anterior and
posterior parts of the Pa (aPa, pPa) have also been shown in rats
(Moga et al., 1995; Li and Kirouac, 2008; Vertes and Hoover,
2008), however it is not known if these differences exist in other
species.
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FIGURE 1 | The paraventricular nucleus of the thalamus (Pa) in
nonhuman primates. The Pa is a small group of densely-packed neurons in
the dorsal midline thalamus. Shown here are three adjacent coronal
sections through the dorsal midline thalamus of the Macaca fascicularis
stained for (A) Nissl, (B) AChE, and (C) myelin. The Pa is densely stained
with AChE but is relatively lightly stained for myelin. Other thalamic nuclei
shown are the anterodorsal (AD), anteromedial (AM), anteroventral (AV),
and parataenial (Pt) nuclei. The stria medullaris (sm) is also shown. Scale
bar = 500 um. Adapted from Hsu and Price (2007)

INPUTS TO THE PARAVENTRICULAR NUCLEUS OF THE THALAMUS (Pa)
A recent study in rats using restricted iontophoretic tracer injec-
tions showed that the heaviest inputs to the Pa come from the
prelimbic, infralimbic [areas comparable to cortical areas 32 and
25, respectively, in monkeys and humans (Ongiir et al., 2003)] and
agranular insular cortices, as well as the hippocampal subiculum
(Li and Kirouac, 2012). This pattern of Pa input corresponds to
that found in macaque monkeys (Hsu and Price, 2007, 2009). In
both rats and monkeys the Pa receives significant input from the
hypothalamus, particularly the dorsomedial nucleus, as well as
from the lateral hypothalamic area, suprachiasmatic, and arcuate
nucleus (Watts and Swanson, 1987; Chen and Su, 1990; Hsu and
Price, 2009; Li and Kirouac, 2012). In both rats and monkeys
the Pa also receives dense innervation from the periaqueductal
gray (PAG; Krout and Loewy, 2000; Hsu and Price, 2009; Li
and Kirouac, 2012), a pivotal site for coordinating visceral and
behavioral responses related to pain and other stressors (Keay and
Bandler, 2001), and the parabrachial nucleus (PB; Hsu and Price,
2009; Li and Kirouac, 2012). Other inputs to the Pa in both rats
and monkeys include the entorhinal cortex, intergeniculate leaflet
of the ventral lateral geniculate nucleus, zona incerta, amygdala,
and BNST (Hsu and Price, 2009; Li et al., 2011; Li and Kirouac,
2012). In rats, it has also been shown that the aPa receives more
inputs from the hippocampal subiculum and prelimbic cortex
compared to the pPa, which receives relatively more inputs from
the prelimbic, infralimbic, and agranular insular cortices (Li and
Kirouac, 2012).

It is notable that the Pa is densely innervated by neurotrans-
mitter systems that are involved in the response to stressors
and implicated in ADs, SUD, and MDD. These inputs include
the serotonin, dopamine (DA), norepinephrine, corticotropin-
releasing hormone (CRH), orexins (ORX), and the endogenous
opioids in rat, monkey, and human studies (Otake and Nakamura,
1995; Uroz et al., 2004; Kirouac et al., 2005; Garcia-Cabezas et al.,
2007; Jones, 2007; Vogt et al., 2008; Hsu and Price, 2009; Vertes
et al., 2010). In particular, the Pa in rats and monkeys contains
among the highest concentration of ORX fibers in the brain
(Peyron et al., 1998; Kirouac et al., 2005; Hsu and Price, 2009).
Thus, the Pa receives strong inputs from neurotransmitter systems
and structures (e.g., PAG, BNST) that are activated in response to
stressors, potentially transmitting these signals to its outputs.

OUTPUTS FROM THE PARAVENTRICULAR NUCLEUS OF

THE THALAMUS (Pa)

Along with other midline and intralaminar thalamic nuclei, the
Pa was long believed to project diffusely or nonspecifically to the
cerebral cortex, in contrast to the cortical specificity exhibited by
most of the other thalamic nuclei. However, experiments using
modern tracing techniques have made it clear that the Pa has
specific cortical projections. Studies in rats have shown that the
Pa has strong projections to the infralimbic cortex (Berendse and
Groenewegen, 1991; Moga et al., 1995; Li and Kirouac, 2008;
Vertes and Hoover, 2008). Correspondingly, studies in macaque
monkeys show that the Pa projects strongly to the cortex below
the genu of the corpus callosum (i.e., sgACC; Hsu and Price, 2007,
2009), which has been implicated in sadness and depression in
humans (Drevets et al., 1997; Hamani et al., 2011). Other cortical
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targets of the Pa in rats and monkeys include the dorsal agranular
insular and entorhinal cortices (Berendse and Groenewegen,
1991; Moga et al., 1995; Hsu and Price, 2007; Li and Kirouac,
2008; Vertes and Hoover, 2008).

The Pa, which uses glutamate as a neurotransmitter (Frassoni
etal., 1997), is unique from other midline and intralaminar nuclei
in that it sends heavy projections to the shell of the NAcc in both
rats and monkeys (Berendse and Groenewegen, 1990; Moga et al.,
1995; Pinto et al., 2003; Li and Kirouac, 2008; Hsu and Price,
2009). In rats, these projections were shown to terminate onto
dendritic spines in close proximity to dopaminergic terminals
within the NAcc shell (Pinto et al., 2003; Parsons et al., 2007), and
may regulate DA levels in the NAcc shell (Parsons et al., 2007). The
Pa also projects strongly to the CeA, BLA, and BNST in rats (Moga
et al., 1995; Li and Kirouac, 2008; Shin et al., 2008; Vertes and
Hoover, 2008); and the basal nucleus of the amygdala and BNST
in monkeys (Hsu and Price, 2009). It is interesting to note that
the adjacent mediodorsal thalamic nucleus does not project to the
NAcc, amygdala, or BNST in rats, cats, or monkeys (Russchen,
1982; Su and Bentivoglio, 1990; Giménez-Amaya et al., 1995; Li
and Kirouac, 2008; Shin et al., 2008). In summary, the Pa has the
distinction of being the only thalamic nucleus projecting to the
group of structures comprising the amygdala, BNST, NAcc, and
infralimbic/sgACC. These limbic structures are known for their
roles in fear, anxiety, and reward behavior in animal models, and
display abnormal activity in ADs, SUD, and MDD in humans
(e.g., Drevets et al.,, 1997; Davis et al., 2010; Hamani et al.,
2011; Blackford and Pine, 2012; Volkow et al., 2012; Berridge and
Kringelbach, 2013; Jasinska et al., 2014). As described below, the
Pa may play a role in transmitting and regulating stress-related
information to these structures.

The aPa and pPa differ in their projection pattern, as shown
in rats. The aPa has a widespread pattern of projection to the
suprachiasmatic nucleus (SCN), dorsomedial and ventromedial
hypothalamic nuclei, lateral septum, the BNST, CeA and baso-
medial amygdala, anterior olfactory nucleus, olfactory tuber-
cle, NAcc, infralimbic, piriform, and perirhinal cortices, ventral
subiculum, and endopiriform nucleus (Moga et al., 1995). In con-
trast, the pPa has a more restricted pattern of projection including
the anterior olfactory nucleus, olfactory tubercle, NAcc, as well
as stronger projections to the CeA, BLA, basomedial amygdala,
lateral BNST, and interstitial nucleus of the posterior limb of
the anterior commissure (Moga et al., 1995; Li and Kirouac,
2008; Vertes and Hoover, 2008). Potential differences between the
projection pattern of the aPa and pPa have not been examined in
other species.

In both rats and monkeys, the Pa is reciprocally connected
with the SCN (Watts and Swanson, 1987; Hsu and Price, 2009),
the brain’s circadian pacemaker, and has been investigated for
its role in the entrainment of circadian rhythms to light in rats
(Salazar-Judrez et al., 2002). For example, Pa neurons that follow
a circadian rhythm project to the amygdala and NAcc (Peng
et al., 1995), and the Pa may provide the relay by which the SCN
influences amygdala and prefrontal cortical activity (Sylvester
et al., 2002; Peng and Bentivoglio, 2004). The Pa has also been
shown to be necessary in reducing the amplitude of circadian
body temperature rhythms during chronic stress (Bhatnagar and

Dallman, 1999). Disturbed circadian rhythms are strongly asso-
ciated with MDD, and normalize following successful treatment
(McClung, 2007). Thus the Pa, with its input from the SCN
and strong connections with mood-regulating structures, may
provide a link between disturbances in circadian rhythms and
disturbances in mood. Pa pathways involved in animal models of
psychiatric disorders are shown in Figure 2, and a summary of
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FIGURE 2 | Contributions of the Pa in psychiatric disorders. Rodent
studies suggest a role for the Pa in anxiety, drug relapse, and regulating the
effects of chronic stress. (A) Orexin (ORX) projections from the
hypothalamus to the Pa regulate fear and anxiety-like behavior through the
central nucleus of the amygdala (CeA), and bed nucleus of the stria
terminalis (BNST). (B) In a pathway for drug relapse, ORX and cocaine- and
amphetamine-related transcript (CART) from the hypothalamus, and
contextual cues from the subiculum project to the Pa. In turn, the Pa
regulates dopamine (DA) efflux in the nucleus accumbens shell (NAccSh)
and drug-seeking behavior. (C) Via the CeA and BNST, the Pa has been
shown to be an important regulator of the hypothalamic-pituitary-adrenal
(HPA) axis during chronic stress. A few studies in rodent models of
depression have shown involvement of the Pa, however its specific role in
depressive-like behavior remains to be determined. The role of the Pa in
regulating chronic stress may also influence (A) and (B). There is likely
significant overlap between the pathways for these disorders, which are
highly comorbid, and are exacerbated by severe or chronic stress. MDD,

major depressive disorder; sgACC, subgenual anterior cingulate cortex.
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the major connections of the Pa mapped onto the human brain is
shown in Figure 3.

ROLE OF THE PARAVENTRICULAR NUCLEUS OF THE

THALAMUS (Pa) IN ACUTE AND CHRONIC STRESS
SENSITIVITY TO ACUTE STRESS AND EMOTIONAL AROUSAL

In rats, the Pa is consistently and strongly activated following
a wide variety of stressors including conditioned fear, restraint,
handling, swim, mild footshock, air puff, and sleep deprivation
(Sharp et al., 1991; Beck and Fibiger, 1995b; Cullinan et al,,
1995; Bhatnagar and Dallman, 1998; Bubser and Deutch, 1999;
Semba et al., 2001; Otake et al., 2002; Spencer et al., 2004). This
suggests that the Pa is part of a common pathway that is activated
regardless of the stressor type. For example, a dual immunohisto-
chemistry study showed that acute immobilization stress induces
Fos protein expression in Pa-projecting neurons in several areas

FIGURE 3 | Summary of Pa connections linking stress with motivation
and mood. The connections shown here in the human brain are based on
rodent and nonhuman primate studies. Structures in the midbrain
(periaqueductal gray, PAG; dorsal raphe, DR; locus coeruleus, LC;
parabrachial nucleus, PB) send stress signals to the Pa, which in turn may
influence activity in the agranular insular (Al) cortex, central (CeA) and
basolateral (BLA) nuclei of the amygdala, nucleus accumbens shell
(NAccSh), bed nucleus of the stria terminalis (BNST), and subgenual
anterior cingulate cortex (sgACC), all of which are implicated in major
depressive, substance use, and anxiety disorders. Other connections with
the Pa include the entorhinal cortex/subiculum (EC/S), dorsomedial (DM)
hypothalamus, and suprachiasmatic nucleus (SCN). Heavy input to the Pa
by serotonin, norepinephrine, dopamine, corticotropin-releasing hormone,
ORX, and endogenous opioids may regulate this pathway and determine
how stressors, particularly chronic stressors, influence motivation and
mood. Inset shows area of detail in the human brain. Adapted from Hsu
and Price (2009).

known to be involved in the response to stressors, including the
PAG, locus coeruleus (LC), dorsal raphe (DR), PB, nucleus of the
solitary tract, and ventrolateral medulla (Otake et al., 2002). In
turn, stress-activated Pa neurons project to the CeA/BLA of the
amygdala, NAcc, and the medial prefrontal cortex following mild
footshock (Bubser and Deutch, 1999), or to the CeA following
forced swim (Zhu et al., 2011). The Pa may influence activity in
these structures by increasing DA utilization in the NAcc (Jones
et al., 1989; Parsons et al., 2007), and dampening activity in
the CeA during acute stress (Spencer et al., 2004), possibly by
activating inhibitory local circuits within the CeA (Veinante and
Freund-Mercier, 1998).

Accumulating evidence also indicate that the Pa is activated in
the context of emotionally arousing environments, both aversive
and rewarding. For example, Pa neurons are activated after rats are
exposed to cues signalling a sweetened water reward (Igelstrom
et al., 2010), or when placed in a context associated with a taste
aversion (Yasoshima et al., 2007), drug reward (Hamlin et al.,
2009; James et al., 2011), or footshock (Beck and Fibiger, 1995b;
Yasoshima et al., 2007). This suggests that information associated
with emotionally charged events is transmitted to the Pa, which
then provides excitatory inputs to the amygdala, NAcc, prefrontal
cortex, and other areas of the forebrain involved in the expression
of both positive and negative emotional states (Hamlin et al.,
2009; Zhu et al., 2011). Consistent with this view, lesions of the Pa
or inactivation of neurons in the Pa have been shown to attenuate
the expression of emotionally charged behavioral responses such
as conditioned taste aversion (Yamamoto et al., 1995), locomotor
response to a cocaine-paired environment (Young and Deutch,
1998), cocaine-induced conditioned place preference (Browning
et al., 2014), drug-seeking behavior following cocaine-priming
(James et al., 2010), and context-induced reinstatement of extin-
guished alcohol-seeking behavior (Hamlin et al., 2009). While
data are accumulating in support of a role for the Pa in both
negatively and positively charged emotional behavior, the mech-
anisms by which the Pa can be involved in behavioral responses
with opposite emotional directions remains to be determined.

PEPTIDERGIC INNERVATION OF THE PARAVENTRICULAR

NUCLEUS OF THE THALAMUS (Pa)

ROLE IN ANXIETY

There is growing interest in the potential importance of the
intense hypothalamic peptidergic inputs to the Pa (Freedman and
Cassell, 1994; Kirouac et al., 2005, 2006). In particular, the Pa
receives among the densest ORX input in the brain in rodents and
nonhuman primates (Peyron et al., 1998; Kirouac et al., 2005; Hsu
and Price, 2009). ORX has functions related to stress (Berridge
et al.,, 2010) and is likely to exert some of these functions by
depolarizing Pa neurons (Ishibashi et al., 2005). Recent studies
show that stimulation of ORX receptors in the region of the Pa
produces fear and anxiety-like behaviors in rats (Li et al., 2009,
2010a,b; Heydendael et al., 2011), and blockade of ORX receptors
in the Pa has anxiolytic effects (Li et al., 2010b) and prevents facil-
itation of the hypothalamic-pituitary-adrenal (HPA) axis to novel
stress following repeated stress (Heydendael et al., 2011). Other
studies show that blocking ORX receptors in the Pa attenuates the
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expression of negative emotional states associated with morphine
withdrawal (Li et al., 2011). ORX in the Pa may exert these effects
through CeA projections, which has been shown to be involved in
the retrieval of well consolidated fear memories (Padilla-Coreano
etal., 2012), or through projections to the BNST (Li and Kirouac,
2008), a region implicated in ADs. Thus, ORX projections to
the Pa may play a role in regulating the expression of anxiety
(Figure 2A).

ROLE IN DRUG RELAPSE

Preventing relapse is perhaps the most difficult aspect of treat-
ing drug addiction (O’Brien, 2005), and accumulating evidence
suggests that the Pa is involved in sensitization to drug-associated
environmental cues. The Pa is activated to contextual cues to a
methamphetamine or cocaine-paired environment (Rhodes et al.,
2005; James et al., 2011), and lesions of the Pa block the con-
ditioned locomotor response to a cocaine-paired environment
(Young and Deutch, 1998). The Pa-NAcc pathway has also been
shown to be involved in the context-induced reinstatement of
seeking alcoholic beer (Hamlin et al., 2009). The Pa may receive
context-related information processed by the subiculum (Chen
and Su, 1990; Hsu and Price, 2009; Li and Kirouac, 2012) and
mediate reinstatement behavior by regulating DA release in the
NAcc (Jones et al., 1989; Pinto et al., 2003; Parsons et al., 2007), or
through other structures involved in relapse such as the BLA and
medial prefrontal cortex (Schmidt et al., 2005).

A recent review suggests that ORX transmission in the Pa
may play a role in relapse (Martin-Fardon and Boutrel, 2012).
In addition, the cocaine- and amphetamine-related transcript
(CART), another peptide that densely innervates the Pa (Kirouac
etal., 2006), may act together with ORX to regulate the rewarding
effects of drugs of abuse. Microinjections of the CART peptide
into the Pa region attenuated cocaine seeking in drug-primed rats
(James et al., 2010). In addition, increased Fos-positive neurons
were found in the Pa during environmental cues for ethanol,
and were closely associated with ORX and CART terminal fields
(Dayas et al., 2008). Thus, ORX and CART input to the Pa may
play a central role in drug relapse by regulating responses to drug-
related cues (Figure 2B).

ROLE IN CHRONIC STRESS AND VULNERABILITY TO MAJOR
DEPRESSIVE DISORDER (MDD)

Perhaps the most intriguing aspect of the Pa is that it plays a
unique role in regulating neuroendocrine and behavioral adap-
tations to severe or chronic stress (Bhatnagar and Dallman, 1998;
Bhatnagar et al., 2000, 2002, 2003). Rats that have experienced
several days of repeated stress show habituation of the HPA axis
to a subsequent stressor if it is of the same type as the repeated
stressor (Bhatnagar et al., 2002). However, response of the HPA
axis is often facilitated or enhanced if the subsequent stressor is of
a different type from the repeated stressor, possibly reflecting the
ability to overcome negative feedback effects of glucocorticoids
released by prior chronic stress, and respond to a novel stressor
that poses a potential threat to survival (Bhatnagar and Dallman,
1998). During chronic stress, an intact pPa is necessary for both
habituation and facilitation of the HPA axis (Bhatnagar and
Dallman, 1998; Bhatnagar et al., 2000, 2002). Interestingly, the

pPa is not engaged in the regulation of HPA responses to an
acute stressor that was not preceded by repeated stress (Bhatnagar
and Dallman, 1998; Bhatnagar et al., 2000, 2002). Although these
studies were conducted in adult animals, the Pa is activated by
recurrent handling but not by acute handling in P9 rat pups
(Fenoglio et al., 2006), suggesting that the specific engagement of
the Pa in conditions of chronic stress or stimulation may occur
throughout the lifespan.

Recent studies have yielded a more nuanced picture revealing
that the pPa is critical for the development of habituation and
facilitation, however, once developed the expression of habitu-
ation and facilitation do not seem to be regulated by the pPa.
The role of the pPa in chronic stress may be regulated by
glucocorticoid actions in the Pa (Jaferi et al., 2003; Jaferi and
Bhatnagar, 2006), ORX (Heydendael et al., 2011), ORX influenc-
ing the gene expression of the CRH receptor 1 (CRHR1) receptor
(Heydendael et al., 2012), or alpha-2B adrenoceptors, which have
been shown to be upregulated specifically in the Pa following
chronic psychosocial stress in tree shrews (Heilbronner et al.,
2004). The pPa has few if any direct projections to the paraven-
tricular nucleus (PVN) of the hypothalamus (Moga et al., 1995;
Li and Kirouac, 2008), a structure critical for initiating the HPA
axis response (Sawchenko et al., 1996), and may instead regulate
the HPA axis via multisynaptic pathways through the BNST to the
PVN (Prewitt and Herman, 1998).

The role of the Pa in chronic stress sheds light on the poorly
understood relationship between stress and the onset of MDD. It
has been hypothesized that chronic stressors exacerbate the effects
of acute stressors, or conversely an acute stressor can magnify the
depressive consequences of chronic stressors (Hammen, 2005).
The involvement of the Pa may depend on whether the acute
stressor leads to habituation or facilitation. For example, acute
stressors can facilitate the occurrence of MDD in the presence of
high levels of chronic stress (Hammen et al., 2009). It is possible
that a dysregulated HPA axis that is often associated with MDD is
in part an inability for the Pa to respond adaptively to chronic
stress. Furthermore, an abnormal Pa in MDD may exacerbate
or sustain the negative emotional effects of chronic stress by
contributing to elevated sgACC activity. This possibility is sup-
ported by the observation that the “medial” thalamus including
the Pa exhibits greater functional connectivity with the sgACC in
patients with MDD compared to controls (Greicius et al., 2007).
Abnormal Pa activity may also influence the NAcc, and may be
responsible for anhedonia in MDD, and/or drug reinstatement in
SUD (Pizzagalli et al., 2009; Millan et al., 2011). Thus, the Pa may
play a role in mediating the relationship between chronic stress
and MDD (Figure 2C).

The Pa is a key structure in multiple rodent models of MDD.
Following forced swimming, increased levels of c-fos in the Pa was
correlated with levels of immobility, and Pa neurons projecting
to the CeA showed increased levels of c-fos, suggesting a role for
the Pa-CeA pathway in depressive-like behavior (Zhu et al., 2011).
Following repeated exposure to uncontrollable footshock stress,
the Pa was one of only five structures (out of 60 brain areas sur-
veyed) with reduced c-fos levels following chronic administration
of desipramine (a tricyclic antidepressant), which also resulted
in reduced depressive-like behaviors (Beck and Fibiger, 1995a).
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In olfactory bulbectomized rats, a validated model of MDD
(Song and Leonard, 2005), chronic fluoxetine treatment reduced
depressive-like behavior in the open-field test, and reduced c-fos
expression in the Pa, amygdala, hippocampus, and DR nucleus
(Roche et al.,, 2007). In a rodent study of repetitive transcra-
nial magnetic stimulation (rTMS) as a potential treatment for
refractory MDD, the greatest increase in c-fos levels was in the
Pa (Ji et al., 1998). Taken together, these studies suggest that the
Pa is sensitive to multiple rodent models of MDD and MDD
treatments. Future studies specifically targeting the Pa with lesions
or pharmacological manipulations are needed to examine the
specific role of the Pa in rodent models of MDD.

HUMAN STUDIES OF THE PARAVENTRICULAR NUCLEUS OF THE
THALAMUS (Pa)

The small size of the Pa makes it difficult to identify in neu-
roimaging studies, however a few studies strongly suggest receptor
binding specifically in the Pa with positron emission tomography
(PET) and activation of the Pa with functional magnetic reso-
nance imaging (fMRI). For example, as described below, high
levels of receptor binding specifically in the Pa in postmortem
human brains (with high anatomical resolution) suggest that
radioligand binding for that particular receptor in the medial
thalamus detected with PET (with lower anatomical resolution) is
likely in the Pa. We describe below the only human neuroimaging
studies to our knowledge that have identified the Pa. Given
the strong connections of the Pa to structures often showing
abnormal neural activity in AD, SUD, and MDD (including the
amygdala, NAcc, BNST, and sgACC), and its role in regulating
stress, the Pa may be considered a key component of the neural
pathways involved in these disorders (Figure 3).

POSITRON EMISSION TOMOGRAPHY WITH RADIOLIGANDS

In humans, the Pa contains the highest density of [12°I]epidepride
Dy/3-binding sites (2.5x more than that of the adjacent
mediodorsal nucleus) in the thalamus as shown by in situ autora-
diography (Rieck et al., 2004). This corresponds to PET data
showing that the Pa has the highest thalamic binding potential
in vivo for the D, radioligand ['8F]fallypride, whereas binding
in the mediodorsal nucleus was significantly less (Rieck et al.,
2004). Thus, DA binding in the Pa can be identified and studied
in humans. The function of DA release into the Pa is not known,
although D, 3 agonists have been shown to activate Pa neurons in
rats (Deutch et al., 1998).

In human postmortem brains, high levels of 5-
hydroxytryptamine 1la (5-HTla) receptor binding were
found in the midline thalamic nuclei, with low to absent
binding in the mediodorsal thalamus (Varnis et al., 2004).
This finding is consistent with the pattern of binding found
in the thalamus for 5-HT1 in macaque monkeys (Stuart et al.,
1986). Interestingly, radiolabeled selective serotonin reuptake
inhibitors (SSRIs) have been shown to accumulate to a high
degree in the midline and dorsal thalamic nuclei including the
Pa in pigs, monkeys, and humans (Smith, 1999), suggesting that
serotoninergic neurotransmission to the Pa may be involved in
the antidepressant effects of SSRIs.

It has been consistently shown in humans that the thalamus
has the highest levels of p-opioid receptor binding (Sprenger
et al., 2005). The greatest acute reduction in p-opioid recep-
tor availability (reflecting increases in p-opioid-mediated neuro-
transmission) following pain challenges was found in the medial
thalamus, which includes the Pa (Zubieta et al., 2001; Bencherif
etal., 2002). Furthermore, a recent study showed that social rejec-
tion (i.e., when one is not liked by others) also increased p-opioid
receptor-mediated neurotransmission in the midline thalamus
that includes the Pa (Hsu et al., 2013). This study suggests that
the p-opioid receptor system, which alleviates physical pain, may
also regulate “social pain” through the Pa. Consistent with the
human data, the Pa in rats contains among the highest levels of
W-opioid receptor immunoreactivity in the thalamus (Ding et al.,
1996) and contains the densest thalamic concentration of fibers
for the endogenous p-opioid receptor ligands endomorphin-1
and -2, enkephalin, and beta-endorphin, with few fibers in the
surrounding mediodorsal nucleus (Sar et al., 1978; Covenas et al.,
1996; Martin-Schild et al., 1999; Uroz et al., 2004). Following
p-opioid receptor stimulation in rats, the Pa and other midline
nuclei showed the highest activation in the thalamus as measured
by c-Fos (Jiang et al., 2000) or [**S]GyS binding for detecting G-
protein activation (Sim-Selley et al., 1999). Activation of p-opioid
receptors in the Pa may function to inhibit firing of neurons in
the Pa (Brunton and Charpak, 1998), potentially alleviating the
effects of stressors. It remains to be determined if activation of the
L-opioid receptor system in the Pa during physical pain and social
rejection in humans regulates motivation and mood through Pa
projections to the NAcc, amygdala, PAG, agranular insular (AI)
cortex, and sgACC found in rodents and nonhuman primates
(Berendse and Groenewegen, 1990, 1991; Moga et al., 1995; Pinto
et al., 2003; Hsu and Price, 2007, 2009; Li and Kirouac, 2008;
Vertes and Hoover, 2008).

FUNCTIONAL MAGNETIC RESONANCE IMAGING

Although the spatial resolution used in most fMRI studies does
not allow for the identification of the Pa beyond what can be
called the “medial” thalamus, a few studies are worth mentioning.
Following eight days of repeated experimental pain, peak levels of
decreased activity were found in the medial thalamus including
the Pa (peak: x =0, y = —9, z = 6, Montreal Neurological Institute
(MNI) coordinates) in healthy individuals (Bingel et al., 2007).
This finding is consistent with the role of the Pa in regulating
the effects of chronic stress in animal models as described above.
Furthermore, in those who showed behavioral habituation to the
repeated pain, the sgACC showed increased activity, suggesting
that decreased Pa activity allowed for the sgACC to engage in
mediating the habituation to pain (Bingel et al., 2007). The
functional relationship between the Pa and sgACC was also high-
lighted in an fMRI study that examined functional connectiv-
ity (i.e., activity correlation) during rest. In this study, patients
diagnosed with MDD showed greater resting state functional
connectivity between the medial thalamus including the Pa, and
the sgACC, compared to healthy controls (Greicius et al., 2007).
These two studies suggest that chronic stressors may be regulated
by the Pa-sgACC pathway, which may be overactive in MDD,
potentially reflecting excessive coupling between the Pa and the

Frontiers in Behavioral Neuroscience

www.frontiersin.org

March 2014 | Volume 8 | Article 73 | 6


http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Hsu et al.

Paraventricular thalamic nucleus and stress

“affective” sgACC, at the expense of reduced connectivity to the
“cognitive” dorsal ACC (Anand et al., 2005a,b; Greicius et al.,
2007). Future studies using higher resolution fMRI are needed to
positively identify the Pa in its role in regulating chronic stress
and related disorders. One study using high resolution fMRI (7
Tesla) identified activation in the Pa while men viewed sexual
images (Metzger et al., 2010), showing that this level of analysis
is possible.

CONCLUSION

The Pa is positioned to influence limbic structures controlling
motivation and mood. The Pa is sensitive to environmental stres-
sors and cues for drugs of abuse and may mediate stress-induced
changes in mood and behavior through the amygdala, BNST,
NAcc, and sgACC. The Pa also plays an important role in the
regulation of chronic stress through ORX inputs, although several
neurotransmitter systems are likely involved. These observations
bring the Pa into focus as a critical component in a pathway by
which stressors, particularly chronic stressors, can influence moti-
vation and mood, potentially promoting stress-related psychiatric
disorders. Further investigation of the Pa in this role in animal
models and in humans is warranted.
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