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The experience of current outcomes influences future decisions in various ways.
The neural mechanism of this phenomenon may help to clarify the determinants of
decision-making. In this study, thirty-nine young adults finished a risky gambling task by
choosing between a high- and a low-risk option in each trial during electroencephalographic
data collection. We found that risk-taking strategies significantly modulated mean
amplitudes of the event-related potential (ERP) component P3, particularly at the central
scalp. The event-related spectral perturbation and the inter-trial coherence measurements
of the independent component analysis (ICA) data indicated that the “stay” vs. “switch”
electrophysiological difference associated with subsequent decision-making was mainly
due to fronto-central theta and left/right mu independent components. Event-related
cross-coherence results suggested that the neural information of action monitoring and
updating emerged in the fronto-central cortex and propagated to sensorimotor area for
further behavior adjustment. Based on these findings of ERP and event-related oscillation
(ERO) measures, we propose a neural model of the influence of current outcomes on
future decisions.
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INTRODUCTION
Decision-making, which refers to the process of making choices
among various options, can be temporally divided into partially
distinct phases, including the assessment of available options, the
execution of an action, and the evaluation of outcome feedback
(Fellows, 2004; Paulus, 2005; Rangel et al., 2008). Importantly,
outcome evaluation should not be regarded as the ending of
this process. Rather, the outcome information is stored in mem-
ory to help exploring action-outcome association (i.e., learning),
so as to facilitate decision-making in similar occasions (Platt,
2002; Ernst and Paulus, 2005; Kahnt et al., 2009). In addition,
current outcomes may affect future behavior by modulating the
decision-maker’s motivational states, such that rewards and pun-
ishments give arise to the tendencies of approach and avoidance,
respectively (Schultz, 2004). Numerous economic and cognitive
research have demonstrated that current outcomes strongly influ-
ence following decisions on a trial-by-trial basis, but the brain
mechanisms underlying this kind of behavioral adjustment are
largely unknown. Identifying a link between the neural activities
elicited by current outcomes and subsequent decision strategies
leads to a better understanding of the determinants of decision-
making (Cohen et al., 2011; Wunderlich et al., 2011).

Event-related potentials (ERPs), which are based on electroen-
cephalography (EEG) with exquisite temporal resolution, are
well-suited to investigate the dynamic mechanisms of cognitive
processes (Amodio et al., 2013). Investigating the potential

associations between ERP signals elicited by current outcomes
and subsequent behavioral decisions has important implications
on how current outcomes shape future actions (Cohen et al.,
2011). Two ERP components, namely feedback-related negativ-
ity (FRN) and the P3, are considered to be the major biomarkers
of outcome processing (Gehring and Willoughby, 2002; Yeung
and Sanfey, 2004; Philiastides et al., 2010; Walsh and Anderson,
2012). It has been widely suggested that FRN represents a sig-
nal of reward prediction error that mediates feedback learning
and adaptive modification of behavior (Holroyd and Coles, 2002;
Cohen et al., 2011; Walsh and Anderson, 2011). Cohen and
Ranganath (2007) asked participants to play a strategic eco-
nomic game against a computer opponent, and they discovered
that FRN magnitude after losses predicted whether participants
would change decision behavior on subsequent trials (see also
Cavanagh et al., 2010; but see Chase et al., 2011). In contrast, San
Martín et al. (2013) argued that the P3, which is associated with a
memory updating process that guides future behavior, predicted
decision adjustment on subsequent trials. In a probabilistic gam-
bling task which required players to learn the optimal strategy,
San Martín et al. (2013) found out that a larger fronto-central
P3a indicated higher likelihoods for the participants to change
their choices, while the FRN showed no relation with behav-
ioral data (see also Chase et al., 2011; Ernst and Steinhauser,
2012; Zhang et al., 2013). In sum, previous studies have yielded
heterogeneous findings about the relationship between the ERP
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components following outcome presentation and subsequent
decision-making behavior. Thus, the electrophysiological mech-
anisms of the impact of current outcomes on future behavior
remain unclear.

In our opinion, a few issues related to the research on this
topic need to be addressed. First, the factor of task design should
be carefully considered. Many previous studies used probabilistic
learning tasks, in which positive outcomes appear more fre-
quently than negative outcomes as participants successfully learn
the winning rules (e.g., Bellebaum and Daum, 2008; Cavanagh
et al., 2010; San Martín et al., 2013). Thus, in these studies, the
changes of ERP amplitudes might be interpreted in terms of out-
come probability rather than behavioral adjustment, since both
the FRN and the P3 are sensitive to event probability (Polich
and Criado, 2006; San Martín, 2012). Importantly, our previous
studies have demonstrated that even though the probabilities of
winning and losing were set to be equal, the participants still
tried their best to explore an optimal strategy indicated by task
instructions, and their behavioral decisions significantly deviated
from chance level (Gu et al., 2010a,b; Zhang et al., 2013; see Hake
and Hyman, 1953 for detailed discussion). Accordingly, we con-
tinued to set the probabilities of win and loss as equivalent in
the current study (see Gehring and Willoughby, 2002, for further
explanations).

Second, regarding that the electrophysiological activity of the
brain is strongly oscillatory, a large amount of cognitively rele-
vant EEG information is lost in time-locked averaging (Cohen,
2011). To overcome this shortcoming, event-related oscillations
(EROs) may be used to capture cognitive processes that could
not be reflected by traditional ERPs (Buzsaki and Draguhn, 2004;
Makeig et al., 2004; Onton and Makeig, 2006; Knyazev, 2007).
The attempt to explore cognitive dynamics during the decision-
making process with EROs has revealed to be fruitful (Cohen
et al., 2011). Accordingly, the current study also investigated the
validity of ERO measures as behavioral predictors. Numerous
studies have been devoted to this issue (e.g., Cohen et al., 2007;
for a review, see Cohen et al., 2011), yet the comprehensive exam-
ination and direct comparison of the predictive powers of ERP
and ERO indexes are rare.

Finally, many neuroscience studies have employed EEG or
functional magnetic resonance imaging (fMRI) measures to
investigate the relation between brain activity and decision-
making (e.g., Knutson et al., 2007; San Martín et al., 2013).
However, to the best of our knowledge, a prediction of future
decisions on the single-trial level is still absent. In our opin-
ion, a successful single-trial behavioral prediction would help
to demonstrate the reliability of electrophysiological biomarkers
associated with decision-making. Therefore in the current study,
single-trial analysis was conducted based on both the ERP and
ERO measurements.

The present study focused on the relationship between corti-
cal electrical signals following current outcome presentation and
subsequent behavioral output in a risk decision-making scenario.
We employed EEG recording in a trial-by-trial gambling task to
investigate the ERPs (specifically, the FRN and P3 components)
and EROs. The predictive powers of these measures on risk-taking
decisions were examined using single-trial analysis.

MATERIALS AND METHODS
PARTICIPANTS
Thirty-nine Chinese students (18 females; mean age 20.47 ± 2.26
years) were recruited from Beijing Normal University as paid
volunteers. All participants were free of regular use of medica-
tion or other non-medical substances that could potentially affect
the central nervous system. All were right-handed and had nor-
mal vision (with correction). All participants gave their written
informed consents prior to the experiment. The experimental
protocol was approved by the local Ethics Committee (Beijing
Normal University).

BEHAVIORAL PROCEDURE
To investigate the impact of current outcomes on subsequent
decisions, this study employed the trial-by-trial paradigm in
which the outcome presentation of one trial is immediately fol-
lowed by the choice period of the next trial (Hertwig and Erev,
2009; Peterson et al., 2011). Before the task, participants were told
that they would be involved in a monetary gambling game. They
were informed about the rules and the meanings of symbols in the
task and were asked to respond in a way that would maximize the
total score amount. The higher the score they earned, the more
bonus money they would receive at the end of the experiment.

During the formal task, participants sat comfortably in an
electrically-shielded room approximately 100 cm in front of
a computer screen. Experimental procedure is illustrated in
Figure 1. Each trial began with the presentation of a central fix-
ation point (white against a black background). After 1200 ms,
two white rectangles (2.5◦ × 2.5◦ of visual angle) appeared on the
left and right sides of the fixation point, displaying the numbers
“9” and “99” (indicating the gambling points). Regarding their
magnitude, the “9” was the low-risk option (low return and small
loss) while the “99” was the high-risk option. The left-/right-
ness of these two numbers were counterbalanced across the trials.
Participants gambled by selecting the option displayed in the left
or right rectangle by pressing the “F” or “J” button on a con-
ventional computer keyboard with their left or right index finger.
The chosen rectangle was highlighted by a red outline for 500 ms,
followed by a time jitter between 800 and 1200 ms. Finally, the
outcome of the participants’ choice was presented in the chosen
rectangle for 1000 ms.

In order to produce a highly dynamic decision-making sce-
nario (Sengupta and Abdel-Hamid, 1993), various kinds of out-
come valence were provided, including positive (“+”), negative
(“−”), neutral (“0”), and ambiguous (“∗”). The positive valence
indicated that participants won the points that were chosen in
this trial, while negative valence indicated they lost the points.
The neutral valence meant participants neither won nor loss.
The ambiguous outcome was uninformative, of which the valence
could be positive, negative, or neutral (Holroyd et al., 2006; Bach
and Dolan, 2012). Detailed instructions on the meanings of the
symbols are described in Appendix (Part A).

The formal task consisted of four blocks of 160 trials each (640
trials in total). Blocks were separated by self-terminated breaks.
Stimulus display and behavioral data acquisition were conducted
using E-Prime software (Version 1.1, Psychology Software Tools,
Inc., Pittsburgh, PA). Unbeknownst to the participants, the
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FIGURE 1 | Schematic diagram of two neighboring experimental

trials in the monetary gambling task. RT, response time. In this
example, the participant chooses “99” in both the current and

subsequent trials, which means he/she decides to stay in the “99”
option in the subsequent trial rather than to switch to the “9”
option.

FIGURE 2 | The procedure of data recording and analysis in this study.

occurrences of four kinds of outcome valence were equiprobable
regardless of participants’ task performance.

The current study focused on the factor of subsequent strat-
egy, which denotes the selection in the following trials (stay vs.
switch); “stay” means the same option being chosen in the cur-
rent trial and the next trial while “switch” means different options
being chosen in two neighboring trials (see Figure 1). We charac-
terized the subsequent strategy factor in terms of switch and stay
not only because of previous research (Daw et al., 2006; Cohen
and Ranganath, 2007; Boorman et al., 2009; San Martín et al.,
2013), but also because one of our recent studies using a simi-
lar task design revealed that the stay/switch classification better
accounted for the association between ERP results and future
behavior than the high-risk/low-risk classification (Zhang et al.,
2013).

Procedures of data recording and analysis of this study are
illustrated in Figure 2. The statistical methods for behavioral and
ERP data are described in Appendix (Part B).

BEHAVIORAL MEASURES
The “9” is defined as the low-risk option while the “99” is defined
as the high-risk option. The tendency to choose the low-risk
option indicates a preference for a risk-avoidant strategy. This
preference was measured as the “risk-avoidant ratio,” by divid-
ing the number of risk-avoidant choices by the total number of
choices.

As described above, the current study was interested in
whether participants switched their decision-making strategy in
adjacent trials. The frequency of “choice-switching,” whether
from the low-risk to high-risk option or the reverse, was mea-
sured as the “switch ratio,” by dividing the number of switched
choices by the total number of choices.

EEG RECORDING AND PREPROCESSING
Electroencephalogram activity was recorded from 64 scalp sites
using tin electrodes mounted in an elastic cap (NeuroScan Inc.,
Herndon, USA), with an online reference to the left mastoid
and off-line re-referencing to the average of the left and right
mastoids. Besides two electrooculogram (EOG) channels and the
referential electrode at the right mastoid, 61-channel EEG data
were collected with impedance levels kept below 5 k�. The elec-
trode locations are shown in Appendix (Part G). EEG signals were
continuously sampled at 500 Hz and filtered within 0.05–100 Hz.

EEG data processing was performed using a self-coded Matlab
program based on the signal processing toolbox of Matlab R2011a
(MathWorks, Natick, USA). The recorded EEG data were down-
sampled to 250 Hz and further band-pass filtered (0.5–35 Hz)
using a phase-shift free Butterworth filter (12 dB/Octave). The
relatively high cutoff frequency for high-pass filtering was neces-
sary to remove linear trends in the EEG, so as to ensure a reliable
result of independent component analysis (ICA) process (Jung
et al., 2005; Delorme et al., 2012). Filtered data were segmented
beginning 1 s prior to the onset of outcome presentation with
3 s segments. The extended length of the epochs was necessary
to perform time-frequency analyses with a high resolution.

ICA PROCEDURE
Measuring non-phase-locked modulations in EEG spectral power
(i.e., the spectral power of EROs) can be accomplished by jointly
using time and frequency information. However, due to volume
conduction, the scalp EEG represents a spatially-mixed signa-
ture of brain activity from different neural sources. Temporal
separation of EEG data by means of ICA provides a more
functionally-relevant analysis of brain dynamics and allows inves-
tigating characteristic time and spatial signatures of the distinct
sources underlying the recorded channel data (Milne et al., 2009).

As shown in Figure 2, the EEG data were first separated by
ICA into a sum of temporally-independent, spatially-fixed com-
ponents arising from brain or extra-brain sources, followed by
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the analyses of noise-IC-removed channel data and ICA data. ICA
was performed using EEGLAB 11.0.2.1 b, a freely available Matlab
toolbox developed by Delorme and Makeig (2004). Detailed noise
rejection and ICA procedure is described in Appendix (Part C).
Finally, there were 105 ± 44 epochs being rejected per dataset after
ICA. In particular, each participant had 211 ± 60 “switch” trials
(range = 108–303) and 321 ± 64 “stay” trials (range = 149–421)
for further analyses.

CHANNEL DATA ANALYSES
ICs accounting for blinks and lateral eye movements were visually
identified according to their scalp maps, component activations,
and power spectra. These ICs were removed from each dataset;
the remaining ICs were back-projected to reconstruct channel
EEG data without EOG.

All epochs were baseline-corrected with respect to the mean
voltage over the 200 ms preceding the onset of outcome presen-
tation, followed by averaging in association with (a) the four
outcome valences in the current trial and (b) the switch or stay
strategy in the subsequent trial. Two ERP components (the FRN
and P3) were analyzed based on the conventionally-averaged
ERPs. The amplitude of the FRN was measured as the peak-to-
peak difference between the most negative peak in the 200–280 ms
window and the average voltage of the immediately preceding
and following positive peaks, so as to eliminate the potential
influence of other ERP components that temporally overlapped
the FRN (Yeung and Sanfey, 2004; Chase et al., 2011). The P3
was measured as the mean voltage within the 320–500 ms time
window.

Trial-by-trial stimulus-induced spectral power modulation
and event-locked phase concentration of the EEG rhythms were
studied using the event-related spectral perturbation (ERSP)
and the inter-trial coherence (ITC) measurements in EEGLAB
(Appendix, Part D).

ICA DATA ANALYSES
In total, the ICA algorithm produced 2379 ICs from 39 datasets
(39 datasets × 61 ICs). To remove the ICs representing artifacts
or other non-brain physiological sources, an equivalent current
dipole model for each IC scalp topography was estimated using
DIPFIT 2.2 (as EEGLAB plug-in)based on a four-shell spheri-
cal head model. Since it has been demonstrated that the EEG
sources have scalp maps that nearly perfectly match the projec-
tion of a single equivalent brain dipole (Delorme and Makeig,
2004; Delorme et al., 2012), ICs with equivalent dipoles which
computed projection to the scalp electrodes accounted for less
than 95% of actual IC scalp map variance were not further ana-
lyzed. ICs with equivalent dipole located outside of the model
head sphere were also removed. This exclusion procedure resulted
an average of 10 brain activity ICs per subject (range = 6–15, total
in 39 participants = 380).

Unlike univariate methods such as the general linear model,
ICA is not naturally suited to generalize results from a group of
subjects (i.e., ICA is a subject-based method and may sometimes
produce ICs with different psychophysiological significances
between subjects) (Esposito et al., 2005; Onton et al., 2006).
To summarize results of ICA-based analysis across individuals,

EEGLAB combines ICs from different subjects with cluster-
ing techniques (refer to Appendix, Part E for the IC clus-
ter procedure). IC clusters of interest were further analyzed
using mean scalp maps, power spectra, equivalent dipole loca-
tions, ERSP, ITC, and event-related cross-coherence (ERCOH)
measures (Appendix, Part F).

SINGLE-TRIAL PREDICTION
Finally, the prediction power of single-trial channel data was
investigated based on ERP and ERO features. To obtain a robust
measurement of the spatiotemporal information buried in switch
and stay trials, we extracted the baseline-corrected activity aver-
aged across two time intervals, i.e., 200–280 and 320–500 ms, at all
61 channels as ERP features (Philiastides et al., 2006; Steinhauser
and Yeung, 2010; Blankertz et al., 2011). For the ERSP feature,
the baseline-normalized log spectral power was averaged within
the time-frequency region of interest (hereafter referred to as TF
ROI) of 200 to 500 ms × 3 to 7 Hz (see the blue box in Figure 4)
at 61 channels. The TF ROI measurement of induced EEG activity
has been employed by other researchers (e.g., Schulz et al., 2012).
Since there was no significant ITC difference between conditions,
the time-frequency feature was only extracted from ERSPs. The
resultant 3 × 61 feature matrix was stacked into a feature vector
of 183 dimensions by concatenating the ERP and ERSP mea-
surements in 61 channels. Finally, PCA was employed to shrink
the feature dimension to 10, since a large dimension (i.e., 183)
of classification features would likely lead to a poor predictive
performance due to overfitting (Blankertz et al., 2011).

The 10-dimensional feature vector was put into logistic regres-
sion classifiers (Parra et al., 2002; Philiastides et al., 2010;
Steinhauser and Yeung, 2010) to label each trial as “switch” or
“stay.” To evaluate the performance of the classifiers, the receiver
operating characteristic (ROC) curve was plotted and the area
under the curve (AUC) was calculated to quantify the catego-
rization results (Parra et al., 2002; Philiastides et al., 2006, 2010;
Steinhauser and Yeung, 2010). A 10-fold cross-validation was
utilized to provide an unbiased evaluation of the classifier’s per-
formance in each participant (Parra et al., 2002; Philiastides
et al., 2006, 2010; Pessoa and Padmala, 2007; Steinhauser and
Yeung, 2010). Finally, a permutation statistical analysis was
performed to test whether the achieved AUC values exceeded
chance (Philiastides et al., 2006, 2010; Pessoa and Padmala, 2007;
Steinhauser and Yeung, 2010; Schulz et al., 2012). The permu-
tation procedure was applied to calculate the 99% confidence
interval (CI) of the AUC with label-permuted trials (repeated
5000 times) to produce a distribution of AUC under the null
hypothesis (i.e., the classifier has no discriminant ability). We
then checked whether the resultant AUC given by classifiers was
outside of the 99% CI of the associated label-permuted distri-
bution, in which case we determined that the AUC achieved a
significance level of p < 0.01.

RESULTS
BEHAVIORAL RESULTS
The average risk-avoidant ratio was 49.6 ± 15.2% (mean ±
SD) in 640 trials, which showed no difference compared with
chance (50%) according to the one-sample t test (p = 0.86). The
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average switch ratio was 39.5 ± 11.2% in 636 trials (the last trial
of each block was removed), which was significantly less than
chance [t(38) = −5.89, p < 0.001]; participants were more likely
to repeat the same strategy than to switch strategies between
neighboring trials.

A repeated-measures single-factor ANOVA was performed
with outcome valence as the within-subject factor and with the
switch ratio as the dependent variable, followed by pairwise com-
parisons. The switch ratio was significantly affected by outcome
valence [F(3, 114) = 41.9, p < 0.001, η2

p = 0.374]; it was larger
following positive outcomes (49.4 ± 14.9%) than following the
other three outcome valences (negative: 36.4 ± 12.4%, neutral:
35.0 ± 13.2%, ambiguous: 37.0 ± 13.3%; ps < 0.001).

CHANNEL DATA RESULTS
ERPs
The amplitude of the FRN was most prominent at the fronto-
central area and was measured as the average potential at elec-
trode sites FCz, FC1, FC2, Cz, C1, and C2 (see Figure 3A). A
repeated-measures 4 (outcome valence: positive, negative, neu-
tral, and ambiguous) × 2 (subsequent strategy: switch and stay)
ANOVA was performed on the FRN amplitude. The main effect
of outcome valence [F(3, 114) = 47.8, p < 0.001, η2

p = 0.557] was
significant; the FRN was smaller following positive outcomes
[−4.6 ± 3.4μV] than following the other three conditions (nega-
tive: −7.6 ± 3.9μV, neutral: −7.3 ± 3.8μV, ambiguous: −7.2 ±
3.1μV; ps < 0.001). The main effect of subsequent strategy
[F(1, 38) = 3.35, p = 0.075, η2

p = 0.081] was not significant
(switch = −6.8 ± 4.0μV; stay = −6.6 ± 3.5μV). The interac-
tion effect of outcome valence by subsequent strategy was not
significant [F(3,114) < 1, p > 0.05; see Figure 3B].

The amplitude of the P3 was most prominent at the cen-
tral area and was measured as the average potentials at elec-
trode sites FCz, FC1, FC2, Cz, C1, C2, CPz, CP1, and CP2 (see
Figure 3A). Similar with the FRN, a repeated-measures 4 × 2
ANOVA was performed on the P3 amplitude. The main effects
of outcome valence [F(3, 114) = 9.82, p < 0.001, η2

p = 0.205] and

subsequent strategy [F(1, 38) = 18.4, p < 0.001, η2
p = 0.326] were

significant. Regarding outcome valence, the P3 was larger fol-
lowing positive and neutral outcomes (positive: 13 ± 5.1 μV,
neutral: 13 ± 5.3 μV) than following negative and ambigu-
ous outcomes (negative: 11 ± 5.9 μV; ambiguous: 11 ± 3.9 μV;
ps = 0.001–0.010). Regarding subsequent strategy, the outcome-
elicited P3 amplitude was larger in trials followed by a switch
strategy (13 ± 5.4 μV) than those followed by a stay strategy
(11 ± 4.8 μV; see Figure 3A). The interaction effect of outcome
valence by subsequent strategy was not significant [F(3, 114) < 1,
p > 0.05; see Figure 3B].

EROs
The ERSP and ITC measurements for trials followed by
switch/stay strategies and by different outcome valences were
calculated and averaged across participants. The main effect of
subsequent strategy in Figure 4 showed that the average ERSP
displayed a transient increase during 250–500 ms (p < 0.01),
mainly at the theta frequency band (the first two columns of
Figure 4). Paired t-tests showed a significant ERSP difference

FIGURE 3 | ERP results from 39 participants. (A) The main effect of
subsequent strategy. Left: grand-mean ERP waveforms at electrode site
Cz. Right: scalp topographies averaged from 200 to 280 ms for the FRN and
from 320 to 500 ms for the P3. (B) The interaction effect of outcome
valence by subsequent strategy. The t = 0 ms indicated the onset of
outcome presentation.

during approximately 250–500 ms within 3–7 Hz; trials followed
by a switch strategy displayed a stronger post-stimulus spectral
power in this time-frequency region of interest (TF ROI) than
those followed by a stay strategy (p < 0.001; the third column of
Figure 4). It is also indicated by Figure 4 that the time-frequency
characteristics computed directly using channel EEG data are
homogeneous (i.e., with similar pattern), indicating a strong cor-
relation between scalp EEG signals (representative midline sites
of Fz, Cz, and Pz are shown in Figure 4). The interaction effect of
outcome valence by subsequent strategy was not significant either
based on the ERSP or on the ITC measurement (see Figure 5).
For the sake of brevity, ERO images of the main effect of out-
come valence and the interaction effect on ITC are provided in
Appendix (see Figure A1 in Appendix, Part D).

ICA RESULTS
Among the acquired ten IC clusters, three of them contained
ICs from less than 20 participants (i.e., insufficient to repre-
sent a common IC pattern across 39 participants) so they were
not further analyzed in this study. The remaining seven clus-
ters largely reproduced the IC clusters in previous studies (e.g.,
Makeig et al., 2002, 2004). Significant ERSP and ITC differences
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FIGURE 4 | Grand-mean ERSPs of the main effect of subsequent strategy

based on channel EEG data. Results obtained from sites Fz, Cz and Pz are
shown in (A–C). Colored ERSP images of switch and stay trials (the subplots
in the first two columns) were produced using permutation statistics, with
the red and blue indicating power increase or decrease; green areas indicate

non-significance (p > 0.01). Binary images (i.e., the subplots in the third
column) show significant ERSP differences between the two conditions
based on a paired t-test with a significance threshold of p < 0.001; green
areas indicate non-significance (p > 0.001). The blue box defines a
time-frequency region of interest (TF ROI) for single-trial feature extraction.

between switch and stay trials were found in three IC clusters,
namely fronto-central theta cluster and left/right mu rhythm clus-
ters. Together, these three IC clusters accounted for 74.8% of
the variance of the grand-mean averaged ERP difference wave
between switch and stay conditions at all channels in the 1 s
time window following feedback onset (indicated by the EEGLAB
function std_envtopo). Dynamic properties of these clusters are
summarized in Figures 6–9.

Fronto-central theta cluster
Figure 6 shows the IC properties of fronto-central theta clus-
ter, which included 34 ICs from 31 participants. The location
of the equivalent dipole for a radially-oriented cortical source
patch is typically deeper than the cortical patch itself (Baillet
et al., 2001; Makeig et al., 2004). Consistently, the mean equiva-
lent dipole location of fronto-central theta cluster (see Figure 6D)
generally coincided with sources in or near the medial frontal
cortex (MFC). ERSP images (see Figure 5E) indicate that theta
spectral power increased significantly during 250–500 ms post-
stimulus, with a larger increment in trials followed by switch
than by stay strategies (see the dark red region in the right
subplot of Figure 6E, paired t-test, p < 0.001). The ITC mea-
surement in Figure 6F shows partial phase coherence across trials
at approximately 3–7 Hz, occurring at 200–500 ms after outcome
presentation. Compared with stay trials, switch trials had a higher
degree of phase coherence of theta band oscillations that centered
at this TF ROI (see the dark red region in the right subplot of

Figure 6F, paired t-test, p < 0.001). Thus, the post-stimulus theta
burst phenomenon comprised both a frequency-specific power
increase and significant phase locking.

Mu rhythm clusters
Figures 7, 8 show the IC properties of left and right mu rhythm
clusters. The mean equivalent dipoles are located roughly over
the hand motor cortex. ERSP images (see Figures 7E, 8E) indi-
cate that distinct spectral peaks near 10 and 20 Hz were strongly
blocked from about 500 ms post-stimulus, with a larger decre-
ment in trials followed by switch than those followed by stay
strategies (TF ROI: 500 to 1000 ms × 8 to 13 Hz; paired t-test,
p < 0.001).

In line with the fronto-central theta cluster, the mu rhythm
clusters contained a theta pattern concurrent with a mean theta
power increment at approximately 200–500 ms post-stimulus,
which was consistent with Makeig et al. (2004). However, the
ERSP differences between switch and stay trials were significant at
a TF ROI of 320 to 500 ms × 3 to 7 Hz (paired t-test, p < 0.001).
The ITC measurement in Figures 7F, 8F showed a partial phase
coherence between outcome presentations and single trials at
approximately 3–7 Hz, lasting from 320 to 500 ms post-stimulus;
switch trials had a higher degree of phase coherence of EROs than
stay trials at this TF ROI (paired t-test, p < 0.001).

ERCOH between fronto-central theta and mu ICs
To examine event-related changes in the coupling of IC activa-
tions between different brain regions, we analyzed the ERCOH
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FIGURE 5 | Grand-mean ERSPs of the interaction effect of outcome

valence by subsequent strategy based on channel EEG data. Results
obtained from the electrode site Cz. Colored ERSP images were produced

using permutation statistics, with red and blue indicating power increase or
decrease, respectively. The binary image shows a significant interaction
effect; green areas indicate non-significance.

measure between the activities of fronto-central theta and two mu
IC clusters. Since the results derived from the left and right mu
ICs were similar, only the ERCOH between fronto-central theta
and left mu ICs is shown in Figure 9. The ERCOH amplitude in
Figure 9A showed that significant theta phase coherence appeared
in the data, indicating a transient post-stimulus phase linkage
between the fronto-central and sensorimotor cortical regions.
This phase cross-coherence was more prominent in the switch
trials compared with stay trials at a TF ROI of 200 to 500 ms ×
3 to 7 Hz (paired t-test, p < 0.001). Mean coherence phase lag
between the two IC clusters suggests that the theta rhythm in
fronto-central area led the theta rhythm in sensorimotor cortex
with a phase offset about 60◦ (see Figure 9B).

Other IC clusters
Figure 10 shows the mean IC scalp maps and power spectra of the
other four prominent IC clusters obtained in this study. Paired
t-tests found no reliable and significant ERSP or ITC differences
between switch and stay trials across individual ICs (p > 0.001).

SINGLE-TRIAL PREDICTION RESULTS
The AUC measurement among 39 participants was 0.65 ± 0.06.
The AUC for the label-permuted distribution was calculated using
permutation statistics for each participant [mean 99% CI = (0.50,
0.59), SD of 0.5% = 0.06, SD of 99% = 0.05]. Hence, the AUC

given by the logistic regression classifier achieved a significance
level of p < 0.01. In conclusion, single-trial classifier revealed
that a satisfactory prediction of subsequent behavior could be
achieved using ERP and ERO features elicited by current outcome
presentations.

DISCUSSION
The current study investigated the potential relation between
current outcomes and subsequent decision-making with behav-
ioral and electrophysiological measures. The behavioral results
indicated that participants were more prone to switch between
high- and low-risk options after receiving positive outcomes. We
suggest this finding reflected a fallacious belief about random
events. In our opinion, many participants falsely believed that
when continuously choosing the same option, they were less likely
to receive identical outcomes in adjacent trials (i.e., they falsely
believed that repeated trials were not statistically independent;
see Tversky and Kahneman, 1971). Accordingly, choice-switching
happened more often following positive outcomes than following
other conditions.

The ERP results indicated that the P3 component was sen-
sitive to future decisions, such that choice-switching was more
likely to be associated with a larger P3 than the decision to stay
on the same option (see also Zhang et al., 2013). In light of
this finding, one might suggest that the larger P3 associated with
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FIGURE 6 | IC properties of fronto-central theta cluster. (A) Mean scalp
maps across 34 ICs. (B) Mean power spectra. (C) Equivalent dipole
locations of 34 ICs. (D) Mean dipole location and orientation, projected
into a standard brain. (E) Mean ERSP image. Colors show significant
deviations in log power (dB) from baseline; green indicates no significance

(p > 0.01). (F) Mean ITC image. Colors show significant phase consistency
across single-trial data (p < 0.01). Dark red regions in the third column of
(E,F) show significant ERSP and ITC differences, respectively, between
two conditions based on paired t-tests with a significance threshold of
p < 0.001.

choice-switching simply reflected that subsequent switch trials
were more likely to have followed positive outcomes, which were
also associated with a larger P3 (i.e., sampling bias). However, it is
important to emphasize that, in contrast to the behavioral results,
the effect of strategy was insensitive to outcome valence for the
ERP data. Consequently, this alternate account of the P3 find-
ing was considered relatively unlikely. The discrepancy has also
been reported in our previous work and may indicate that the
behavioral and ERP findings capture different aspects of the influ-
ence of current outcomes on future decisions (Zhang et al., 2013).
Furthermore, the ERO results indicated that the fronto-central
theta and left/right mu rhythms were also linked to the factor
of subsequent strategy, such that increased spectral power and
higher degrees of phase coherence were associated with switch tri-
als compared to stay trials. Finally, single-trial analyses based on
either channel- or ICA-features, or the combination of the two,
revealed a satisfactory prediction of subsequent decision.

The current study found that the amplitude of the P3 following
outcome presentation predicted choice-switching in subsequent
trials, which was consistent with some previous studies (e.g., San
Martín et al., 2013; Zhang et al., 2013), but contradicted other
studies focused on the effect of the FRN rather than the P3 (e.g.,
Cohen and Ranganath, 2007; Cavanagh et al., 2010). In order
to reconcile this contradiction, the importance of methodologi-
cal variability be examined. The current study, as well as many

others which discovered a relation between the P3 amplitude and
future decisions (San Martín et al., 2013; Zhang et al., 2013),
used a risk decision-making paradigm, of which the major char-
acteristic is that the available options differ in levels of reward
magnitude. In contrast, in those studies which highlighted the
prediction role of the FRN, the magnitude of potential payoff was
fixed such that outcome feedback only indicated the dimension
of valence (Cohen and Ranganath, 2007; Cavanagh et al., 2010).
Therefore, it is reasonable to hypothesize that the P3 functions as
a predictor of future decisions when participants consider both
outcome valence and magnitude in the current context, while
the FRN plays the same role when only the valence is evalu-
ated. Consistent with this explanation, the two-stage sequential
model of outcome evaluation suggests an early, quick detection
of the valence of an outcome (indexed by the FRN) and a late,
deliberate integration of both valence and magnitude (indexed
by the P3) (Wu and Zhou, 2009; Philiastides et al., 2010; see
also Gu et al., 2011). In short, the pattern of the relationship
between the electrophysiological responses to current outcomes
and future behavior is highly context-sensitive and may depend
on the features of outcome feedback.

The EROs in this study also provided important informa-
tion about the electrophysiological mechanisms of the associa-
tions between current outcomes and future behavior. Specifically,
the temporal location of ERP components and the ITC images
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suggested that theta oscillations make a sizable contribution
to the P3 component, such that the P3 amplitude difference
between “switch” and “stay” trials (peaked at approximately
400 ms, see Figure 3A) were most likely generated from enhanced

FIGURE 7 | IC properties of left mu rhythm cluster. (A) Mean scalp maps
across 38 ICs. (B) Mean power spectra. (C) Equivalent dipole locations of
38 ICs. (D) Mean dipole location and orientation. (E) Mean ERSP image. (F)

Mean ITC image. The red and magenta boxes define TF ROIs for single-trial
feature extraction.

intertrial phase coherence of theta oscillatory in switch condition
than stay condition (see the dark-red region in right panels of
Figures 6–8F; see also Cohen et al., 2009a; Nigbur et al., 2012). We
make this inference based upon the fact that the ERP and ongo-
ing EEG oscillations interact and relate to each other, reflecting
different aspects of brain responses to an event, and that the post-
stimulus ERP can mainly be accounted for by the (partial) phase
locking or resetting of the EEG rhythms (Makeig et al., 2002;
Klimesch et al., 2007). The ITC images, measuring the degree
of phase resetting (i.e., phase consistency or phase locking) of
EEG activity in single trials, revealed that during the P3 period,
the uniform phase distribution across trials was replaced by a
phase distribution weighted toward a dominant phase in the theta
band. Moreover, this stimulus-locked ITC differed substantially
between the switch and stay trials (Figures 6–8F). The finding
that the theta phase coherence contributed to the P3 component
is consistent with previous studies (Zervakis et al., 2011).

Furthermore, the theta oscillations located in the MFC (see
Figure 6) and sensorimotor cortex (see Figures 7, 8) were signif-
icantly correlated with a subsequent decision-making strategy of
switch and stay. In most previous studies, the cognitive function
of fronto-central theta rhythm has been interpreted in terms of
the model of reinforcement learning (e.g., Kamarajan et al., 2008,
2012; Marco-Pallares et al., 2008; Cohen et al., 2009a,b, 2012;
Cavanagh et al., 2009). However, Cavanagh et al. (2010) recently
reported that MFC theta power was not linked to the degree
of learning from previous outcomes, but were reflective of a

FIGURE 8 | IC properties of right mu rhythm cluster. (A) Mean scalp maps across 41 ICs. (B) Mean power spectra. (C) Equivalent dipole locations of 41 ICs.
(D) Mean dipole location and orientation. (E) Mean ERSP image. (F) Mean ITC image.
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FIGURE 9 | The ERCOH measurements between fronto-central theta

and the left mu IC clusters. (A) The phase cross-coherence magnitude.
Colors show significant ERCOH magnitude between the two IC clusters
(p < 0.01). The dark red region in the third column shows significant

ERCOH differences between the two conditions based on paired t-tests
(p < 0.001). (B) This figure highlights the phase difference between the
two IC clusters at time-frequency points where ERCOH magnitude in (A)

is significant.

FIGURE 10 | Mean IC maps and power spectra of other four prominent IC clusters. (A) Frontal theta rhythm cluster. (B) Parietal alpha rhythm cluster. (C,D)

Left and right posterior alpha rhythm clusters.

general operating mechanism involved in action monitoring and
cognitive control (see also Cohen et al., 2009b; Cavanagh et al.,
2012; Nigbur et al., 2012). In this study, while the chances of win-
ning and losing were equal regardless of task performance (i.e.,
no optimal strategy could be learned), the fronto-central theta
rhythms were still associated with subsequent decisions. Thereby,
we agree with Cavanagh et al. (2010) that the MFC theta-band
activity elicited by outcome feedback represents a general top-
down process that is necessary for multiple forms of behavioral
adaptation and strategic adjustment.

Another interesting finding is that the mu rhythm played an
important role in predicting subsequent decision strategies. The
AUC scores of single-trial classification (indicating the validity of

the classifiers) based on the combined channel- and ICA-features
were significantly higher than those only based on channel-
features, mainly due to the ICA-derived mu oscillations in left and
right sensorimotor cortices (see Figures 7, 8). The mu rhythm
usually desynchronizes with imagery or actual motor movements
(McFarland et al., 2000; Pfurtscheller et al., 2006). In the present
study, the mu rhythm desynchronized more obviously before a
switch decision than a stay decision, time-locked to the current
outcome presentation (rather than motor responses). Thus, the
observed mu rhythm phenomenon was associated with action
planning and preparation rather than actual movements (for
the relationship between mu rhythm and action planning, see
Marshall and Meltzoff, 2011; Sabate et al., 2012). The rhythmic
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fluctuation of mu power might represent the accumulation of
external information in the sensorimotor cortex, such that the
motivational value of the current outcome is integrated in the
process of subsequent action preparation (Wyart et al., 2012).
This action-planning-related mu rhythm desynchronized as soon
as the appearance of outcome feedback, indicating that the
human brain may plan future decision-making at the stage of
current outcome evaluation.

Furthermore, the results of ERCOH (see Figure 9) showed
that the fronto-central theta significantly interacted with the theta
oscillation in the sensorimotor cortex (see also van de Vijver
et al., 2011: the frontal theta showed increased intersite phase
synchrony with sensorimotor cortex). In our opinion, while the
theta rhythm reflects a general process of cognitive control that
underlies behavioral adaptation, a period of increased theta phase
coherence between MFC and sensorimotor cortices might help
with re-adjusting sensory and motor expectancies (Makeig et al.,
2004). This idea is consistent with the finding that the theta activ-
ity is required for the formation of an accurate motor plan and
is associated with enhancements of motor performance (Perfetti
et al., 2011b; Nigbur et al., 2012). It is also in line with one of
our recent studies, in which the ERP source analysis revealed that
the sensorimotor cortex was activated during outcome presenta-
tion (Zhang et al., 2013). However, owing to the limited spatial
accuracy of the EEG technique (Cook et al., 1998), further brain-
imaging studies may be necessary to verify our results and help
to provide more precise localization. In addition, although we
found the fronto-central theta and sensorimotor theta oscillations
interacted with each other in this study, the directed connectivity
between these two components is still awaited to be examined by
using straightforward approaches for causal interaction such as
phase transfer entropy (Lobier et al., 2014) and Granger causality
(Granger, 1988).

To sum up, this study has provided novel findings about the
neural mechanism of risk decision-making with ERP and ERO
measures. We found that the P3 component was reflective of
the processes of strategic adjustment. The corresponding cortical
oscillations were represented as the theta rhythm phase synchrony
between fronto-central and sensorimotor cortices. Regarding the
well-acknowledged association between the P3 and the motiva-
tional significance of outcome events (Nieuwenhuis et al., 2005;
Wu and Zhou, 2009), we propose a mechanism of the influence
of current outcomes on future decisions. Specifically, we propose
that when the motivational significance of an outcome is promi-
nent, the activated neural system of action monitoring (indexed
by the fronto-central theta) compares the anticipated conse-
quences of different strategies in the current context (Makeig
et al., 2004). At the same time, if behavioral adjustment is deter-
mined to be more favorable, a “go” signal may occur in the motor
cortex (indexed by the sensorimotor theta) and would be stored in
the motor memory structure (indexed by the sensorimotor mu)
(Perfetti et al., 2011a). Then this “go” signal in sensorimotor area
may induce a strategy switching in the following decision-making
process. Accordingly, changes in decision-making strategy would
occur subsequently if the behavioral motivation elicited by this
signal overcomes the predominant behavioral tendency (e.g., risk
preference). The mechanism described above explains how and

when the current outcome information affects future behavioral
selections.
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APPENDIX
A. INSTRUCTIONS ON THE MEANINGS OF THE SYMBOLS
In the current study, the participants were informed about the
meaning of four possible outcome feedbacks before the task. The
formal written instructions read as follows.

“In each trial, after you have chosen between 9 and 99, you
will receive one of the four outcome feedbacks (i.e., positive, nega-
tive, neutral, and ambiguous outcomes). Positive outcomes (“+”)
indicate that you have earned 9 or 99 bonus points according to
your decision in this trial. Correspondingly, negative outcomes
(“−”) indicate that you have lost 9 or 99 points from your total
amount. Neutral outcomes (“0”) indicate that you have neither
won nor lost any point in the current trial. Finally, ambiguous
outcomes (“∗”) are uninformative, which means the valence of
the current outcome could be positive, negative, or neutral, but
you have no knowledge about it.”

B. STATISTICAL ANALYSIS OF THE BEHAVIORAL AND ERP DATA
Statistical analyses were performed using SPSS Statistics 17.0
(IBM, Somers, USA). The results have been presented as mean ±
standard deviation (SD). The significance level (α) was set at
0.05, unless specified otherwise. Greenhouse-Geisser correction
for ANOVA tests was used whenever appropriate. The Bonferroni
method was used to correct p values to address Type I error infla-
tion. Significant interactions were analyzed using simple effects
models. Partial eta-squared (η2

p) values were reported to demon-
strate the effect size of ANOVA tests, where 0.05 represents a small
effect, 0.10 indicates a medium effect, and 0.20 represents a large
effect (Cohen, 1973).

C. TECHNIQUE DETAILS OF ICA
The epoched data of each participant were concatenated to form a
640 epochs × 61 channels matrix, followed by visual inspection to

discard epochs containing irregular noise (e.g., non-stereotyped,
unique artifacts such as high-amplitude or high-frequency noise
and linear noise). Typical physiological artifacts such as eye
blinks, lateral eye movements, heartbeat, and temporal muscle
noises were kept in the data. The runica algorithm of EEGLAB
was then performed on a subject-to-subject basis as an imple-
mentation of extended infomax ICA (Bell and Sejnowski, 1995;
Makeig et al., 1996; Lee et al., 1999) to obtain 61 ICs from each of
39 datasets. Default runica training parameters were used (stop-
ping W matrix change = 10−7; maximum iteration number =
512). The method of using two rounds of ICA is suggested by
many researchers, including the authors of EEGLAB, since the
results of the initial round are informative in rejecting more trials
(Meltzer et al., 2007; Miyakoshi et al., 2010; de Borst et al., 2012).
Therefore, the ICA resulting data were further visually inspected
to exclude remaining “bad trials” that containing a relatively large
number of noisy IC activations. Afterwards, a second ICA was
run on the pruned data, followed by the same epoch rejection
procedure.

D. ERSP AND ITC ANALYSES
The ERSP contains the narrow-band event-related
desynchronization and synchronization and illustrates mean
stimulus-locked EEG power deviations from baseline-mean
power in decibels (dB) across a broad frequency range (Makeig,
1993). The ITC (first introduced by Tallon-Baudry et al., 1996,
which termed the “phase locking factor”) measures the trial-
to-trial phase consistency of EEG data at a particular latency
and frequency; a value of 0 represents absence of synchroniza-
tion between EEG data and the occurrence of experimental
events; a value near 1 indicates perfect synchronization (i.e.,
near identical phase across trials at a given latency). These

FIGURE A1 | Grand-mean ERSPs of the main effect of outcome valence based on channel EEG data. Results obtained from the electrode site Cz.
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FIGURE A2 | Electrode positions and labels of the data set in the

current study.

two time-frequency measurements were calculated using a Morlet
wavelet with the number of cycles linearly rising from a minimum
of 3 cycles at 3 Hz to a maximum of 7 cycles at 35 Hz within one
analysis window. This modified wavelet transform was selected
to optimize the trade-off between temporal resolution at lower
frequencies and stability at higher frequencies. Log-spaced 80 fre-
quencies ranging from 3 to 35 Hz were calculated from 1 s prior to
and ending up to 2 s following the onset of outcome presentation
with baseline correction from −1 to 0 s. When plotting the ERSP
and ITC results across participants, two-tailed permutation statis-
tics were computed with α set to 0.01 (extracting at random from
baseline data and applied 200 times). To estimate the reliability of
the ERSP and ITC differences between different conditions across
39 participants, paired parametric statistics with Bonferroni cor-
rection were performed at each pixel with α set to 0.001 (Makeig
et al., 2004; Onton et al., 2005). Common ERSP baseline was used
in all conditions.

The ERSP images of the main effect of outcome valence (see
Figure A1) are provided as follows. ITC plots of main effects
are omitted because there was no reliable and significant phase
coherence difference between conditions.

E. IC CLUSTER PROCEDURE
In this study, the IC feature vectors for clustering were com-
posed of power spectra with dimensions reduced to 3 princi-
pal components (PCs) by principal component analysis (PCA),
averaged ERPs (reduced to 4 PCs), equivalent dipole locations
(dimension = 3), scalp map gradients (reduced to 5 PCs), aver-
aged ERSPs (reduced to 5 PCs), and ITCs (reduced to 5 PCs). The
equivalent dipole location measure was multiplicatively weighted
by a factor of 2; other measures were given a weight of 1, and all
features were normalized. Finally, the 25-dimensional IC measure
was compressed again by PCA into a 12-dimensional cluster vec-
tor. The derived 380 ICs from the 39 participants were clustered
by applying the k-means algorithm based on the 12-dimensional
measure, resulting in ten mutually exclusive IC clusters by min-
imizing the variability within and maximizing the variability
between clusters. ICs with a distance larger than two SDs from
the mean of any cluster centroid were excluded as outliers.

F. POWER SPECTRA AND ERCOH ANALYSES
Component power spectra were calculated by averaging fast
Fourier transform spectra from 0 to 800 ms post-stimulus (win-
dow length = 256 points, overlap = 128 points).

An event-related cross-coherence (ERCOH) measure embed-
ded in EEGLAB was employed to estimate the degree of phase
synchronization between the activations of two IC clusters. The
magnitude of ERCOH varies between 0 (i.e., a complete absence
of synchronization) and 1 (i.e., perfect synchronization) while
the phase of ERCOH indicates the potential causal relationship
between two IC clusters (under the minimum phase assump-
tion that the actual phase lag is less than ±180◦) (Delorme and
Makeig, 2004).

G. ELECTRODE LOCATIONS
In addition to electrooculogram (EOG) and referential electrodes,
61 channels were used for EEG data collection. The electrode
locations are illustrated in Figure A2.
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