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Maternal separation (MS), an early life stressful event, has been demonstrated to trigger
neuropsychiatric disorders later in life, in particular depression. Experiments using rodents
subjected to MS protocols have been very informative for the establishment of this associ-
ation. However, the mechanism by which MS leads to neuropsychiatric disorders is far from
being understood. This is probably associated with the multifactorial nature of depression
but also with the fact that different research MS protocols have been used (that vary on
temporal windows and time of exposure to MS). In the present study, MS was induced
in rats in two developmental periods: for 6 h per day for 14 days between postnatal days
2–15 (MS2–15) and 7–20 (MS7–20). These two periods were defined to differ essentially on
the almost complete (MS2–15) or partial (MS7–20) overlap with the stress hypo-responsive
period. Behavioral, immunological, and endocrine parameters, frequently associated with
depressive-like behavior, were analyzed in adulthood. Irrespectively from the temporal win-
dow, both MS exposure periods led to increased sera corticosterone levels. However, only
MS2–15 animals displayed depressive and anxious-like behaviors. Moreover, MS2–15 was
also the only group presenting alterations in the immune system, displaying decreased
percentage of CD8+ T cells, increased spleen T cell CD4/CD8 ratio, and thymocytes with
increased resistance to dexamethasone-induced cell death. A linear regression model per-
formed to predict depressive-like behavior showed that both corticosterone levels and T
cell CD4/CD8 ratio explained 37% of the variance observed in depressive-like behavior.
Overall, these findings highlight the existence of “critical periods” for early life stressful
events to exert programing effects on both central and peripheral systems, which are of
relevance for distinct patterns of susceptibility to emotional disorders later in life.

Keywords: maternal separation, depressive-like behavior, CD8+ T cells, T cell CD4/CD8 ratio, corticosterone,
anxious-like behavior

INTRODUCTION
Depression is a devastating and prevalent mental disorder that
causes great disability in modern societies and is predicted to
rank in the second position for premature death in 2030 (Mathers
and Loncar, 2006). The inability to adequately cope with stress
has been implicated as an important factor on the onset and
exacerbation of depression (Dinan, 2005; Cohen et al., 2007).
Stressful events during the first days of life have been shown
to impact on adult behavior (Aisa et al., 2007; Garner et al.,
2007; Lee et al., 2007; Seckl, 2008; Mesquita et al., 2009) and
to increase vulnerability to neuropsychiatric diseases (Nemeroff,
2004).

The impact of early developmental stressors on neuroendocrine
homeostasis, particularly on the hypothalamic–pituitary–adrenal
(HPA) axis, is well-recognized (Meaney et al., 1989; Liu et al., 1997;
Lehmann et al., 2002). Maternal separation (MS), one of the best
well-studied developmental disruptors, is documented to interfere
with the maturation process of the HPA axis (Clarke, 1993; Plot-
sky and Meaney, 1993; Slotten et al., 2006) as well as with other

physiological systems such as serotoninergic neurotransmission
(Mesquita et al., 2007).

Particular relevant for MS-induced depressive-like behavior are
studies using the forced swimming test (FST), revealing increased
immobility time in animals submitted to MS (3–4 h per day dur-
ing the first 15 postnatal days, which overlaps most of the stress
hypo-responsive period in rodents) when compared with animals
reared in typical housing conditions (Ruedi-Bettschen et al., 2005;
Lee et al., 2007; Lambas-Senas et al., 2009; Martisova et al., 2012).
Similarly, with respect to the anhedonic dimension of depression,
measured by the sucrose preference test (SPT), MS animals display
decreased sucrose consumption (Michaels and Holtzman, 2007).
However, these results have not been confirmed by others, with
respect to both immobility time in the FST (Marais et al., 2008) and
sucrose consumption in the SPT (Shalev and Kafkafi, 2002). These
discrepancies in the literature, although possibly caused by small
changes in the MS protocols used (Schmidt et al., 2011), deserve
further investigation, specifically on the mechanisms underlying
depressive-like behavior.
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Alterations in the immune system have been associated with
both early stressful life events and depressive-like behavior (Miller,
2010). However, surprisingly, the potential interplay of the
immune system and depression has only been scarcely explored
in the MS model. So far, studies in non-human primates early
deprived from social contact showed that there is a decrease in the
ratio of the two most important T lymphocyte populations, the
CD4+ and the CD8+ T cells (CD4/CD8), and a significant increase
in the number and activity of natural killer (NK) cells (Lewis et al.,
2000). Similarly, a decrease in the percentage of CD4+ T cells and
an increase in CD8+ T cells were detected in children deprived
of maternal care (Gogberashvili, 2006). However, no effect on cell
number was observed in rodents submitted to MS (Kruschinski
et al., 2008). Considering that the function of the immune cells
can be inferred by parameters such as the type and quantity of
cytokines produced, it is of notice the short- (Dimatelis et al.,
2012) and long-term (Avitsur et al., 2013) decrease in cytokines
and chemokines production observed in animals submitted to MS.

To further understand the interplay between the HPA axis and
several parameters of the immune system and their relationship
with depressive-like behavior, we made use of MS protocols. The
duration of the MS period used in this study (6 h/day), previously
used by our team and others (Matthews and Robbins, 2003; Col-
orado et al., 2006; Mesquita et al., 2007), was selected to induce a
significant disruption in the mother–pup interaction. Moreover, to
identify critical developmental periods relevant for the emergence
of these phenotypes, we applied the MS protocol in two neurode-
velopmental time windows. One that overlaps most of the stress
hypo-responsive period in rats [that usually occurs between post-
natal day 4–14 (Schmidt et al., 2011)], and another in which the
MS starts after the first postnatal week, where some maturation of
the HPA axis has already occurred.

MATERIALS AND METHODS
ANIMALS AND MATERNAL SEPARATION PROTOCOL
The results presented in the study are originated from two inde-
pendent experiments. Wistar rats (Charles River, Barcelona, Spain)
were used in the experiments and maintained under standard
laboratory conditions with artificial 12 h light/dark cycle: lights
on from 8:00 a.m. to 8:00 p.m., ambient temperature of 22 °C,
and 55% of relative humidity; food and water were available
ad libitum. The mating procedure was the same for all females.
A male was introduced in the female’s cage where two virgin
females were housed, at the beginning of the dark cycle. Vagi-
nal plug was examined at the beginning of the light cycle. When
the presence of the vaginal plug was observed the female was indi-
vidually housed until delivery. In each experiment, 9–12 females
primiparous rats were used. Nest material was provided to each
dam and no bedding changes were performed in the last days
of pregnancy. The day on which a female rat showed a vaginal
plug was designated as embryonic day 0 and the day of deliv-
ery as postnatal day 0. Litters were delivered by spontaneous
partum on gestation day 22. Pups from all litters were mixed
on the day of delivery, and randomly assigned to each dam;
the size of each litter was adjusted to 8 (n= 4 male and n= 4
female, whenever possible). Each dam and the corresponding lit-
ter were randomly assigned to one of the following experimental

groups (three to five litters for each group): (a) MS from the
2nd to the 15th postnatal day (MS2–15); (b) MS from the 7th to
the 20th postnatal day (MS7–20); and (c) control group with no
MS (Cont).

In each experiment, pups from the MS groups were daily sepa-
rated from their mothers between 9 a.m. and 3 p.m. as previously
described (Mesquita et al., 2007); each litter was placed together
in a new cage, inside an incubator at 33–35 °C in order to main-
tain constantly the body temperature of the pups, as previously
described (Diehl et al., 2012; Cao et al., 2013). After the 6 h of sepa-
ration, each MS litter returned to their home cages, where the dam
remained. Pups from control litters were left undisturbed with
their dams until the weaning day (P21). In the present study, only
males, pair-housed at weaning, were analyzed. All experiments
were conducted in accordance with National and European regula-
tions (European Union Directive 86/609/EEC) and were approved
by the National Veterinary Directorate and by the local Animal
Ethical Committee.

BEHAVIORAL TESTS
At 3 months of age, behavior was evaluated in the open-field (OF)
followed by the FST with a 1-day interval. The animals performed
both behavioral tests.

In the OF, the animals were individually tested during 5 min
in an arena formed by a white square base (43.2 cm× 43.2 cm)
surrounded with acrylic transparent walls (ENV – 515; MedAs-
sociates, VT, USA). Illumination was provided by a white bright
light. The session started with the animal placed in the center
of the arena and, using a system of 16 evenly spaced infra-red
sourced and sensors juxtaposed around the periphery of the four
sides of the chamber (at 2.5 cm height) with the help of the track-
ing software that detects solely the movement of the center of the
animal’s body (SOF-811, Med Associates, VT, USA). These sen-
sors were connected to a computer, which allowed the following
parameters to be recorded: (a) time spent in the central area of the
arena (10.8 cm× 10.8 cm; a measure of anxious-like behavior); (b)
total distance traveled (a measure of general locomotor activity);
and (c) number and duration of rears, manually recorded by two
experimenters independently (a measure of exploratory activity).

The FST was chosen to assess behavioral despair, a measure of
depressive-like behavior. For this test animals were placed in trans-
parent acrylic cylinders with 40 cm of diameter filled with water
(25 °C) to a depth (50 cm depth) such that the animals had no solid
support for their rear paws. The test lasted for 5 min and was pre-
ceded, 24 h before, by a 10 min pre-test session. At the end of each
session, animals were dried and placed under a heating lamp for
15 min before returning to their home cages. The cylinders were
filled with fresh water after each trial. A video camera was used to
record test sessions from a top angle; video recordings were later
scored by an investigator blind to the experimental details. Time
of immobility and latency to immobility were computed.

CORTICOSTERONE DETERMINATION
Blood samples were collected at sacrifice between 10 and 12
a.m.; the interval between transferring animals from their undis-
turbed environment to decapitation was kept under 60 s. Serum
corticosterone levels were assessed by radioimmunoassay, using
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ImmuChemTM Corticosterone-125I kits (MP Biomedicals, LLC,
Orangeburg, NY, USA). The detection limit of the assay was
7.7 ng/mL.

IMMUNE CELLS PHENOTYPING
Flow cytometry
To evaluate the phenotype of distinct immune system populations
by flow cytometry, single-cell suspensions from spleen and thymus
were prepared. Splenic erythrocytes were depleted by incubation
with a hemolytic solution (155 mM NH4Cl, 10 mM KHCO3, pH
7.2) for 5 min at room temperature. For cell surface staining,
5× 105 cells were used from each individual rat and incubated
with specific antibodies, according to Table 1, for 20 min on ice.
Cell surface markers were analyzed using specific antibodies for
CD11 b/c (OX-42), CD45RA (OX-33) (Caltag, CA, USA), CD161
(10/78), CD4 (W3/25), CD8 (G28) (BioLegend, San Diego, CA,
USA), and CD3 (G4.18) (eBiosciences, San Diego, CA, USA). Cells
were fixed with 2% formaldehyde after staining. Fifty thousand
events were acquired on a FACSCalibur flow cytometer (Becton
Dickinson, NJ, USA) using the Cell Quest software (Becton Dick-
inson, NJ, USA); analyses of the cell populations were performed
using FlowJo software (Tree Star, Ashland, OR, USA).

IN VITRO THYMOCYTE TREATMENT WITH DEXAMETHASONE
Thymocytes were resuspended in DMEM (supplemented with
10% heat inactivated FCS, 10 mM HEPES buffer, 1 mM sodium
pyruvate, 2 mM l-glutamine, 50 µg/mL streptomycin, and
50 U/mL penicillin, all from Invitrogen, CA, USA), plated into
96-well plates (1.5× 106 cells/mL), and treated, with or without
10 µM of dexamethasone (Sigma, St Louis, USA), for 4 h. To ana-
lyze cell death, cells were stained for CD4 (W3/25), CD8 (G28),
annexin V, and 7AAD (BioLegend, San Diego, CA, USA), in accor-
dance with Table 2 and the manufacture instructions. Cells were
analyzed by flow cytometry as already described.

STATISTICAL ANALYSIS
To calculate the number of animals used in the experiments, we
performed a power analysis (using G*Power 3.1.7). To compare
the three independent groups, an one-way ANOVA test should be
used and, assuming a large effect size (f= 0.4), an alpha of 0.05,
and a statistical power of 0.5, 36 animals (12/group) were needed.
In order to confirm our results, we performed two independent
experiments. All dependent variables were assessed for normality.
One-way ANOVA, followed by post hoc Bonferroni tests (when
main effects were observed significant), was performed in order to
assess group differences. To estimate the effect size, we calculated
the η2 (dividing the between-groups sum of squares by the total
sum of squares); η2

≥ 0.01 indicates a small, ≥0.06 medium, and
≥0.14 large effects (Cohen, 1988).

A linear regression was conducted in order to predict immo-
bility in the FST, using corticosterone levels and T cell CD4/CD8
ratio as potential predictors. Significance is referred as *p < 0.05.

RESULTS
ANIMALS SUBMITTED TO MS2–15 DISPLAYED DEPRESSIVE-LIKE
BEHAVIOR
In the FST, only the animals from the group separated earlier
(MS2–15) displayed shorter latency time to immobility (Figure 1A;

Table 1 | Antibodies used for the identification of different immune

cells.

Immune cells Phenotype spleen cells

CD4+ T cells CD3+ CD4+ (gated lymphocytes in FSC,

SSC)

CD8+ T cells CD3+ CD8+ (gated lymphocytes in FSC,

SSC)

B cells CD45Ra+ (gated lymphocytes in FSC,

SSC)

Macrophages CD11bc+ (gated in all cells except

granulocytes in FSC, SSC)

Granulocytes CD11bc+ granulocytes+ (gated

granulocytes in FSC, SSC)

NK cells CD3− CD161high+

Phenotype thymocytes

DN CD4−CD8− (gated

lymphocytes

in FSC, SSC)
DP CD4+CD8+

CD4 SP CD4+CD8−

CD8 SP CD4−CD8+

Table 2 | Identification of cell death.

Phenotype

Alive Annexin V− 7AAD−

Apoptosis Annexin V+ 7AAD−

Necrosis Annexin V± 7AAD+

F 2,41= 7.92, p= 0.001 and η2
= 0.28) when compared to the

Cont group (p= 0.009). Accordingly, MS2–15 displayed a signif-
icant increase in the immobility time (Figure 1B; F 2,41= 4.41,
p= 0.02 and η2

= 0.18) when compared with Cont animals
(p= 0.049) and with MS7–20 group, in the FST (p= 0.03). No
significant differences were observed between MS7–20 and Cont
group (Figure 1B; p= 0.997). Considering that FST is a highly
demanding motor task, we performed the OF test to control
for locomotor impairment that could underlie the significant
reduction of activity observed in the FST. No differences were
observed between groups in the total distance traveled in the arena
(Figure 2A; F 2,42= 0.66, p= 0.52) and in the number (Figure 2B;
F 2,42= 1.25, p= 0.30) and duration (Figure 2C; F 2,42= 1.4,
p= 0.30) of rearings. In fact, MS, irrespectively from when it
occurred, did not affect spontaneous locomotion (Figure 2A) or
exploratory behavior (Figures 2B,C). Conversely, OF results also
demonstrated that the percentage of time spent in the center of
the arena was significantly reduced in the MS2–15 (Figure 2D;
F 2,42= 3.41, p= 0.04, and η2

= 0.14), when compared to Cont
animals (p= 0.04), which is a sign of anxious-like behavior.
MS7–20 did not differ from both Cont (p= 0.41) and MS2–15

(p= 0.52) groups in the percentage of time spent in the center
of the arena.
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FIGURE 1 | Early maternal separation (MS2–15) induced
depressive-like behavior. (A) Latency to first immobility and
(B) duration of immobility in the FST were assessed in Cont, MS2–15,

and MS7–20 groups at 3 months of age. Each bar represents the
mean+SEM from 11 to 20 rats per group from one of two
independent experiments.

FIGURE 2 | MS2–15 group presented anxious-like behavior in the OF test.
The OF test was performed to assess (A) total distance, (B) number,
(C) duration of rearings, and (D) time spent in the center of the OF arena in

Cont, MS2–15, and MS7–20 groups at 3 months of age. Each bar represents the
mean+SEM from 11 to 20 rats per group from one of two independent
experiments.

BOTH PERIODS OF MS CAUSED INCREASED CORTICOSTERONE LEVELS
BUT ONLY EARLY MS TRIGGERED THYMIC AND SPLENIC CELL
ALTERATIONS
Corticosterone assessment revealed a long-lasting increase in basal
corticosterone levels in both MS groups when compared with Cont
animals (Figure 3; F 2,52= 6.58, p= 0.003, and η2

= 0.20; Cont vs.
MS2–15 p= 0.003 and Cont vs. MS7–20 p= 0.04).

Given the high sensitivity of the immune system to alterations
in corticosteroid millieu, we analyzed the impact of MS on the
weight of two of the most relevant immune system organs, the
thymus, the primary lymphoid organ that supports T cell differ-
entiation, and the spleen, a central organ of the peripheral immune

system. No alterations were observed in the absolute (Figure 4B;
F 2,69= 0.58, p= 0.56) and relative weight of the spleen (normal-
ized to the body weight; Figure 4C; F2,66= 0.05 and p= 0.95)
between the three groups. However, MS animals showed a sig-
nificant reduction in the thymus weight when compared with
Cont (Figure 4D; F 2,64= 8.75, p= 0.0004, and η2

= 0.22; Cont
vs. MS2–15 p= 0.001 and Cont vs. MS7–20 p= 0.003); these dif-
ferences were independent of the absolute animal body weight,
since the same alterations were present when the thymus weight
was normalized to the body weight (Figure 4E; F 2,62= 12.62,
p < 0.0001, and η2

= 0.28; Cont vs. MS2–15 p= 0.0001 and Cont
vs. MS7–20 p= 0.0003). Moreover, no differences were seen on
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FIGURE 3 | Maternal separation induced increased corticosterone
serum levels. Each bar represents the mean+SEM from 16 to 21 rats per
group from two independent experiments.

the body weight of those animals (Figure 4A; F 2,67= 2.80 and
p= 0.07). Taking into account the decreased thymic weight, we
next analyzed whether this was reflected in the proportion of
the four main thymic cell populations: double negative (DN:
CD4−CD8−), double positive (DP: CD4+CD8+), CD4 single pos-
itive (CD4SP: CD4+CD8−), and CD8 single positive (CD8SP:
CD4−CD8+). No differences on thymic cell populations were
present (Figure 5A; DN: F 2,63= 0.30, p= 0.74; DP: F 2,63= 1.25,
p= 0.29; CD4SP: F 2,63= 0.06, p= 0.94; CD8SP: F 2,63= 0.01,
p= 0.99). We further studied the resistance of those popula-
tions to in vitro exposure to dexamethasone. Thymocytes from
the MS2–15 group presented a decreased necrosis rate when com-
pared to Cont and MS7–20 (Figure 5B; F 2,34= 9.75, p= 0.0005,
and η2

= 0.34; Cont vs. MS2–15 p= 0.002 and MS2–15 vs. MS7–20

p= 0.01) and these alterations seemed to be mainly caused by
the decreased necrosis observed among DP cells (Figure 5B;
F 2,35= 8.82, p= 0.0008, and η2

= 0.34; Cont vs. MS2–15 p= 0.004
and MS2–15 vs. MS7–20 p= 0.002). Moreover, thymus from MS2–15

animals also presented a lower proportion of alive DP cells when
compared with Cont (Figure 5B; F 2,34= 5.11, p= 0.011, and
η2
= 0.23; Cont vs. MS2–15 p= 0.011). Regarding the periph-

eral immune system, a decreased percentage of CD8+ T cell was
observed in the spleen of MS2–15 group when compared with
both Cont and MS7–20 (Figure 6A; F 2,68= 8.54, p= 0.0005, and
η2
= 0.20). This led to an increased T cell CD4/CD8 ratio in the

MS2–15 group (Figure 6B; F 2,64= 6.87, p= 0.002, and η2
= 0.18),

while no alterations were seen in the T/B cells ratio. No differ-
ences were observed in the other spleen cell populations analyzed
(Figures 6A,C; CD4+ T cells, B cells, granulocytes, macrophages,
and NK cells).

SERA CORTICOSTERONE LEVELS AND T CELL CD4/CD8 RATIO PREDICT
DEPRESSIVE-LIKE BEHAVIOR
The use of a linear regression model to predict depressive-like
behavior revealed that corticosterone, per se, was a marginal statis-
tical significant predictor of immobility in the FST (F 1,29= 4.02,
p= 0.054). Instead, when both variables: corticosterone levels and
the T cell CD4/CD8 ratio were included, a significant model
emerged (F 2,28= 9.71, p= 0.001), explaining 37% of the variance.
Increased corticosterone levels and higher T cell CD4/CD8 ratio
were significant predictors of increased immobility in the FST
(Table 3).

FIGURE 4 | Maternal separation caused a decrease in the thymus
weight. (A) Body weight, (B) spleen weight, (C) spleen relative weight,
(D) thymus weight, and (E) thymus relative weight were measured in Cont,
MS2–15, and MS7–20 groups at 3 months of age. Each bar represents the
mean+SEM from 18 to 27 rats per group from two independent
experiments.

DISCUSSION
This study addressed the long-term effects of two time win-
dows of MS on the HPA axis, immunological function, and
depressive/anxious-like behaviors. We observed that, irrespectively
of the time window, MS caused increased corticosterone sera lev-
els in adulthood. However, only animals submitted to MS between
the 2nd and the 15th postnatal days displayed immunological and
behavioral alterations. Additionally, corticosterone sera levels and
the T cell CD4/CD8 ratio were shown to predict depressive-like
behavior in this animal model.

The comparison between two time periods of MS sheds light
on the critical periods of development in which early life stress
strongly impacts on mood behavior, immune, and endocrine sys-
tems. The earlier separation period (MS2–15) mimics the temporal
window most widely used in the literature and overlaps most of
the stress hypo-responsive period (Schmidt et al., 2011), while
the MS7–20, with the same exposure duration and some overlap,
occurs when some components of the HPA axis regulation are
known to be already mature (Schmidt et al., 2011). Remarkably,
both MS exposure periods impacted similarly on the adult HPA
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FIGURE 5 | Maternal separation did not alter the proportion of the main
thymic populations but thymocytes from MS2–15 animals presented
increased resistance to dexamethasone treatment. (A) Thymocytes from
Cont, MS2–15, and MS7–20 groups were stained with antibodies specific for D4
and CD8 and analyzed by flow cytometry. Each bar represents the
mean+SEM from 19 to 26 rats per group from two independent

experiments. (B) Thymocytes from Cont, MS2–15, and MS7–20 groups were
treated during 4 h with dexamethasone followed by specific staining (Table 2)
to evaluate apoptosis and necrosis of each cell population by flow cytometry.
The data are represented as the ratio between the percentages of
dexamethasone treated and untreated cells. Each bar represents the
mean+SEM from 11 to 14 rats per group.

FIGURE 6 | Maternal separation between days 2 and 15 caused
a decrease in the percentage of CD8+ T cells and an increase in
theT cell CD4/CD8 ratio in the spleen of adult animals.
Splenocytes from Cont, MS2–15, and MS7–20 groups were labeled
with specific antibodies (according toTable 1), and analyzed by flow

cytometry, to identify the main spleen cell populations of the
(A) adaptive immune system; (B) the ratios CD4/CD8 T and T/B
cells; and (C) the innate cells of the immune system. Each bar
represents the mean+SEM from 24 to 27 rats per group from two
independent experiments.
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Table 3 | Regression analysis predicting depressive-like behavior.

Variables R2 (R2
adj) F (df) β t

Step 1 Corticosterone level 0.12(0.09) 4.02 (1, 29)# 0.35 2.0#

Step 2 Corticosterone level 0.41(0.37) 9.71 (2, 28)* 0.44 3.0**

T cell CD4/CD8 ratio 0.54 3.7**

#p=0.05; *p < 0.05; **p < 0.01.

axis basal function leading to increased basal corticosterone levels,
suggesting that the postnatal week common to both MS periods
(from postnatal day 7 to 15, last days of the stress hypo-responsive
period) is determinant in the programing effects on the HPA axis.
Since this time window is critical for the maturation of the HPA
axis, it is not surprising that the stress triggered by MS performed
during this period, caused a long-lasting disruption in the HPA
axis function leading to increased basal levels of corticosterone in
the adult progeny. Similar results were observed by several other
authors, even using slightly distinct MS protocols (Clarke, 1993;
Slotten et al., 2006; Batalha et al., 2013). Conversely, decreased
(Slotten et al., 2006) or even no alteration (Plotsky et al., 2005)
in corticosterone basal levels in animals submitted to MS were
also reported. Overall, most literature seems to corroborate that
MS is a developmental disruptor of the neuroendocrine function
with long-lasting effects on the HPA axis activity and responsive-
ness. However, even MS animals that do not present alterations
in the basal levels of corticosterone show a hypersecretion of this
molecule in response to a psychological stressor (Plotsky et al.,
2005).

Of notice, anxious and depressive-like behaviors in adulthood
were found only when MS was applied earlier, which indicates
the existence of sensitive periods for stress-related behavioral pro-
graming. It would be interesting to next evaluate other dimensions
of depressive-like behavior. Even though the behavioral test used
in this study (FST) is the one most widely used to assess behav-
ior despair in rodents (Petit-Demouliere et al., 2005; Sousa et al.,
2006), it also displays strong correlations with other dimensions
of depression such as hedonic behavior (Bessa et al., 2009b). The
impact on mood observed in the MS2–15 group is in accordance
with previous studies performed in the same developmental win-
dow (Kalinichev et al., 2002; Ruedi-Bettschen et al., 2005; Lee et al.,
2007; Lambas-Senas et al., 2009; Holsboer and Ising, 2010) while,
to our knowledge, no other studies evaluated mood in animals
submitted to MS7–20.

The observed stress consequences on adult corticosterone levels
and behavior observed in the MS2–15 group are unlikely a conse-
quence of altered maternal behavior, since in a previous study
we observed no maternal behavior differences or altered corticos-
teroid levels in the dams, 2 weeks after delivery (Mesquita et al.,
2007). However, the maternal behavior of the MS7–20 group was
not assessed and, indeed, some reports stated an increased active
maternal care in animals submitted to MS that seems to buffer
potential consequences of long separation periods (Zhang et al.,
2004; Macri et al., 2008). This could be a potential mechanism by
which MS7–20 are different from MS2–15; further investigation will
help to clarify this issue.

Interestingly, the differential behavioral alterations observed in
MS groups show that factors other than the HPA axis are neces-
sary for the induction of anxious and depressive-like behaviors.
We searched for parameters of the immune system. Of notice, we
observed thymic atrophy in both MS treated groups, which may
likely result from the well-described effect of the glucocorticoids
(similarly increased in both MS groups) on the thymus (Ashwell
et al., 2000a). To our knowledge, this is the first study that describes
a decreased adult thymic weight in animals submitted to MS, asso-
ciated with higher levels of corticosterone. Chen et al. (2012) have
also analyzed male rats submitted to 4 h MS during the 2nd and the
13th postnatal day and failed to observe alterations in the thymic
weight, as well as any alterations in basal levels of corticosterone.
Curiously decreased thymic weight and increased serum levels of
corticosterone are common alterations in both MS groups. Since
the two MS periods used in this study overlap for 1 week, this sug-
gests that the postnatal day 7–15 seems crucial for the programing
effect in the corticosterone levels and that it may lead to the alter-
ations in the thymus weight and in number of cells observed. Of
interest, despite the decrease in thymus size, no alteration in the
proportion of the four main thymocyte populations was observed.
These results are in accordance with those from Kruschinski et al.
(2008) in which MS was performed from postnatal day 1 to 28.
However, in the present report, after in vitro dexamethasone treat-
ment (known to induce thymocyte death) only the MS2–15 group
presented increased resistance to cell death; mainly due to the
increased resistance in the DP cells, the thymocyte population
know to be more susceptible to glucocorticoids-induced cell death
(Ashwell et al., 2000b). The differential response of the MS groups
indicates that additional programing alterations exist in the thy-
mocytes causing glucocorticoid resistance when MS is imposed
earlier (MS2–15). One of the mechanisms that may underlie the
alterations in the thymocytes resistance in the MS2–15 group is
an impaired glucocorticoid receptor (GR) function of the thy-
mocytes. Such dysfunction in GR has also been associated with
alterations in the cytokine milieu (Silverman and Sternberg, 2012).
We did not analyze the cytokine profile of these animals, but alter-
ations in the cytokine milieu of animals submitted to MS during
the first 2 weeks of life have been shown by others (Dimatelis et al.,
2012; Avitsur et al., 2013), which can be indicative of a simultane-
ous mechanism that contributes to the thymocyte glucocorticoid
resistance observed in the MS2–15 group.

The effect of MS on the peripheral immune system also seems
to be time specific. Only the earlier period of MS caused a decrease
in the percentage of CD8+ T cells in the spleen and, consequently,
an increase in the T cell CD4/CD8 ratio. Further supporting that
timing of MS is crucial when MS is imposed to rats between post-
natal days 1 and 28, Kruschinski et al. (2008) did not observe
alterations in spleen immune cell populations. The T cell alter-
ations observed in the spleen of MS2–15 animals do not seem to
be a consequence of impairment in thymic T cell differentiation,
since no differences in the four main population of the thymus
were observed; but rather an alteration in the peripheral homeo-
static mechanisms (Rocha et al., 1989). The decreased percentage
of CD8+ T cells in the spleen can be caused by a deficient signaling
to support cell survival or to an increased cell death in these cells,
which deserve further investigation. Interestingly, a recent study
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showed that CD8+ T cells display a more pronounced expression
of dopaminergic transporters and receptors when compared with
CD4+ T cells (Mignini et al., 2013) and, dopamine was shown to
inhibit the proliferation of T cells, particularly of CD8+ T cells
(Saha et al., 2001). Given that MS impacts on the dopaminer-
gic system, it is plausible that this might constitute an additional
mechanism for the present finding of reduced CD8+ T cells (Li
et al., 2013). Moreover, these T cells are primarily involved in
immune response to pathogens (mainly virus) and tumor cells,
and are also implicated in transplant rejection. Curiously, C56BL/6
mice exposed to MS between postnatal days 1 and 14 were shown to
present increased susceptibility to influenza virus infection; how-
ever, the levels of CD8+ T cells were not evaluated in these study
(Avitsur et al., 2006).

Our findings are novel in revealing an increased T cell CD4/CD8
ratio, which is a highly preserved ratio within strains of animals
(Rocha et al., 1989; Sim et al., 1998). Of notice, another rodent
model of depressive-like behavior, induced by prenatal admin-
istration of dexamethasone, showed that adult males similarly
display increased T cell CD4/CD8 ratio and that the percentage
of CD8+ T cells is negatively correlated with the latency in the
FST (Roque et al., 2011). In humans and monkeys submitted to
early life stress, alterations in T cell CD4/CD8 ratio have also been
reported (Lewis et al., 2000; Gogberashvili, 2006), even though
in the opposite direction of what we describe herein. Remark-
ably, our results reveal that differences in immune cell populations
are only present in animals displaying behavioral alterations, sug-
gesting that the programing effects caused by MS impact not
only in the endocrine system but also in the immune and cen-
tral nervous systems, highlighting the interplay between them.
Curiously, lower proportion of CD8+ T cells and a higher T cell
CD4/CD8 ratio have been associated with lower levels of hip-
pocampal neuronal proliferation (Huang et al., 2010). Moreover,
although disputable, most studies show that MS decreases hip-
pocampal cell proliferation (Hulshof et al., 2011), which in itself is
associated with depressive-like behavior (Bessa et al., 2009a; Song
and Wang, 2011).

The fact that the two MS periods do not overlap in the first
and third postnatal week could also be crucial for the distinct
effects, we observed in behavior and in parameters of the immune
system. Considering that during the first postnatal week signifi-
cant differences in the number and maturation process of GR in
the hypothalamus, pituitary, and hippocampus were observed (De
Kloet et al., 1988), one can speculate that stressful events during
this very immature period could be fairly impactful on long-term
behavior. In fact, early life events may lead to long-term epigenetic
effects such as down regulation of hippocampal GR through the
increased methylation patter in the coding gene (Weaver et al.,
2004). A similar mechanism could also be caused by very early
MS, since the first postnatal week is the most immature period of
the HPA axis control. In the MS7–20 period, the HPA axis already
presents an increased degree of maturation and number of GR
in critical regions for HPA axis control (Vazquez and Akil, 1993).
Of interest, GR are solely found in the hippocampus in the sec-
ond postnatal week (Vazquez and Akil, 1993). The presence of GR
(even in low levels) during the second and third postnatal week
could be crucial for the organism to respond to stressful situations

and buffer some of the long-term behavioral effects, such as anx-
ious and depressive behaviors. Although speculative, this could be
a likely explanation since we observed an increased anxious and
depressive-like phenotype in the earlier MS group (MS2–15) and
not in the later one (MS7–20).

As an attempt to assess the role of both corticosterone levels and
T cell CD4/CD8 ratio in the depressive-like behavior observed in
our MS model, we performed a regression analysis. Both predic-
tors explained 37% of the immobility time in the FST, suggesting
a synergetic contribution of endocrine and immunological factors
in the prediction of the depressive-like behavior observed in the
MS animals. Of notice, corticosterone per se, accounted only for
9% of the variance and was merely a marginal significant pre-
dictor. We failed to find any predictors of anxious-like behavior.
One should take into account that the depressive-like behavior, the
increased corticosterone levels, and the alterations in the immune
system seem to be related and caused by the effect of MS in an
early life period. Even though additional studies are needed, our
data suggests that this information might be potentially used to
determine whether the predictive model for the depressive-like
behavior can be a tool to predict if children submitted to adverse
experiences in early life are more prone to develop mood dis-
orders, which could eventually help in anticipating diagnosis of
depression.

Altogether, this study shows that the timing in which early life
stress is applied determines its long-lasting effects in several body
systems, and that these interact in ways that may be predictive of
mood behavior alterations in the adulthood.
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