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Serotonin (5-hydroxytryptamine, 5-HT) modulates numerous physiological processes in the
nervous system. Together with its function as neurotransmitter, 5-HT regulates neurite
outgrowth, dendritic spine shape and density, growth cone motility and synapse formation
during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and
the diversity and specificity of its signaling and function arise from at least 20 different
receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R)
in the correct establishment of neuronal cytoarchitecture during development, as also
suggested by its involvement in several neurodevelopmental disorders. The emerging
picture shows that this receptor is a key player contributing not only to shape brain
networks during development but also to remodel neuronal wiring in the mature brain,
thus controlling cognitive and emotional responses. The activation of 5-HT7R might be
one of the mechanisms underlying the ability of the CNS to respond to different stimuli by
modulation of its circuit configuration.

Keywords: 5-HT7R, brain connectivity, brain development, neurodevelopmental diseases, neuronal cytoarchitec-
ture, serotonin

SEROTONIN AND BRAIN DEVELOPMENT
Serotonin is a neurotransmitter modulating numerous physio-
logical processes in the nervous system such as sleep, mood,
aggressive behavior, sexual behavior, sensory processing, cognitive
control, emotion regulation, autonomic responses, and motor
activity (for reviews see Daubert and Condron, 2010; Lesch and
Waider, 2012). 5-HT was first discovered in the gut and ente-
rochromaffin cells by the pharmacologist V. Erspamer in the mid-
dle thirties and subsequently in blood serum as a vasoconstrictor,
hence the name serotonin (serum that gives tone; Rapport et al.,
1948).

Serotonergic neurons are found in a variety of organisms, from
C. Elegans to vertebrates. In mammals, they are among the earliest
neurons being differentiated during development, and comprise
a widely distributed neuronal network in the brain (Lesch and
Waider, 2012).

Several experimental data have indicated that 5-HT may act
as a signaling cue in the fetal brain during critical periods of
development. It is recognized that 5-HT is synthesized early in
embryonic development and its receptors are early expressed. In
addition to the endogenous 5-HT, the brain of the fetus receives
it also from the placenta of the mother, further emphasizing
the importance of 5-HT in the early embryonic development
of the brain. The contribution of these maternal-placental-fetal
interactions appears to be critical for brain circuit wiring and for
long-term brain functions (Bonnin et al., 2011). In particular, the
5-HT system plays a crucial role in the establishment of cortical

circuits by controlling key cellular processes including neuronal
migration and dendritic differentiation (Puig and Gulledge, 2011;
Vitalis et al., 2013; Dayer, 2014). Cortical circuits control cognitive
processes and their function is highly dependent on their struc-
ture that is shaped during development. Along this line, alteration
of the 5-HT signaling system is associated to neurodevelopmental
disorders affecting cognitive abilities, as mentioned below. Studies
using genetic mouse models reveal that excessive 5-HT levels in
the brain alter the correct development of mouse somatosensory
cortex (Cases et al., 1996; Persico et al., 2001; Dayer, 2014). On
the other hand, the depletion of 5-HT in the brain leads to
behavioral and functional deficits, despite the lack of detectable
cellular or morphological alterations in the CNS (Hendricks et al.,
2003; Savelieva et al., 2008; Alenina et al., 2009). The absence
of CNS evident morphological defects in these mouse models
suggests that the lack of brain 5-HT may only affect fine shaping of
specific circuits, so that these alterations are not revealed by gross
morphological analyses of brain. On the other hand, transgenic
mice with a 75% reduction in brain 5-HT levels showed reduced
brain growth and delayed cortical maturation during postnatal
life (Narboux-Nême et al., 2013). Interestingly, in a recent elegant
experiment it was demonstrated that lack of brain 5-HT produced
a striking reduction of serotonergic innervation in diencephalic
areas (the suprachiasmatic and thalamic paraventricular nuclei)
and a marked serotonergic hyperinnervation in forebrain areas
(nucleus accumbens and hippocampus; Migliarini et al., 2013).
These data strongly suggest that 5-HT can either promote or
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inhibit terminal arborization of serotonergic axons depending on
specific targets in the brain. In addition, these findings confirm
that alterations of 5-HT levels during CNS development produce
severe abnormalities in the serotonergic circuitry affecting the
proper wiring of the brain. Consistently, numerous studies from
both vertebrate and invertebrate organisms support the idea that
5-HT regulates neurite outgrowth and establishment of neuronal
connectivity during brain development (Daubert and Condron,
2010; Lesch and Waider, 2012), and that alterations in early
serotonin signaling may produce long-lasting changes. The latter
might be the basis of a number of neuropsychiatric disorders
which likely have developmental origins, such as schizophre-
nia, depression, affective disorders, anxiety and autism (Lesch
and Waider, 2012; Velasquez et al., 2013; Dayer, 2014). Nev-
ertheless, the key molecular and cellular events through which
the 5-HT signaling affects brain connectivity are still poorly
investigated. The high number of the 5-HT receptors and the
lack of selective pharmacological agonists or inhibitors for the
various subtypes have hampered a detailed analysis on their
selective involvement in shaping brain networks and modulating
neuronal cytoarchitecture. Actually, as mentioned, in the mam-
malian brain serotonergic neurons exert their effects through
20 subtypes of receptors that are grouped in 7 distinct classes
based on pharmacological properties, amino acid sequences, gene
organization, and their coupled second messenger pathways. All
5-HT receptors, with the exception of the 5-HT3, are typical G-
protein-coupled-receptors (GPCRs) with seven transmembrane
domains. The 5-HT3 receptor, instead, is a ligand-gated ion
channel. This great diversity of receptors indicates the wide phys-
iological role of 5-HT in the nervous system, whose complexity
still needs to be elucidated (Pytliak et al., 2011; Gellynck et al.,
2013).

THE SEROTONIN RECEPTOR 7
The 5-HT7 receptor was cloned independently by three laborato-
ries in 1993 (Bard et al., 1993; Lovenberg et al., 1993; Ruat et al.,
1993). A number of functional splice variants of this receptor have
been identified due to the presence of introns in the 5-HT7R gene
(Gellynck et al., 2013).

The 5-HT7R activates Gαs that stimulates adenylate cyclase,
resulting in an increase in cAMP. The cAMP activates protein
kinase A (PKA) leading to phosphorylation of different pro-
teins (Leopoldo et al., 2011). The 5-HT7R is also coupled to
stimulation of the mitogen-activated protein kinase extracellu-
lar signal-regulated kinases (ERK; Errico et al., 2001). More
recently, the 5-HT7R has also been shown to interact with
another member of the G protein family, the Gα12. Activa-
tion of the 5-HT7R/Gα12 signaling pathway leads to stimula-
tion of Rho GTPases, Cdc42 and RhoA (Kvachnina et al., 2005;
Figure 1).

The 5-HT7R is expressed in both the CNS and in peripheral
tissues. In the CNS the receptor is expressed in the diencephalon,
forebrain and in the Purkinje neurons of the cerebellum (for
reviews see Matthys et al., 2011; Gellynck et al., 2013). The
wide distribution of 5-HT7R in the brain reflects the numerous
functions in which this receptor is implicated, such as circadian
rhythms, sleep-wake cycle, thermoregulation (Leopoldo et al.,

FIGURE 1 | Stimulation of 5-HT7R: schematic drawing of signaling
pathways and downstream effectors leading to remodeling of
neuronal morphology. Full lines indicate established pathways, dashed
lines indicate putative targets. Lower panels are photomicrographs from
DiI-labeled striatal neurons in culture (left panel), and striatal slices from
brain adult mice (right panel, 3D- reconstruction). 5-HT:
5-hydroxytryptamine; 5-HT7R: serotonin receptor 7; LP-211: selective
5-HT7R agonist; Cdk5: cyclin-dependent kinase 5; ERK 1/2: extracellular
signal-regulated kinases 1/2; mTOR: mammalian target of rapamycin.

2011; Adriani et al., 2012; Monti et al., 2014; Romano et al., 2014)
and nociception (Garcia et al., 2011), but also cognitive functions
such as learning and memory processing (Roberts and Hedlund,
2012; Freret et al., 2014; Meneses, 2014). Importantly, the putative
involvement of 5-HT7R in many neuropathological processes
such as anxiety, schizophrenia, epilepsy, migraine, impulsivity and
depression, cognitive and mood disturbances (Hedlund, 2009;
Cates et al., 2013; Gellynck et al., 2013), makes it a potential target
for new therapeutic applications.

To explain the fact that a single receptor is involved in such
a variety of physio-pathological processes of the CNS, the GPCR
dimerization has been proposed as a possible key mechanism that
introduces diversity in 5-HT7 receptor signaling (Matthys et al.,
2011). Accordingly, in a recent study, it has been shown that
heterodimerization of 5-HT7 and 5-HT1A receptors differentially
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regulates these receptors signaling and trafficking (Renner et al.,
2012).

THE SEROTONIN RECEPTOR 7 SHAPES NEURONAL CIRCUITS
DURING DEVELOPMENT
Numerous recent data indicate that the activation of 5-HT7R
modulates neuronal morphology, excitability and plasticity con-
tributing to the establishment of brain connectivity during
embryonic and early postnatal life.

Using fibroblast cell lines, it was demonstrated that serotonin
stimulation of 5-HT7R induces filopodia formation and cell
rounding through interaction of the receptor with Gα12 subunit
of heterotrimeric G-protein and activation of Rho GTPases. This
finding prompted more detailed studies using mouse hippocam-
pal neurons in culture, where activation of the endogenous 5-
HT7R, using the agonist 5-CT, determines pronounced extension
of neurite length (Kvachnina et al., 2005). These results have
been confirmed by more recent analyses where 5-HT7R was
stimulated with 5-HT, or with the selective agonist AS19, or
with the 5-HT1A/7 receptor agonist 8-OH-DPAT (Tajiri et al.,
2012; Rojas et al., 2014). The effects of the 5-CT, as well as
those of the 8-OH-DPAT were abolished by the co-treatment
with 5-HT7R selective antagonist SB-269970, indicating the
specific involvement of 5-HT7R. The morphogenic effects of
the 5-HT7R on neuronal cytoarchitecture have been demon-
strated also for neurons from additional CNS areas. Treatment
of cultured embryonic neurons from rodent striatal complex
and cortex with 8-OH-DPAT and with the highly potent and
selective 5-HT7R agonist LP-211, significantly enhances neurite
outgrowth through pathways involving Cdk5 and extracellular
signal-regulated kinases 1/2 (ERK). These effects are selectively
due to the 5-HT7R stimulation since they are blocked by SB-
269970. Neurite elongation requires de novo protein synthesis
and is accompanied by qualitative and quantitative modifica-
tions of selected cytoskeletal proteins (Speranza et al., 2013).
These findings delineate an overall picture of potential intracel-
lular pathways and molecular mechanisms that underlie mod-
ulation of neuronal morphology due to 5-HT7R stimulation
(Figure 1).

In accordance with the morphogenic role of 5-HT7R, it was
demonstrated that prolonged stimulation of the 5-HT7R/Gα12

signaling pathway in early postnatal cultured hippocampal neu-
rons leads to an increased number of dendritic protrusions and
synaptic contacts, and enhances spontaneous synaptic activity. A
similar morphogenic function of the 5-HT7R was confirmed in
organized brain circuitries (organotypic slices preparation from
the hippocampus of juvenile mice), where stimulation of 5-
HT7R/Gα12 signaling pathway potentiates formation of dendritic
spines, increases neuronal excitability and modulates synaptic
plasticity (LTP). The latter effect was age-dependent, indeed it was
observed in 1 week-old mice but not in adult animals, probably
due to decreased hippocampal expression of the 5-HT7R during
later post-natal stages (Kobe et al., 2012).

Intriguingly, 5-HT7R modulates NMDA receptors activity in
hippocampal neurons. Long term activation of the 5-HT7R by
the selective agonist LP 12 inhibits glutamate receptor signaling
preventing NMDA-induced neurotoxicity (Vasefi et al., 2013a),

while acute activation of 5-HT7R promotes NMDA receptor
activity (Vasefi et al., 2013b).

In addition, activation of 5-HT7R modulates long-term
depression mediated by metabotropic glutamate receptors in
wild-type as well as in a mouse model of Fragile X- syndrome
(FXS; Costa et al., 2012). These animals exhibit spatial memory
impairment and synapse malfunctioning in the hippocampus,
with abnormal enhancement of mGluR-LTD. Abnormal LTD
might lead to excessive synapse elimination, whereas physiological
LTD is crucial in hippocampal-dependent memory. The activa-
tion of 5-HT7R by 5-HT, or 8-OH-DPAT, or LP-211 in hippocam-
pal slices from the FXS mouse model was able to correct excessive
mGluR-LTD, bringing it back to its physiological level and thereby
restoring synaptic plasticity (Costa et al., 2012). Hippocampal
LTP and LTD are the most studied paradigms of synaptic plasticity
that cause enduring strengthening and weakening of synapses,
paralleled by increase and decrease of dendritic spine volume
(Bosch and Hayashi, 2012). These data indicate that brain plastic-
ity is accompanied by modification of neuronal connectivity and
formation of new neuronal circuits. The molecular and cellular
mechanisms of this modulation are still only partially known, but
5-HT7R seems a good candidate to be involved in the molecular
cascade.

THE SEROTONIN RECEPTOR 7 MODULATES CONNECTIVITY
IN ADOLESCENT AND MATURE BRAIN
In addition to the involvement of 5-HT7R in neuronal cytoar-
chitecture and network construction during embryonic and early
postnatal life, 5-HTR7 seems to play a role in the modulation
of structural plasticity in adolescent and mature brain circuits.
Indeed it is now widely accepted that mature mammalian brain
undergoes dramatic structural reorganization with time and
experience (Holtmaat and Svoboda, 2009; Sala and Segal, 2014).
Intriguingly, it has been demonstrated that brain wiring may be
modulated by chronic pharmacological intervention, as indicated
by the comprehensive phenotype correction, including dendritic
spine density, in adult mice models of FXS treated in young
adulthood with a selective mGlu5 inhibitor (Michalon et al.,
2012).

In adolescent rodents, it has been hypothesized that 5-HT7R
may subserve the persistent structural rearrangements of the
brain reward pathways occurring during postnatal development,
following chronic methylphenidate exposure (Adriani et al.,
2006; Leo et al., 2009). Accordingly, stimulation of 5-HT7R
in adolescent rats by intraperitoneal administration of LP-211
(0.25 mg/kg/day for 5 days), induces plastic rearrangements
within forebrain networks, accounting for long-lasting behavioral
changes in the adulthood (Canese et al., 2014). Similar results
were obtained in a rat model for Attention Deficit Hyperactivity
Disorder (ADHD) in which prepuberal stimulation of 5-HT7R
by intraperitoneal administration of LP-211 (up to 0.5 mg/kg/day
for 14 days), has long-term effects on adult behavior, improving
spatial attention and resulting in modified expression of pre-
and post-synaptic markers (Ruocco et al., 2014a), while the
same treatment, during adolescence, modulates the emotional
responses (Ruocco et al., 2014b). In addition, stimulation of
5-HT7R exerted consistent effects into exploratory motivation,

Frontiers in Behavioral Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 318 | 3

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Volpicelli et al. 5-HT7 receptor and neuronal wiring

anxiety-related profiles and spontaneous circadian rhythm in
adult rodents (Adriani et al., 2012).

Most of these experiments have been performed using LP-211,
a novel highly potent and selective 5-HTR7 agonist that, in being
brain-penetrant, is particularly useful for in vivo studies (Hedlund
et al., 2010). Thus, adult mice treated in vivo with intraperitoneal
injection of LP-211 (0.25 mg/kg/day for 3 days) showed a sig-
nificant increase in the total number and density of dendritic
spines in neurons of the dorso-lateral striatum (Speranza et al.,
in preparation for this issue). In view of the fact that dendritic
spines actively participate in the formation of synapses, these data
strongly support the notion that this receptor may be involved in
shaping the neuronal wiring of the mature CNS.

Along this line, LP-211 stimulation of 5-HT7R by intraperi-
toneal administration of LP-211 (0.25 mg/kg/day for 7 days) in an
adult mouse model of Rett Syndrome (the MeCP2-308 strain) was
able to rescue the behavioral deficits and to reverse the abnormal
activation of the key molecules regulating actin cytoskeleton
dynamics, which in turn modulate neuronal morphology (De
Filippis et al., 2014). In addition, inhibition of 5-HT7R with
the selective antagonist SB-269970 was able to ameliorate psy-
chomotor and cognitive deficits in animal model of schizophrenia
(PACAP-deficient mice), supporting the notion that 5-HT7R is
linked to the already mentioned psychiatric disorders such as
schizophrenia and depression (Tajiri et al., 2012). This view has
been further supported by independent experiments using lurasi-
done, a novel atypical antipsychotic drug with a powerful antag-
onist activity for 5-HT7R. Lurasidone ameliorates learning and
memory deficits in animal model of schizophrenia and induces an
antidepressant-like response in animal models for depression and
anxiety. Interestingly, these pharmacological actions of lurasidone
are mediated, at least partially, by 5-HT7R (Ishibashi et al., 2010;
Cates et al., 2013; Horisawa et al., 2013), corroborating previous
data that demonstrate the involvement of 5-HT7R in depression
(Hedlund et al., 2005; Mnie-Filali et al., 2007).

The 5-HT7R expression in brain regions involved in learning
and memory parallels with its functions. The 5-HT7R knock-
out mice exhibits specific impairments in contextual learning
(Roberts et al., 2004). Several other studies highlight the impli-
cation of 5-HT7R in memory and attention-related processes
(Gasbarri et al., 2008; Freret et al., 2014; Meneses, 2014), under-
scoring its role in the modulation of the neuronal network
associated with cognitive functions. Therefore, the study of this
receptor and its associated intracellular pathways may provide
invaluable information for the treatment of learning and mem-
ory disorders. From a general point of view, the involvement
of 5-HT7R in such numerous neurological disorders associated
with abnormal CNS connectivity, recognizes this receptor as a
promising target for the development of innovative therapeutical
strategies.

CONCLUSION
Taken together the results highlighted here indicate that 5-HT7R
is an important player involved in the establishment of neuronal
cytoarchitecture during development of CNS, and strongly sug-
gest its modulatory action in remodeling neuronal morphology
and circuitry in the mature brain. Future studies using high

resolution in vivo imaging, coupled with the elucidation of molec-
ular mechanisms responsible for morphological modifications
will further our knowledge on 5-HT7R role in brain plasticity.
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