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An individual's genetic background affects their emotional behavior and response to
stress. Although studies have been conducted to identify genetic predictors for emotional
behavior or stress response, it remains unknown how prior stress history alters the
interaction between an individual’'s genome and their emotional behavior. Therefore, the
purpose of this study is to identify chromosomal regions that affect emotional behavior
and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse
model to identify chromosomal regions that predict fear learning and emotional behavior
following exposure to a control or chronic stress environment. 62 BXD recombinant inbred
strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a
classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait
loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and
chronic stress populations. Candidate genes, including those with already known functions
in learning and stress were found to reside within the identified QTLs. Our data suggest
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that chronic stress history reveals novel genetic predictors of emotional behavior.
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INTRODUCTION

Much of an individual’s emotional behavior and response to
stress is determined by genetic factors. Mood and anxiety disor-
ders are highly heritable (Bienvenu et al., 2011; Binder, 2012).
Environmental stressors often exacerbate psychiatric disease in
individuals diagnosed with mood and anxiety disorders, result-
ing in attention deficits, difficulty in memory tasks, irritability,
and affect changes in humans (Renoir et al., 2013). In rodents,
chronic stress, and hypothalamus-pituitary- adrenal axis (HPA)
activation result in anhedonia, sleep abnormalities, circadian dis-
turbances, and memory impairment (Herman and Watson, 1995;
Pardon et al., 2000a,b; de Kloet et al., 2005). Additionally, emo-
tional learning, and anxiety/exploratory behavior are subject to
stress-induced effects (Mozhui et al., 2010).

While the effects of both genetics and environment on emo-
tional behavior have been described (Valentinuzzi et al., 1998;
Mozhui et al., 2010), to date, the interplay between all three (i.e.,
genetics, environment, and emotional behavior) has been less
studied. In humans, the interaction of genetic factors and chronic
stress has been investigated in populations having high stress
lifestyles or occupations such as medical or nursing residents
and military or fire-fighting service positions or low socioe-
conomic status (Reijneveld and Schene, 1998; Chernomas and
Shapiro, 2013; Powell et al., 2013). For in depth genetic analysis
of behavior, researchers can rely on recombinant inbred strains,
such as the BXD mouse strain populations (Philip et al., 2010).
The BXD mouse population is a behavioral genetics model of
recombinant inbred mouse strains derived from the C57BL/6
and DBA/2 parental strains, and is used by researchers to map

phenotypic variation across RI BXD strains onto defined chro-
mosomal regions via quantitative trait loci (QTL) analyses (Peirce
etal., 2004; Andreux et al., 2012). Based on the differences in per-
formance and stress responsiveness between C57BL/6 and DBA/2
strains (Waddell et al., 2004; Brigman et al., 2009; Mozhui et al.,
2010), the BXD mouse population provides a unique opportu-
nity to identify the chromosomal locations that contribute to
emotional behavior.

Here, we test the hypothesis that environmental context (the
presence or absence of stress) reveals unique genetic predictors of
emotional behavior. Emotional behavior of 62 BXD strains, and
C57BL/6 and DBA/2 parental strains was assessed by fear condi-
tioning and performance on the elevated plus maze. Littermates
of each strain were treated with either control or chronic variable
stress (CVS). QTL mapping was performed to identify genetic loci
and candidate genes underlying emotional learning and behavior
in both the control and chronic stress states.

MATERIALS AND METHODS

ETHICS STATEMENT

All animal procedures were approved by the Air Force Research
Laboratory Institutional Animal Care and Use Committee in
accordance with the NIH Guide for the Care and Use of
Laboratory Animals.

ANIMALS

All BXD recombinant inbred strains and their parental C57BJ]/6
and DBA/2 strains were purchased in littermate pairs from
Jackson Laboratory (Bar Harbor, ME, USA). Male mice, aged 9
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weeks at start of experiments, were singly housed with ad libitum
access to standard rodent chow (Harlan Teklad, Madison, WI,
USA) and water. Ambient housing conditions were controlled for
temperature (18-24°C, 21°C average), humidity (30-70%, 35%
average), and the housing room maintained a standard 12:12 light
cycle (6 a.m. on). Sixty-two different BXD strains (592 BXD mice,
n = 3-5 per strain per group), in addition to the C57BJ/6 and
DBA/2 parental strains (n = 5 per strain per group), were utilized
in the study.

EXPERIMENTAL DESIGN
The design of this study is summarized in Figure 1. Upon arrival
at the animal facility, littermate pairs were divided into control
and chronic stress (CVS) populations and were allowed to accli-
mate to our animal facility and to single housing for a 10 days
period. Both populations of animals were housed in the same
room. All treatment and testing occurred during Monday—Friday
of the week during the light cycle. After 2 days of handling,
the control population began behavioral testing (weeks 1-3) and
the CVS population began the chronic stress paradigm (weeks
1-4). The CVS paradigm lasted 4 weeks with behavioral test-
ing being completed during weeks 2—4 for CVS mice. Behavioral
testing in the chronic stress population was offset for 1 week
from environmental controls to allow 1 week of exposure to the
CVS paradigm before behavioral testing and to accommodate
throughput limitations of the behavioral assays. All mice under-
went 3 weeks of behavioral testing such that the elevated plus
maze (EPM) task preceded the learning tasks. Following the EPM,
mice complete a 7 days Morris water maze (data not described
in this manuscript), followed by the fear conditioning test. The
order of tests permitted the observation of anxiety-like behavior
prior to any conditioning effects. Following the completion of all
behavioral tests, animals were euthanized via rapid decapitation.
Ten cohorts (50—64 mice) of BXD strains (25-32 strains per
cohort) were utilized over the span of a year. Each cohort con-
sisted of two littermates of each strain and had a unique grouping
of BXD strains to minimize confounding factors such as seasonal
and group effects.

CHRONIC STRESS TREATMENT

Chronic stress was established using the CVS model (Herman
and Watson, 1995; Furay et al., 2008; Castafieda et al., 2011). In
this paradigm, animals underwent a randomized schedule of one
to two mild to moderate physiological and psychological stres-
sors daily 5 days a week. Stressors included novel overnight home
cage, hypoxia (30 min), cold exposure (15 min at 4°C), open field
(30 min), and constant motion (60 min) exposure. The random-
ization of the schedule resulted in unique order and sequence of
the stressors thereby limiting predictability and habituation to the
chronic stress paradigm. All cohorts of animals were exposed to
the same order and sequence of stressors.

ELEVATED PLUS MAZE (EPM)

Prior to any additional behavioral testing, mice were subjected
to the EPM in which they were placed in the center of the EPM
apparatus, and recorded and monitored using EthoVision XT
software (Noldus Information Technologies, Leesburg, VT) for
5min. Experimenter did not remain in EPM testing area dur-
ing data collection. The EPM is elevated 1 m above the floor
and consists of two open and closed arms (40 x 8 cm) separated
by a center area. Closed arms contain vertical gray plexiglass
walls (29.5cm), while open arms contain no protective edges.
During testing, the maze is illuminated by two 60 W incandes-
cent light bulbs placed approximately 35cm above the arms in
a room illuminated by two shielded 150 W incandescent light
bulbs. The measures collected via EthoVisionXT software (Nolud
Information Technologies, Leesburg, VT) from the EPM test
include: (1) time spent in the closed arms, (2) time spent in
the open arm, and (3) distance traversed throughout the maze.
Time spent in the closed arms has been associated with anxiety-
like behavior, while time in open arms is considered exploratory.
Distance traversed was assessed as a measure of locomotor activity
within BXD strains.

FEAR CONDITIONING PARADIGM
Experiments were completed using four fear conditioning cham-
bers (Med Associates, Inc., St. Albans, VT, USA). Chambers
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FIGURE 2 | Behavioral phenotypes of fear conditioning paradigm. Mean
+ s.e.m. % time freezing for Control (Left) and Stress (Middle) populations,
and mean =+ s.e.m. difference in % freezing between littermates (Stress

Strain Strain

minus Control: Stress Effect, Right) of the (A) Training (Day 1), (B) Context
(Day 2), (C) Tone (Day 3). C and D indicate the locations of parental strains
C57BL/6 and DBA/2 strains among the rankings, respectively.

consist of front and back Plexiglas and side metal walls. Fear con-
ditioning chambers were housed within camera containing sound
attenuation cubicles that reduce outside sound and light dur-
ing testing. Fear Conditioning was completed over 3 days. On
day 1, mice were placed into the operant chambers (with steel
grid floor) and freezing behavior is assessed using EthoVision
XT software (Noldus Information Technologies, Leesburg, VT)
throughout the session. Day 1 session included four exposures
to a 30s tone (85dB, 3KHz) that terminated with a 2s foot-
shock (0.75 mA), which elicited freezing behavior (unconditioned
response) that was captured via EthoVision software. Each tone
was separated by a 30s inter-tone interval. The pairing of the
tone and shock (unconditioned stimulus, US) on Day 1 resulted
in the establishment of the tone as a conditioned stimulus (CS),
and elicited freezing behavior (conditioned response). On Day 2,
mice were returned to the operant chamber and freezing behav-
ior was monitored for 10 min. On Day 3, the environmental
context of the operant chamber was altered by replacing the
grid floor with a smooth white Plexiglas insert. Mice were then
exposed to the 30s CS (tone) 9 times with random inter-tone
intervals.

We measured the percent time displaying freezing behavior on
Day 1 during acquisition (180 s following the final exposure to the
CS-US pairing), Day 2 after placement within the conditioning
context (180 s), and Day 3 during the presentation of the auditory
cue (30s).

Statistics

Stress-effect was calculated as the difference in performance
between control and CVS littermates. Mixed model analysis was
performed via Ime4 and lmerTest packages in R using stress,
strain, month of testing, and experimenter handling during test-
ing as fixed variables and cohort as a random variable. Non-linear
mixed-effect test was followed by ANOVA to obtain values for
main effects of fixed variables. Pearson product-moment corre-
lations (R) and Spearman rank order correlations (rho) between
traits measured were computed via GeneNetwork for both the
Control and Stress population.

Summary statistics of heritability of behavioral traits measured in
FC and EPM testing

Broad-sense (H?) and narrow-sense (h?) heritability of expres-
sion levels in the recombinant inbred lines was estimated using
the Hegmann and Possidente Method (1981): H? = Va/Vt; h? =
4Va/(¥2Va + Vw). Va is the variance among strains, Vt is the
variance in the total population, and Vw is the variance within
strains.

QTL MAPPING

QTL mapping was performed using complex trait analysis and
mapping tools available on the Genenetwork website (http://
www.genenetwork.org). GeneNetwork utilizes 3806 markers
(intermarker interval of 0.66 Mb) in 89 BXD recombinant inbred
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FIGURE 3 | Behavioral phenotypes of the elevated plus maze. Mean +
s.e.m. distance or time spent for Control (Left) and Stress (Middle) populations,  Closed Arm, and (C) Time in Open Arm. € and D indicate the locations of
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Table 1| Correlation of traits measured in control population.

Spearman rank correlation (rho)

Training Context Tone Distance Closed arm Open arm
o Training 0.591* 0.761** —0.087 0.239 —0.316
é Context 0.632* 0.54* —-0.334 0.322 —-0.412
§ Tone 0.74%* 0.476 —0.138 0.239 —0.297
Distance —0.095 —-0.28 —0.126 —2.52 0.307
Closed arm duration 0.255 0.352 0.241 —0.253 —0.819**
Open arm duration -0.35 —0.392 —0.326 0.324 —0.865**

*Correlation values > 0.5, **correlation values > 0.7

Table 2 | Correlation of traits measured in stress population.

Spearman rank correlation (rho)

Training Context Tone Distance Closed arm Open arm
o Training 0.63* 0.617*% —0.108 0.139 —0.068
S Context 0.651* 0.578* 0.004 0.105 ~0.053
3 Tone 0.624* 0.562* —0.114 0.175 0.101
Distance —0.164 0.077 —0.109 —0.033 0.025
Closed arm duration 0.165 0.13 0.179 —0.022 —0.856**
Open arm duration —0.089 —0.052 —0.097 0.052 —0.892**

*Correlation values > 0.5, **correlation values > 0.7
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strains to link regions of the genome to differences in pheno-
type. Potential QTLs are evaluated at regular intervals along the
genome, each evaluated for significance via 2000 permutation
tests (Churchill and Doerge, 1994). Thresholds for suggestive and
significant QTLs are determined via GeneNetwork as likelihood
ratio statistic (LRS) values associated with genome-wide prob-
abilities of 0.67 and 0.05, respectively (Williams et al., 2001).
QTLs are described here by their greatest LRS value, significance
threshold passed, confidence interval (evaluated using the 1 LOD
drop method; Lander and Botstein, 1989), and by the number
of genes residing within the described peak. Mapping was per-
formed for three traits of emotional learning assessed during the
fear conditioning paradigm (freezing during training to tone and
shock on Day 1, freezing to environmental context on Day 2,
and freezing to tone on Day 3) and three emotional behavioral
traits measured within the elevated plus maze [locomotion or dis-
tance (m) traversed, time (s) in closed arms, and time (s) in open
arms].

CANDIDATE GENES

Candidate genes listed are genes within each QTL which have
a human homolog and/or are cis-regulating. Determination of
cis-regulation was performed by using the QTLminer tool of
GeneNetwork to identify cis-regulated genes (amygdala, cerebel-
lum, hippocampus, hypothalamus, neocortex, prefrontal cortex,
or striatum) within the confidence interval of each QTL, Genes
were further assessed via literary search in PubMed for known
relationship with stress, learning, anxiety, fear conditioning, and
exploration.

RESULTS

EMOTIONAL BEHAVIOR IN BXD MICE

We assessed conditioned and unconditioned emotional behav-
ior across BXD and parental strains using the fear conditioning
paradigm and elevated plus maze, respectively. Fear learning
(Figure 2) and emotional behavior (Figure 3) responses varied
greatly across strains. Indeed, even the trait that showed the least
variation (locomotion) from lowest to highest measured response

Table 3 | Broad-sense (H?)/Narrow-sense (h?) heritability of
behavioral traits within control and chronic stress (stress)
populations and the difference in behavior between control and
stress (stress minus control).

Trait Control Stress Stress effect
H?/H? H?/H? H?/H?

FEAR CONDITIONING

Training 0.58/0.35 0.61/0.37 0.27/0.12

Context 0.45/0.25 0.39/0.20 0.20/0.091

Tone 0.48/0.26 0.46/0.25 0.21/0.096

ELEVATED PLUS MAZE

Locomotion 0.54/0.32 0.59/0.37 0.24/0.11

Time in closed arms 0.40/0.20 0.32/0.16 0.21/0.092

Time in open arms 0.39/0.19 0.29/0.14 0.22/0.099

Broad-sense, Va/Vt; Narrow-sense, ¥:Va/(¥:Va + Vw); Va, variance among strains,
Vt, variance across total population, VVw, variance within strains.

(~10-27) had a 2.5-fold difference. The susceptibility of these
traits to stress-induced effects (stress-effect) was assessed by tak-
ing the difference in the measured behavior between littermates
(CVS minus control). These differences ranged from negative to
positive and indicate a wide variation in stress-induced effects
(Figures 2, 3, right).

All emotional behavior traits were tested for correlation in
both the control (Table 1) and Stress (Table 2) population. As
expected, time spent in open and closed arms during the EPM
was strongly negatively correlated. Traits measuring during fear
conditioning shared R > 0.48 and rho > 0.54 in the control
condition and R > 0.56 and rho > 0.58 in the stress population.

HERITABILITY OF EMOTIONAL BEHAVIOR

We determined broad-sense and narrow-sense heritability to
determine the proportion of variance across all strains for a mea-
sured trait that is attributable to genetic variance (Table 3). A
h? > 0.25 indicates a strong genetic component to the trait and
QTL analysis was performed on those traits with a h* of 0.25
or greater in at least one of the populations. All measures of the
fear conditioning paradigm had at least one population displaying
strong heritability (k%> = 0.25-0.35). Locomotion in the elevated
plus maze showed high heritability (h*> = 0.32-0.37), however
time spent in closed and open arms was not determined to be
strongly heritable (h?> = 0.14-0.20). Of interest, h? of the major-
ity of traits decreased in CVS compared to control populations.

MAIN EFFECTS ON EMOTIONAL BEHAVIOR

To assess the effect of stress on emotional behaviors measured
across the BXD strains, we first ran a non-linear mixed-effect
test followed by ANOVA for effects of stress and strain (Table 4).
An effect for strain was seen in all measures, indicating that the
unique genetic background of the different strains determined
the measured behavioral response, consistent with our measures
of heritability. Significant effects of stress were seen in freezing

Table 4 | Summary of One-Way ANOVA results following linear mixed
model fit.

Trait Strain Stress
P, F, df P, F, df
FEAR CONDITIONING
Training * <0.001, * <0.0001,
5.41, 63 16.05, 1
Context *<0.0001, * <0.05,
2.80, 63 4.96, 1
Tone *<0.0001, * <0.0001,
6.50, 63 26.22,1
ELEVATED PLUS MAZE
Locomotion *<0.0001, 0.35,
10.15, 63 0.92,1
Time in * <0.0001, *<0.05,
closed arms 2.04, 63 4.23,1
Time in *<0.001, 0.65,
open arms 192, 63 0.22,1

*indicates significant p-value.
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to training (Day 1), context (Day 2), and tone (Day 3) in the
fear conditioning paradigm and time in open and closed arms of
the elevated plus maze, indicating that these behavioral responses
were susceptible to chronic stress exposure. Additional environ-
mental factors were tested as confounds in mixed model analysis
(month of testing and handler during testing; Valdar et al., 2006).
Month of testing did not hold a main effect for any trait tests,
while handler was a significant factor in time spent in closed arms
during the EPM alone P < 0.01 (F = 6.86, df = 3).

QOTL MAPPING LINKS EMOTIONAL PHENOTYPES TO CAUSAL LOCI
QTLs were detected in freezing to training (Day 1), context (Day
2), and tone (Day 3), and locomotion (Tables 5, 6). No QTLs
meeting a suggestive level of LRS significance were found for
time spent in open and closed arms of the EPM. The lack of
QTLs for time spent in EPM is consistent with the non-significant
h? scores reported for these measures. Additionally, QTLs for
the Stress-Effect on locomotion and freezing to training (Day 1)
were detected. QTL maps of all measured traits having suggestive
or significant LRS peaks are summarized in Table3 and dis-
played as a heatmap (Figure 4). The use of a heatmap allows for
comparison across phenotypic traits and the presence of stress.
Individual QTL maps containing suggestive and significant peaks
for the control and CVS populations are found in Figures 5, 6,
respectively.

For reference, QTLs are denoted by chromosome location
(Table 5). QTLs unique to the control population were located
on Chromosomes 13 and 14 (QTLs 13a and 14) and were found

in the analysis of freezing to context (Day 2) and tone (Day
3), respectively. Conversely, QTL mapping of freezing to train-
ing (Day 1) uncovered QTLs unique to the CVS population on
Chromosomes 2 and 5. All other QTLs (QTLs 1, 3, 4, 13b, and
X) were shared by both control and CVS populations. QTLs 1,
3, and 13b were identified in both control and CVS populations
for freezing to training. QTL 13b was also identified in freezing to
context (Day 2) for both control and CVS populations and freez-
ing to tone (Day 3) in the CVS population. Lastly, QTL 4 was
identified in both control and CVS populations for locomotion
in the elevated plus maze. Candidate genes within each QTL are
listed in Table 6.

DISCUSSION

We observed significant effects of chronic stress on emotional
behavioral phenotypes. The BXD populations utilized revealed
great variability of behavioral response in both control and
CVS conditions (Figures 1, 2). Thus, our results show that
environmental stress is a unique factor affecting behavioral
responses in BXD strains of mice.

QTL mapping of individual phenotypes identified genetic
loci that predict emotional behavior in control and stress
environments (Table5). The unique QTL maps from con-
trol vs. chronic stress populations for the same behavioral
attribute suggest that the genetic regions most likely to pre-
dict behavior are influenced by prior stress history. Of inter-
est, the strength of each trait’s heritability score lessened with
the presence of chronic stress, suggesting a disruption of the

Table 5 | List of QTLs.

QTL  Trait- Chr Peak Mapping location Genotype with  Previous reports for QTL
group LRS (Mb) increased trait (citation)
1 Tr(C and CVS) 1 13.1* 1174-126.3 DBA/2
2 Tr(CVS) 2 16.5*% 979-101.3 C57BL/6 Freezing to Context (Radcliffe et al., 2000; Parker et al.,
2012); basal cort (Yang et al., 2008)
3 Tr(C and CVS) 3 16.2*%; 118.8-124.6; DBA/2 Freezing to Context (Owen et al., 1997)
126.8-129.1
15.8*
4 Loc(C and CVS) 4 16.5%* 65.5-95.7 C57BL/6 Context fear conditioning (Brigman et al., 2009)
5 Tr(CVS) 5 13.3*% 121.8-1274 DBA/2 Contextual fear conditioning (Parker et al., 2012); Time in
Open sections of zero maze (Cook, 2009 unpublished in
GeneNetwork); time spent in closed quadrants following
restraint (Melloni, 2009 unpublished data on GeneNetwork)
13a Cxt(C) 13 13.7* 45.8-50.0 DBA/2 Contextual learning (Philip et al., 2010); glial count in
amygdala (Mozhui et al., 2007)
13b Tr(C and CVS), 13 22.2%%x* 78.1-975 DBA/2 Hippocampal volume (Philip et al., 2010); freezing during
Tn(C and CVS), fear conditioning (Lassalle et al., 1994); hippocampal
Cxt(CVS) activation (Enoch et al., 2008)
14 Tn(C) 14 17.3%* 71.0-73.5 C57BL/6
15 Tr(SE) 15 13.7* 93.2-95.4 DBA/2
16 Loc(SE) 16 17.0%* 74.9-79.1 C57BL/6
X Tr(C and CVS), X 17.0%* 56.2-68.3 C57BL/6 Hippocampal mossy fiber CA4/total MF (Lassalle et al.,

Tn3(C and CVS)

1994)

Trait/group abbreviations: C, control; CVS, chronic variable stress; Chr, chromosome; SE, stress-effect; Tr, freezing to training, Cxt, freezing to context; Tn, freezing

to tone; and Loc, locomotion.

KAK

LRS: greatest LRS reported. Significant level: *suggestive, **significant,

highly significant per genenetwork.org.
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Table 6 | List of candidate genes.

QTL Chr # Genes (candidate/total) Candidate genes

1 1 20/32

Cntnapba”, Tsn”, Mki67ip, Clasp1, Gli2, Inhbb, Ralb”, Ptpn4, Sctr, Tmem37”, Dbi”*, 3110009E8Rik”,

C1ql2”, Marco, En1, B230209K01Rik”, Insig2, Htr5b”, Ddx18, Dpp10

2 2 01

30/55

Dpyd, Ptbp2”, Rwdd3”", Tmem56”, Alg14”, Cnn3", Scl44a3”, F3”, Abcd3”, Arhgap29”, Abcad”, Gelm”,

Dnttip2”, Becar3”, Fnbp11®, Pdeba”, Fabp2, Usp53”, Myoz2”, Sec24d”, 2310068J10Rik”,
G430022H21Rik”, Synpo2”, Prss12”, Ndst3; Neurog2, Alpk1, Alpk1, Pitx2, Enpep”

60/115

Astn2, TIr4, Dbc1, Cdk5rap2, C630043F03Rik”, Tle1, Rasef, Frmd3”, Jmjd2c”, 3110001D03Rik”, Ptprd”,

Tyrp1”, Mpdz”, Nfib”, Zdhhc21”, Cer1, Frem1, 1810054D07Rik”, Snapc3”, Psip1”, 4930473A06Rik",
8430420F16Rik”, CntIn”, Sh3gl2”, Adamtsl1”, Rraga, 6230416J20Rik”, Adfp, Rps6”, Asah3I", Sic24a2”,
MIIt3, Ifnb1, Ifna14, I1fna13, Ifna2, KIhi9*, Ifna7 Ifna11”, Ifna6, Ifnab, Ifna4, Ifnal, Ifne1, Mtap”, Cdkn2a,
Cdkn2b”, Dmrta1, Elavl2, Tusc1, 5830433M19Rik", Plaa”, Ift74", Lrrc19, Tek”, 4930579C15Rik",
Mysm1%, Jun, 9530080011Rik”, Hook1

57/112

Trafd1, Mapkap5, Aldh2, Acad10, Brap”, Atxn2, Myl2, Pppicc, Rad9b, Vps29”, Arpc3, Anapc?, Atp2a2,

P2rx7, P2rx4, Camkk2, Anapcb, Rnf34, FbxI10, Hpd, Psmd9”, Wdr66", Bcl7a, Mixip”, 1131, Lrrc43, B3gnt4,
Diablo”, Vps33a, Clip1”, Zcche8, Kntc1”, Gpr109a, Gpr81, Denr, Hip1r, Abcb9, Arl6ip4, Pitpnm2,
Mphosph9”, Cdk2ap1”, Sbno1”, Ddx55", Eif2b1, Gtf2h3, Atp6v0a2, Ccdc92”, Zfp664~, 3110032G18Rik”,
Ncor2, Ubg”, Scarb1”, Ubc”, Dhx37”, Bri3bp”, Aacs, Tmem132b*,

13a 13 27/ 57

Atxn1”, 5033430115Rik”, Rom24, Cap2, C78339", Up153, Kif13a”, Nhirc1”, Tomt”, Aof1”, Dek”, Id4,

A330048009Rik”, Ptpdc1, Phf2, Wnk2”, Ninj1, Susd3, Fdg3, Bicd2, Cenpp”, Ecm2, Aspn. Omd, Ogn,

Nol8, lars

13b 13 52/100

A430105P17Rik”, C130051F05Rik”, Arrde3”, Cetn3, Mef2c”, Tmem161b”,Ccenh”, Rasa1”, Cox7c”,

Edil3", HapIn1”, Van”, Xrcc4, Rps23, Atg10”, Ssbp2”, Acot12”, Zcche9, Ckmt2, Rasgrf2, Msh3, Dhfr,
Zfyve16, Spz1, Thbs4”, EG218444", Papd4, Mtx3, Homer1”, Jmy”, Cmya5”, Bhmt, Bhmt2, Dmgdh,
Arsb”, Lhfpl2, Scamp1”, Ap3b1, Tbca, Otp, Wdr41, Pde8b, Zbed3, Crhbp, S100z, F2rl1”, F2r*, lggap2”,

F2ri2”, Sv2c”, Pol”, Col4a3bp”™

6/15

Fgf17 Npm2”, Xpo7”, Dok2”, Gfra2”, Cysltr2

9/12

Zcrb1”, Pphin1”, Prickle1”, D630014N10Rik”, Pus7I”, Irak4”, Twf1”, Tmem117”, Nell2”

14/29

E130102B10Rik”, Lipi, Rbom11”*, Stch”, Samsn1”, Nrip1”, Usp25”, 2810055G20Rik”, D130020G16Rik",

Cxadr”, Btg3”, 4930578L05Rik”, Chodl, Prss7

14/39

Fgf13, F9, Mcf2, Atp11c”, Sox3, Ldoc1, Ctag2”, 383047A13Rik”, Slitrk4, Fmr1, Fmrinb,
2610007B07Rik", Ids, Fate1”

Candidate genes were defined as genes with a human homolog and/or are cis-regulated: " indicates cis-regulated gene.

basal heritable contribution with chronic stress. Our mixed-
model analysis identified behavioral traits susceptible to stress-
induced effects that were seen in differences in their resulting
QTL maps (Table 4). Most QTLs for the behavioral phenotypes
reported here have not been previously indentified for these
traits, although several have been identified for related pheno-
types (Table 5). As the initial report of these QTLs and candi-
date genes, additional studies are required to strengthen their
validation.

0OTLs AND CANDIDATE GENES FOR LEARNING WITHIN A STRESSFUL
CONTEXT

QTL 13b was found repeatedly for fear learning in both control
and chronic stress populations. Although its strength and fre-
quency is greater with chronic stress, the region was not identified
for anxiety/exploratory EPM behavior. Its presence in freezing

to training (Day 1) and tone (Day 3) of the control population
suggests pleiotropic effects for learning within a stressful context.
QTL 13b corresponds with peaks found previously for fear
conditioning and hippocampal volume (Table 5; Lassalle et al.,
1994; Philip et al., 2010; Parker et al., 2012). The myocyte-specific
enhancer binding factor 2C (Mef2c) gene resides at the highest
LRS value within QTL 13b, and is cis-regulated. Gene expres-
sion of Mef2c in the amygdala has been associated with anxiety
(Genenetowrk GeneWiki: Williams et al., 2001), and plays a role
in synapse elimination within the hippocampus to facilitate hip-
pocampal dependent learning (Barbosa et al., 2008). Additionally,
Mef2c has been identified as a requirement for the activation-
dependent expression of BDNF (Lyons et al., 2012) and is a
marker of ischemia-resistant hippocampal neurons (Speliotes
etal., 1996). Mutations of Mef2c in humans result in mental retar-
dation (Zweier et al., 2010). Taken together, its presence in QTL
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FIGURE 4 | Heatmap of QTL mapping of behavioral traits and
Stress-Effect containing significant and/or suggestive peaks.
Abbreviations in legend: Fear Conditioning (FC), elevated plus maze, (EPM),

freezing to training (Tr), freezing to context (Cxt), freezing to tone (Tn),
locomotion (Loc), control (C), chronic variable stress (CVS), and
stress-effect (SE).

13b and its known associations suggest that it may have a role
during stress and/or anxiety.

Relevant to learning and stress, corticotropin-releasing hor-
mone binding protein (Crhbp) is also found within QTL 13b.
Crhbp regulates the activity of CRH (corticotropin releasing
hormone), a stress hormone in the HPA axis (Westphal and
Seasholtz, 2006), and is upregulated following stress (McClennen
etal., 1998). The HPA axis has a complex relationship with learn-
ing and memory- transient activation results in enhancement of
learning and memory (de Kloet et al., 1999), while persistent acti-
vation levels results in cognitive deficit (de Kloet et al., 2005).
Enoch et al. reported that dense whole genome linkage scan of
hippocampal activation assessed by EEG resulted in a linkage
peak containing crhbp (Enoch et al., 2008). Crhbp is found at
greater levels in high avoidance rats compared to low avoidance
rats (Sabariego et al., 2011). Additionally, mutations in Crhbp
were associated with anxiety disorders in a Plains Indian popu-
lation and alcohol use in Caucasians, suggesting a role for Crhbp
in stress-induced phenotypes (Enoch et al., 2008). These results
suggest Crhbp may be a marker for fear learning in a stress
context.

Also associated with fear learning in both control and chronic
stress populations, QTL X was identified for the freezing to
training and tone (Days 1 and 3) and absent for context (Day
2). Genes within this region may play a role in the incorpora-
tion of the auditory cue and aversive stimulus. Fibroblast growth
factor 13 (Fgf13) is located at the LRS peak of QTL X and has
a well described role in learning and memory (Wu et al., 2012).
Expressed in cortical neurons, Fgf13 is linked to X-chromosome-
linked mental retardation in humans (Itoh and Ornitz, 2008).
Interestingly, the expression of the Mef2c (QTL 13b) and Fgf13
in the hippocampus are positively correlated (genenetwork.org,
Rho = 0.543, P = 0.00356). Thus, genes in both QTLs 13b and X
may interact for the expression of learning phenotypes.

QTL 5 was unique to the stress population for freezing to
training (Day 1) and has been found previously (Table 5; Parker
et al., 2012; Cook, 2009 unpublished data in genenetwork.org)
Within QTL 5, P2rx7, and P2rx4 have roles in neuroinflammatory
response to stress (Witting et al., 2004; Hernandez et al., 2010).
Knockout and antagonism of P2rx7 results in mood stabilizing
and reduces the corticosterone response to restraint stress (Csolle
et al., 2013). Calcium/calmoudulin kinase kinase 2 (Camkk2), a
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gene associated with hippocampus-dependent long-term mem-
ory and anxiety also resides in QTL 5 (Peters et al., 2003;
Mizuno et al., 2007; Sabariego et al., 2011). Loss of Camkk2
decreases BDNF expression (Kokubo et al., 2009). Interestingly,
fear conditioning results in a downregulation of Camkk2 in the
hippocampus (Mei et al., 2005) and Camkk2 knock outs males,
but not females, show impaired spatial learning and normal
fear conditioning (Peters et al., 2003; Mizuno et al., 2007). Our

experiments, using only male BXD mice, confirm a contributory
role of Camkk? in fear learning.

QTL analysis of the Stress-Effect revealed a significant peak for
difference in locomotion (QTL 16) and suggestive peak for dif-
ference in freezing to training (Day 1) (QTL 15). These genetic
regions contain Nripl and Nell2, two genes required for learning
of the Morris Water Maze (Duclot et al., 2012) (Matsuyama et al.,
2005). Of note, swimming aberrations were noted as a potential
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contributor to the cognitive deficit, despite the absence of dif-
ference in rotorod and open field performance (Duclot et al.,
2012). Elimination of Nell2 via knockout results in increases in
LTP within the dentate gyrus (Matsuyama et al., 2004), suggest-
ing that its role in cognitive performance is due to a regulatory
effect on LTP.

QTLs AND CANDIDATE GENES FOR LEARNING IN A CONTROL
ENVIRONMENT

Unique to learning in the control environment, QTLs 13a and
14 expectedly contained genes associated with learning. No
genes with established rolesin stress or anxiety were found. QTL
13a, previously found for contextual learning and amgdala glial
count (Table 5; Mozhui et al., 2007; Philip et al., 2010) con-
tains NHL repeat containing 1/epilepsy, progressive myoclonic
2B (Nhlrcl/EPM2B). Knockout of this gene results in episodic
memory deficits assessed by the object recognition test (Garcia-
Cabrero et al., 2012). Thus, NhlrcI may play a role in the incorpo-
ration or retrieval of contextual memory. Learning an auditory
cue (freezing to tone- Day 3) resulted in a significant QTL on
Chromosome 14 in controls. Several genes within this locus
are associated with hippocampal-dependent learning [e.g., Gfra,
Itm2B, and Htr2a (Voikar et al., 2004; Tamayev et al., 2010; Zhang
et al., 2013)]. Loss of the QTLs with chronic stress may indicate
that genes within QTLs 13a and 14 no longer play a significant
role when stress is present, or that genes within other genetic loci
play overshadowing roles with stress. Of note, the expression of
Nhlrcl in QTL 13a, and Itm2b and Htr2a in QTL 14 in the whole
brain correlate positively with whole brain expression of the gene
Slc24a2 in QTL 4 (genenetwork.org, Rho = 0.612, p < 0.00037,
Rho = 0.549, p < 0.0020, and Rho = 0.581, p < 0.00089, respec-
tively). This is of interest because these four genes have been
associated with learning and may act in concert to affect learning
in their respective phenotypes.

The results from this study identified genetic loci for emotional
behavioral phenotypes in the presence and absence of chronic
stress. Four of the loci identified in this study are novel and their
presence across multiple traits supports further study of the can-
didate genes contained within. In sum, our data indicate that
distinct genetic loci are associated with emotional behavior in
control and chronic stress conditions suggesting that behavioral
outcomes are influenced by the interplay between prior stress
history and genetic background.
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