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Continuous environmental stimulation induced by exposure to enriched environment (EE)
has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results
from a lack of oxygen supply to the fetus and is associated with long-lasting neurological
deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are
unknown. Therefore, the aim of the present study was to assess whether life-long
exposure to EE could counteract the cognitive and behavioral alterations in middle-aged
asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean
section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were
assigned to standard (SE) or enriched environment (EE) for 18 months. During the last
month of housing, animals were submitted to a behavioral test battery including Elevated
Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results
showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance
in the spatial reference and working memory versions of the MWM. EE was able to
counteract these cognitive impairments. Moreover, EE improved the spatial learning
performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in
SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion
and anxiety, regardless of birth condition. Recognition memory was altered neither by
birth condition nor by housing environment. These results support the importance of
environmental stimulation across the lifespan to prevent cognitive deficits induced by
perinatal asphyxia.

Keywords: perinatal asphyxia, environmental enrichment, aging, habituation, anxiety, recognition memory, spatial

reference memory, spatial working memory

INTRODUCTION
Perinatal asphyxia is an obstetric complication consisting in lack
of oxygen supply to the fetus or newborn during a certain period
of time (Adcock and Papile, 2008). Perinatal asphyxia has a world-
wide incidence of about 1 per 1000 live births (McGuire, 2006)
and is associated with a high mortality rate, neuropsychological
impairments and increased risk to develop neurodevelopmen-
tal disorders, such as attention deficit hyperactivity disorder and
schizophrenia (Lewis and Murray, 1987; Cannon et al., 2002; van
Handel et al., 2007). Despite advances in medical technology, an
effective treatment for perinatal asphyxia is lacking, nowadays.

To study perinatal asphyxia in experimental settings, two
murine models have been developed: the so-called “Levine-
Rice” model which is induced in 7-day-old rats by unilateral
carotid ligation followed by oxygen deprivation (Rice et al., 1981)
and the model developed by Bjelke et al. (1991) consisting in
the immersion of the uterus horns still containing the fetuses,

removed from ready-to-deliver rats, in a water bath at 37◦C
for 5–20 min (Capani et al., 2001). In the latter model, we
have previously observed spatial reference and working mem-
ory impairments, increased astrogliosis and synaptic alterations
in CA1 hippocampal area of adult rats (3–4 month-old) which
had undergone 19 min of birth asphyxia (Saraceno et al., 2010,
2012; Galeano et al., 2011).

Although it has been suggested that brain alterations trig-
gered by perinatal asphyxia could contribute to neurodegener-
ative disorders (Weitzdoerfer et al., 2004b), there is very scarce
experimental data about the impact of perinatal asphyxia on
cognitive domains in middle-aged and aged rats (Van de Berg
et al., 2000; Weitzdoerfer et al., 2004a). Van de Berg et al. (2000)
found an exaggerated age-related long-term memory impairment
in 18-month-old perinatally asphyxiated rats, while Weitzdoerfer
et al. (2002) reported that 24-month-old asphyctic rats showed a
significantly longer escape latency during the re-learning trial in
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the Morris water maze compared with the matched age control
group.

On the other hand, exposure of rodents to an enriched envi-
ronment (EE) has consistently shown to improve memory and
learning abilities in several behavioral tasks (Paylor et al., 1992;
Rosenzweig and Bennett, 1996; van Praag et al., 2000; Duffy et al.,
2001; Bruel-Jungerman et al., 2005; Leggio et al., 2005; Lores-
Arnaiz et al., 2007), to prevent age-related memory impairments
(Kempermann et al., 2002; Bennett et al., 2006; Lores-Arnaiz
et al., 2006; Mora et al., 2007; Leal-Galicia et al., 2008; Obiang
et al., 2011), to recover cognitive functions in murine mod-
els of hypoxia-isquemia (Dahlqvist et al., 2004; Komitova et al.,
2006; Pereira et al., 2007, 2008, 2009; Sun et al., 2010), and to
reduce spontaneous locomotion and anxiety-related behaviors
(Falkenberg et al., 1992; Chapillon et al., 1999; Del Arco et al.,
2007; Leal-Galicia et al., 2008; Segovia et al., 2008a,b; Hughes and
Collins, 2010).

The cognitive improvement induced by EE was mainly asso-
ciated with morphological and biochemical changes in the CA1
hippocampal area as well as an increase neurogenesis in the den-
tate gyrus (Iuvone et al., 1996; Ickes et al., 2000; Rampon et al.,
2000; Nithianantharajah and Hannan, 2006). EE is a protocol in
which groups of rats or mice are housed in bigger cages than those
used as standard, with a more complex configuration, and where
the animals are provided with different objects to explore that are
changed frequently. In addition, enriched cages may have running
wheels to allow animals to exercise. Thus, enriched cages provide
the animals with physical, sensory, cognitive, and social stimula-
tion that impact profoundly on brain structure and function (van
Praag et al., 2000).

The main aim of the present study was to assess if life-
long exposure to EE could counteract the cognitive alterations
observed in middle-aged rats that had undergone 19 min of birth
asphyxia. In addition, we assessed habituation and anxiety lev-
els in middle-aged asphyctic rats and its modulation by EE. For
this purpose, we chose classical tests that have traditionally been
employed and widely validated in the literature to assess cognitive
and emotional functions, such as the Elevated Plus Maze (EPM)
test, the Open Field (OF) test, the Novel Object Recognition Task
(NORT), and the spatial reference and working memory ver-
sions of the Morris water maze (MWM) test. Furthermore, we
have previously employed these behavioral tasks in the global
asphyxia model (with the exception of the NORT) in young
animals (Galeano et al., 2011). Following this line of thought,
we considered of value to investigate if cognitive and emotional
deficits shown by young asphyctic rats worsen or remain the
same through aging, and if these behavioral impairments could be
counteracted by life-long exposure to environmental enrichment.

MATERIALS AND METHODS
ANIMALS
Thirty-eight pregnant Sprague-Dawley rats were obtained from
the animal care facilities at the School of Veterinary Sciences
of the University of Buenos Aires and transferred to our local
vivarium one week prior to delivery. Pregnant rats were housed
individually in standard cages with ad libitum access to food and
tap water. A total of 72 male offsprings of these pregnant rats

were reared in standard (SE) or enriched (EE) environments from
weaning to 18 months of age (see Section Housing Conditions).
All animals were maintained in a temperature- (21 ± 2◦C) and
humidity- (50–60%) controlled environment on a 12 h light/dark
cycle (lights on at 7:00 a.m.). All procedures were approved by the
Institutional Animal Care and Use Committee of the School of
Medicine at the University of Buenos Aires, in compliance with
the Guide for the Care and Use of Laboratory Animals (NIH
Publications No. 80-23, revised 1996). Every effort was made to
minimize animal suffering and the number of animals used.

CESAREAN SECTION AND PERINATAL ASPHYXIA PROCEDURES
We employed a murine model of perinatal asphyxia originally
developed by Bjelke et al. (1991) and extensively described pre-
viously by our group (Capani et al., 1997, 2001, 2003, 2009;
Saraceno et al., 2010, 2012; Galeano et al., 2011, 2013) with minor
modifications. On gestational day 22, pregnant rats (n = 20)
were left to deliver no more than two pups and were immedi-
ately euthanized by decapitation. Next, the uterus horns were
rapidly isolated through an abdominal incision and one horn
was opened, pups were removed, the amniotic fluid was cleaned,
and the umbilical cord was ligated (cesarean section or C-section
procedure). Concurrently, the remaining horn was placed in a
water bath at 37◦C for 19 min (moderate to severe perinatal
asphyxia). Afterwards, the same procedures performed for the
C-section were followed, but before ligation of the umbilical
cord took place, pups were stimulated to breathe by perform-
ing tactile intermittent stimulation with pieces of medical wipes
for a few minutes until regular breathing was established. This
was unnecessary for pups born by C-section since they started
breathing spontaneously. Male pups born by C-section (cesarean
section group, C+; n = 24) or by C-section plus acute asphyxia
(perinatal asphyxia group, PA; n = 24) were left to recover for
approximately 1 h under a heating lamp. When the physiological
conditions of the asphyxiated pups improved, C+ and PA pups
were marked for identification and given to surrogate mothers
who had delivered normally within the last 24 h. A ≈ 95% of sur-
vival rate was observed in those pups that were born by C-section.
The survival rate dropped to ≈ 65% in those pups born by C-
section plus acute asphyxia. Finally, another group of pregnant
rats (n = 7) were left to deliver spontaneously and pups were
cross-fostered among dams (vaginal delivery or control group,
CTL; n = 24). In every case, we maintained litters of 10 pups with
each mother. Only male pups were retained for all the subsequent
procedures and studies.

HOUSING CONDITIONS
At weaning (PND 21) half of the rats of each group (12 CTL,
12 C+ and 12 PA) were housed in enriched environment (EE)
cages (n = 6 rats per cage). The remaining rats in each group
(12 CTL, 12 C+ and 12 PA) were housed in standard envi-
ronment (SE) cages (n = 3 rats per cage). The EE consists of
large cages (100 × 50 × 50 cm.) equipped with a floor platform
(50 × 50 cm.), two inclined ramps, a chain hanging from the cage
roof, two PVC tubes, two running wheels and five different safe
toys of diverse materials (glass, metal, wood and plastic) that were
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changed every week (Figure 1). Cage walls were made of inter-
woven metal wires allowing rats to move in all directions. The
SE consists of standard stainless steel cages of 29 × 21 × 34 cm.
All animals were reared in SE or EE from weaning to 18 months
of age.

BEHAVIORAL STUDIES
General procedures
At 17 months of age, all animals were submitted to behavioral
assessment. Animals were naïve to all behavioral test proce-
dures and were only manipulated during routine cage clean-
ing. Three days before Elevated Plus Maze test took place, all
animals were handled once a day (5 min/day) and weighed.
Behavioral procedures were carried out between 8:00 a.m. and
5:00 p.m. White noise was provided throughout testing. Testing
order of the groups was counterbalanced to avoid the confound-
ing effect of time of the day at which animals were tested. All
training/testing sessions were recorded (JVC Everio GZ-HD620)
and later analyzed using a computerized video-tracking sys-
tem (Ethovision XT, version 9, Noldus Information Technology,
Wageningen, The Netherlands) or the ethological observation
software JWatcher V1.0.

Elevated Plus Maze test
The apparatus consisted of a black melamine central square plat-
form (11 × 11 cm.) from which four black melamine arms radi-
ated: two oppositely positioned open arms (50 × 11 × 0.25 cm.)
and two oppositely positioned enclosed arms (50 × 11 × 40 cm.).
The maze was elevated to a height of 100 cm. from the floor and
indirectly illuminated (light intensity in open arms: 85–90 lux).
Rats were placed individually into the central platform facing
toward an open arm and allowed 5 min of free exploration of the
apparatus. An arm entry was defined as the entry of all four paws
into one arm. After each session the apparatus was cleaned with
70% ethanol. The following dependent variables were measured:

FIGURE 1 | Schematic diagram depicting study design and photograph

of two of the enriched environment cages. Cesarean section and
perinatal asphyxia procedures were performed on gestational day 22 (PND
day 0). At weaning (PND 21) rats from each birth condition (CTL, C+, and
PA) were randomly assigned to standard (SE) or enriched environment (EE).
After seventeen months, rats were assessed in a behavioral test battery
including Elevated Plus Maze (EPM), Open Field (OF), Novel Object
Recognition Test (NORT) and Morris water maze (MWM).

total distance traveled, number of closed arm entries, percent-
age of open arm entries (open arm entries/total entries × 100)
and percentage of time spent in open arms (time spent in open
arms/300 × 100).

Open Field (OF) test
The apparatus consisted in a square open-field arena made of
black melamine (60 × 60 × 40 cm.). A central area of 30 × 30 cm.
was arbitrarily defined and drawn over the image of the appa-
ratus in the video-tracking system. A rat was considered to be
into the central area when its four paws were on it. The arena
was uniformly and indirectly illuminated (light intensity in the
center of the OF: 70 lux). Rats were placed individually in the
center of the arena and allowed 10 min of free exploration of the
apparatus. Between sessions, the apparatus was cleaned with 70%
ethanol. Dependent variables were: distance traveled, number of
rears, time spent in the central area and the ratio central over total
distance traveled (distance traveled in the center × 100/total dis-
tance traveled). Each variable was measured in two time bins of
5 min each.

Novel Object Recognition Task (NORT)
Although the Novel Object Recognition Task (NORT) is a behav-
ioral test that was originally developed to assess non-spatial
working memory (Ennaceur and Delacour, 1988), nowadays it
is considered as a measure of the memory of an object (what),
the location of an object (where) and the context in which the
object was encountered (which) (Ennaceur, 2010). In the present
study, this specific type of memory will be called “recognition
memory.” Twenty-four hours after the OF test, the NORT took
place in the same apparatus. Rats were presented with two identi-
cal objects and allowed to explore them for 5 min (sample trial).
Animals were returned to their cages during the inter-trial inter-
val. One hour later, one of the two familiar objects was replaced
with a novel object and the rats were again allowed to explore
them for 3 min (choice trial). Sets composed of three copies of the
same object were used to prevent odor cues and all combinations
and location of objects were used to prevent bias due to pref-
erence for a particular object or location. Exploration time was
computed when the snout pointed to the object at a distance ≤
2 cm. Discrimination index (d1) and discrimination ratio (d2)
scores were calculated using the following formulas: d1 = tn –
tf, and d2 = (tn – tf) / (tn + tf), where tn = the amount of time
rats explored the novel object and tf = the amount of time rats
explored the familiar object.

Morris water maze
Apparatus. The water maze consisted of a circular black galva-
nized steel tank (180 cm. in diameter and 60 cm. deep). The tank
was filled to a depth of 36–40 cm. with water at 22 ± 1◦C. The
maze was divided into four imaginary quadrants (A, B, C, and D)
and a circular platform, made of transparent acrylic, was placed
2 cm above (visible escape platform) or beneath the water surface
(hidden escape platform), in the center of one of the quadrants
(35 cm. from the edge of the tank). To enhance the visibility of the
platform during the cued learning training, a “flag” was attached
to the platform. Four starting positions were stablished according
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to the four quadrants (a, b, c and d). To provide external reference
points, multiple extra-maze visual cues of different shapes and
sizes were hung on the wall of the experimental room. Indirect
illumination was provided by four spiral compact fluorescent
lamps in each corner facing the walls. Variables registered were:
latency to find the escape platform, path length, and swimming
speed.

Cued learning. During cued learning the platform protruded
2 cm. above water surface and a “flag” was attached to it (visible
escape platform). The maze was surrounded by black curtains to
minimize the availability of extra-maze cues. For each of the four
trials conducted on each day, the platform was moved to a differ-
ent quadrant and a different start location was used. If a rat had
not located the platform before 120 s elapsed, it was gently guided
to the platform location and was allowed to remain there for 15 s.
Inter-trial interval duration was approximately 30 s. Two days of
cued training were conducted.

Spatial learning and reference memory task. We used the same
procedures described previously (Galeano et al., 2011, 2014) with
some modifications. Briefly, the spatial learning task was con-
ducted over five consecutive days with four trials per day. During
each trial, a rat was gently released into the tank from one of
the four starting positions and it was able to escape from the
water using the hidden escape platform that was kept in the same
location throughout the five sessions of the spatial learning task.
A trial was finished when the rat found the escape platform or
when 120 s had elapsed, whichever occurred first. If a rat failed to
find the platform, the experimenter guided the animal to it. Rats
remained on the platform for 15 s. Inter-trial interval duration
was approximately 30 s. In each session, the four starting positions
were used and the order of the sequence was changed pseudo-
randomly between days. Twenty-four hours after the last trial of
the spatial learning task, reference memory was assessed with a
probe trial of 60 s in which the escape platform was removed
from the tank and each rat was released from a new starting posi-
tion not used during the spatial learning task. Time spent in each
quadrant was recorded. When sessions finished rats were dried
and returned to their home cage.

Spatial working memory task. Forty-eight hours after the probe
trial, rats were submitted to a spatial working memory task over
five consecutive days. Each rat was given two trials per day: a

sample and a retention trial with a 30 s inter-trial interval during
which the rat remained in its transport cage. In both trials, each
rat was gently released into the tank from one of the four start-
ing positions and allowed to locate the hidden escape platform up
to a maximum of 90 s. When rats failed to find the platform, the
experimenter guided the animal to it. Rats remained on the plat-
form for 15 s. Starting points and location of the platform were
pseudo-randomly varied for each rat throughout the 5 days but
fixed within a single session. In this manner, rats have to hold the
information about the location of the platform during the sam-
ple trial easily available to find again the platform in the retention
trial as efficiently as possible, being useless the information from
previous days. Starting points and platform were never at the
same quadrant and neither the platform location nor the start-
ing point was the same as from the previous day. For more details
about the procedure see Galeano et al. (2011).

STATISTICAL ANALYSIS
The results were expressed as the mean ± s.e.m. Data were ana-
lyzed by ANOVA tests followed by Tukey’s post hoc tests for
multiple comparisons, unless noted otherwise. The null hypoth-
esis was rejected when the two tailed probability value was 5% or
less (p ≤ 0.05). All statistical analyses were performed using the
SPSS 15.0 for windows (SPSS Inc., Chicago, IL, USA).

RESULTS
Since interactions between birth condition (CTL, C+, and PA)
and housing environment (SE and EE) were found in the spa-
tial reference and working memory versions of the MWM, but
in none of the other tests, results are described and discussed in
the following order: Morris water maze, Elevated Plus Maze test,
Open Field test and Novel Object Recognition Task.

CUE LEARNING IN THE MORRIS WATER MAZE
Three-Way mixed ANOVA test carried out on the latency to the
visible escape platform showed that the main effect of day was
significant [F(1, 66) = 58.34, p < 0.001]. Neither the remaining
main effects nor any of the interactions resulted to be signifi-
cant (F ≤ 1 for all cases). These results suggest that neither of the
groups were visually or motivationally impaired.

SPATIAL LEARNING IN THE MORRIS WATER MAZE
The results of the Three-Way mixed ANOVA tests (see Table 1)
indicated that rats displayed a progressive reduction in escape
latencies and path lengths across the five days of learning, but the

Table 1 | Statistical results of the Three-Way mixed ANOVA tests performed on data from the spatial learning phase of the reference memory

version of the Morris water maze.

Main effects and interactions Escape latency Path length

Environment F(1, 66) = 65.35, p < 0.001 F(1, 66) = 93.19, p < 0.001

Birth condition F(2, 66) = 37.69, p < 0.001 F(2, 66) = 43.88, p < 0.001

Day F(2.49,164.59) = 227.8, p < 0.001 F(2.84,187.77) = 299.03, p < 0.001

Environment × birth condition F(2, 66) = 2.56, p = 0.085 F(2, 66) = 3.40, p = 0.039

Environment × day F(2.49,164.59) = 8.28, p < 0.001 F(4.98,164.59) = 3.03, p = 0.03

Birth condition × day F(2.84,187.77) = 11.02, p < 0.001 F(5.69,187.77) = 3.80, p < 0.01

Environment × birth condition × day F < 1, p = n.s. F < 1, p = n.s.
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rates of reduction were not similar between groups, since most
of the interactions were significant (see Table 1). To determine
if groups differ in their escape latencies and path lengths in spe-
cific days of the spatial learning task, One-Way ANOVA tests were
conducted. On days 2, 3, 4, and 5 One-Way ANOVA tests were
significant for both variables (see Table 2).

Post-hoc multiple comparisons revealed that PA rats reared in
SE showed the worst performance with the highest escape laten-
cies and the longest path lengths from day 2 to 4 (Figures 2A,B).
In addition, on day 5 PA rats reared in SE showed higher escape
latencies and longer path lengths in comparison to rats reared
in EE (Figures 2A,B). CTL and C+ rats reared in EE displayed
the best performance in the spatial learning task with the low-
est escape latencies and the shortest path lengths from day 2 to
4 (Figures 2A,B). PA rats reared in EE showed similar escape
latencies and path lengths to those showed by CTL and C+ rats
reared in SE, displaying the three groups an intermediate per-
formance (Figures 2A,B). These differences in spatial learning
abilities could not be ascribed to sensorimotor or motivational
differences associated with birth condition or housing envi-
ronment since swimming speed was similar among the groups
(see Supplementary Material 1). These results indicate that the
life-long exposure to an EE improved spatial learning abilities
in middle-aged rats. Furthermore, EE was able to counteract
the impairment in spatial learning abilities showed by PA rats
reared in SE.

SPATIAL REFERENCE MEMORY IN THE MORRIS WATER MAZE
To analyze the performance of animals in the probe trial, Two-
Way ANOVA test was carried out. Results showed that the
main effects of environment and birth condition were significant
[F(1, 66) = 7.76, p = 0.007; F(2, 66) = 3.35, p = 0.041, respec-
tively], but the interaction environment × birth condition was
not (F < 1). Post-hoc pairwise comparisons indicated that groups
did not differ from each other in the time spent in the tar-
get quadrant during the probe trial, although a strong tendency
was detected for CTL and C+ rats reared in EE in comparison
with PA rats reared in SE (p = 0.067 and p = 0.085, respec-
tively). To further analyze the performance of groups during the
probe trial, one-sample t-tests were carried out. Results indicated
that all groups, but PA reared in SE, spent a significantly longer
time than expected by chance (15 s) in the quadrant where the
escape platform was located during the spatial learning training
(CTL SE: t = 2.58, p = 0.026; C+ SE: t = 2.59, p = 0.025; PA
SE: t = 0.029, p = n.s.; CTL EE: t = 4.94, p < 0.001; C+ EE:

Table 2 | Statistical results of One-Way ANOVA tests performed on

data from each day of the spatial learning phase of the reference

memory version of the Morris water maze.

Main effect Escape latency Path length

Day 1 F < 1, p = n.s. F < 1, p = n.s.

Day 2 F(5, 66) = 26.29, p < 0.001 F(5, 66) = 33.94, p < 0.001

Day 3 F(5, 66) = 27.73, p < 0.001 F(5, 66) = 29.83, p < 0.001

Day 4 F(5, 66) = 29.86, p < 0.001 F(5, 66) = 35.68, p < 0.001

Day 5 F(5, 66) = 3.78, p = 0.005 F(5, 66) = 3.73, p = 0.005

FIGURE 2 | Enriched environment was able to counteract the spatial

learning and reference memory impairment displayed by middle-aged

asphyctic rats. (A) Escape latency; (B) Path length; (C) Time spent in the
target quadrant. CTL SE, vaginal delivery rats reared in standard
environment; C+ SE, rats born by cesarean section reared in standard
environment; PA SE, rats born by cesarean section + asphyxia reared in
standard environment; CTL EE, vaginal delivery rats reared in enriched
environment; C+ EE, rats born by cesarean section reared in enriched
environment; PA EE, rats born by cesarean section + asphyxia reared in
enriched environment; CTL, vaginal delivery rats; C+, rats born by cesarean
section; PA, rats born by cesarean section + asphyxia. In (C) data are
expressed as the mean + s.e.m. of n = 12. In (A,B) error bars are omitted

(Continued)
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FIGURE 2 | Continued

for clarity. ∗p < 0.05 vs. time expected by chance (C); ∗∗p < 0.01 PA SE vs.
all other groups (A,B); ∗∗∗p ≤ 0.001 PA SE vs. all other groups (A,B) or vs.
time expected by chance (C); δp < 0.05 PA SE vs. CTL, C+ and PA reared in
EE (A,B); +p < 0.05 CTL EE or C+ EE vs. all other groups except PA reared
in EE (p = 0.065) (A,B); #p < 0.05 CTL EE or C+ EE vs. all other groups (a
and b); ##p < 0.01 CTL EE or C+ EE vs. all other groups (A,B).

t = 4.60, p = 0.001; PA EE: t = 2.32, p = 0.037) (Figure 2C).
These results indicated that life-long exposure to EE was able to
counteract the reference memory deficit shown by middle-aged
asphyctic rats reared in SE.

SPATIAL WORKING MEMORY IN THE MORRIS WATER MAZE
Three-Way mixed ANOVA tests carried out on escape laten-
cies and path lengths showed that the main effects of type of
trial (sample and retention) were significant for both variables
[F(1, 66) = 45.29, p < 0.001; F(1,66) = 42.77, p < 0001, respec-
tively]. Neither of the remaining main effects nor any of the
interactions were significant for either variable (p = n.s. for all
cases). When escape latencies and path lengths were further ana-
lyzed by post-hoc pairwise comparisons, it was revealed that PA
rats reared in SE did not show a significant reduction in escape
latencies or in path lengths during the retention trials in com-
parison with those displayed during the sample trials (p = n.s.
for both variables), while all the remaining groups did (p < 0.05
in all cases) (Figures 3A,B). No differences in swimming speed
were found (see Supplementary Material 2). These results mean
that middle-aged asphyctic rats reared in SE displayed a spatial
working memory impairment that was counteracted by EE.

LOCOMOTOR ACTIVITY AND ANXIETY-RELATED BEHAVIORS IN THE
EPM TEST
The Two-Way ANOVA tests performed on total distance traveled
and closed arm entries indicated that neither the main effects of
environment [F(1, 66) = 2.40, p = n.s.; F(1, 66) = 1.62, p = n.s.,
respectively] nor the main effects of birth condition (F < 1 for
both variables) nor the interactions environment × birth condi-
tion (F < 1 for both variables) were significant (Figures 4A,B).
Regarding the percentage of open arm entries and the percent-
age of time spent in open arms, the main effects of environment
were significant for both variables [F(1, 66) = 46.15, p < 0.001;
F(1, 66) = 47.07, p < 0.001, respectively], but the main effects of
birth condition and the interactions environment x birth con-
dition were not significant for either variable (F < 1 in every
case) (Figures 4C,D). Post-hoc pairwise comparisons confirmed
that the CTL, C+, and PA rats reared in EE showed a signifi-
cantly higher percentage of open arm entries (p < 0.01 for all
the comparisons) and a significantly higher percentage of time
spent in open arms (p < 0.001 for all the comparisons) com-
pared to the CTL, C+, and PA rats reared in SE (Figures 4C,D).
These results indicate that middle-aged rats reared in EE displayed
reduced anxiety-related behaviors regardless of birth condition
(Figures 4C,D), while no differences were observed in locomotor
activity (Figures 4A,B).

LOCOMOTION, EXPLORATORY ACTIVITY AND ANXIETY-RELATED
BEHAVIORS IN THE OF TEST
The Three-Way mixed ANOVA test carried out on the dis-
tance traveled showed that the main effect of environment, time
bin and the interaction time bin × environment were signif-
icant [F(1, 66) = 28.76, p < 0.001; F(1, 66) = 47.29, p < 0.001;
F(1, 66) = 12.39, p = 0.001, respectively]. The remaining main
effects and interactions did not reach statistical significance (F <

1 in every case). Post-hoc pairwise comparisons revealed that
during the first 5 min of exploration the distance traveled was
similar among the groups (p = n.s. for all the comparisons)
(Figure 5A). On the contrary, during the second 5 min of explo-
ration the distance traveled by groups reared in EE was sig-
nificantly shorter than for groups reared in SE (p < 0.001 for
all the comparisons) (Figure 5A). Paired t-tests confirmed that
CTL, C+ and PA rats reared in EE significantly reduced their
locomotor activity between the first and the second 5 min time
bin (t = 4.08, df = 11, p = 0.002; t = 4.30, df = 11, p = 0.001;
t = 5.14, df = 11, p < 0.001, respectively), while CTL, C+ and
PA rats reared in SE did not (p = n.s. for each paired t-test)
(Figure 5A). When distance traveled was collapsed across time
bins, the Two-Way ANOVA test showed that the main effect of
environment was significant [F(1, 66) = 28.76, p < 0.001], but the
main effect of birth condition and the interaction environment
x birth condition were not (F < 1 for both cases). Post-hoc pair-
wise comparisons confirmed that groups reared in EE displayed a
significantly shorter total distance traveled than groups reared in
SE (p < 0.01 for all the comparisons) (see insert in Figure 5A).
This reduction in the total distance traveled is attributable to
the reduction in the distance traveled displayed during the sec-
ond 5 min time bin. When the Three-Way mixed ANOVA test
was performed on the number of rears, the time bin was the
only effect that resulted to be significant [F(1, 66) = 17.02, p <

0.001]. This means that when data from all groups were pooled,
rats displayed, during the second 5 min time bin, a significantly
lower number of rears than during the first 5 min time bin.
However, paired t-tests revealed that none of the groups indi-
vidually displayed significant changes in the number of rears
between the first and the second 5 min time bin (p = n.s. for each
paired t-test) (Figure 5B). When the number of rears was col-
lapsed across time bins, the Two-Way ANOVA test showed that
neither the main effect of environment nor the main effect of
birth condition nor the interaction environment x birth condi-
tion were significant [F(1, 66) = 2.29, p = n.s.; F(2, 66) = 1.30, p =
n.s.; F < 1, respectively] (see insert in Figure 5B). Regarding the
time spent in the central area and the ratio central over total dis-
tance traveled, the Three-Way mixed ANOVA tests indicated that
the main effects of time bin were significant for both variables
[F(1, 66) = 46.17, p < 0.001; F(1, 66) = 36.92, p < 0.001, respec-
tively], while no other main effects nor any of the interactions
reached statistical significance (p = n.s. in every case). Paired
t-tests confirmed that all groups, regardless of the environment
or the birth condition, spent significantly less time in the cen-
tral area and showed a significantly lower ratio central over
total distance traveled during the second 5 min time bin than
during the first 5 min time bin (p < 0.05 for all paired t-tests)
(Figures 5C,D). Finally, when data were collapsed, the Two-Way
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FIGURE 3 | Spatial working memory impairment displayed by

middle-aged asphyctic rats was counteracted by life-long exposure to

environmental enrichment. (A) Escape latency; (B) Path length. CTL,

vaginal delivery rats; C+, rats born by cesarean section; PA, rats born by
cesarean section + asphyxia. Each bar represents the mean + s.e.m. of
n = 12. ∗p < 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001 compared to sample trials.

FIGURE 4 | Middle-aged rats reared in an enriched environment showed

reduced anxiety-related behaviors in the Elevated Plus Maze test.

(A) Total distance traveled; (B) number of closed arm entries; (C) percentage
of open arms entries; (D) percentage of time spent in open arms. CTL,

vaginal delivery rats; C+, rats born by cesarean section; PA, rats born by
cesarean section + asphyxia; SE, standard environment; EE, enriched
environment. Each bar represents the mean + s.e.m. of n = 12. ∗∗p < 0.01;
∗∗∗p < 0.001.

ANOVA tests performed on both variables indicated that nei-
ther the main effects of environment nor the main effects of
birth condition nor the interactions environment x birth con-
dition were significant (F < 1 for every case) (see inserts in
Figures 5C,D).

Overall, these results indicate that middle-aged rats reared
in EE, regardless of birth condition, habituated their horizon-
tal locomotor activity but not their vertical locomotor activ-
ity (rearing) when exposed to the OF (Figures 5A,B). Neither
the environment nor the birth condition seemed to affect
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FIGURE 5 | Middle-aged rats reared in an enriched environment

displayed rapid habituation to the Open Field test. (A) Distance traveled
over time, insert: total distance traveled; (B) number of rears over time,
insert: total number of rears; (C) time spent in the central area over time,
insert: total time spent in the central area; (D) ratio central / total distance
traveled over time, insert: Ratio central / total distance traveled during the
entire OF session. CTL SE, vaginal delivery rats reared in standard
environment; C+ SE, rats born by cesarean section reared in standard
environment; PA SE, rats born by cesarean section + asphyxia reared in

standard environment; CTL EE, vaginal delivery rats reared in enriched
environment; C+ EE, rats born by cesarean section reared in enriched
environment; PA EE, rats born by cesarean section + asphyxia reared in
enriched environment; CTL, vaginal delivery rats; C+, rats born by cesarean
section; PA, rats born by cesarean section + asphyxia; SE, standard
environment; EE, enriched environment. Data are expressed as the mean
(A–D) or the mean + s.e.m. [inserts] of n = 12. In (A–D) error bars are
omitted for clarity. ∗∗∗p < 0.001 and ∗∗p < 0.01 compared to groups reared in
SE, ##p < 0.01 and +p < 0.05 compared to the first 5 min time bin.

anxiety-related behaviors in this test (see Figures 5C,D and
inserts in both figures).

RECOGNITION MEMORY IN THE NORT TEST
Two-Way ANOVA tests performed on discrimination index (d1)
and discrimination ratio (d2) scores indicated that neither the
main effects of environment nor the main effects of birth con-
dition nor the interactions environment × birth condition were
significant for either of the two variables (F < 1 for all cases)
(Figures 6A,B). Thus, recognition memory was not deteriorated
by aging or by the synergy between aging and asphyxia. Besides,
EE was not able to improve recognition memory in either of the
groups.

DISCUSSION
The present study investigated the effects of life-long exposure
to EE in middle-aged rats that were subjected to 19 min of
asphyxia at birth. Our aim was to determine whether perinatal
asphyxia worsens age-induced cognitive and behavioral impair-
ments. Moreover, we studied whether continuous exposure to EE

from weaning (21 post-natal day) to 18 months of age improves
cognitive and emotional performance. To address these issues,
rats born vaginally, by cesarean section or by cesarean section
with acute anoxia, were reared until the age of 18 months in
SE or EE and evaluated, during the last month of the housing
protocol, in a behavioral test battery that included the follow-
ing tests: Elevated Plus Maze (EPM) test, Open Field (OF) test,
Novel Object Recognition Test (NORT) and the spatial reference
and working memory versions of the Morris water maze (MWM).
Since interactions between birth condition and housing environ-
ment were only found in the MWM test, the results from this task
are discussed firstly.

It is well known that birth injuries, such as perinatal asphyxia,
may cause long-lasting cognitive dysfunctions in adulthood
(Galeano et al., 2011). Our data showed that middle-aged asphyc-
tic rats displayed impaired spatial learning, reference and working
memory in the MWM (see Figures 2, 3). It is important to
note that during the first day of spatial learning no differences
between groups were observed. This suggests a specific reten-
tion impairment in asphyctic animals, while the codification
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FIGURE 6 | Neither environment nor birth condition did affect the

performance of rats in the Novel Object Recognition test.

(A) discrimination index (d1); (B) discrimination ratio (d2). All groups
showed preference for the novel object, spending more time exploring it.
CTL: vaginal delivery rats; C+: rats born by cesarean section; PA, rats born
by cesarean section + asphyxia. Each bar represents the mean + s.e.m. of
n = 12.

process remains unaltered. To the contrary, Van de Berg et al.
(2000) and Weitzdoerfer et al. (2002) did not find differences
between middle-aged and aged control and asphyctic rats dur-
ing the learning phase and the retention probe trial in the MWM.
Several methodological differences could account for these dis-
crepancies, although the main one could be the smaller tanks
used in both studies in comparison with the one employed in
the present work (122 and 140 cm. in diameter in the studies
by Van de Berg et al. (2000) and Weitzdoerfer et al. (2002),
respectively, compared with 180 cm. in diameter in this study).
Performance in the MWM showed to be highly sensitive to vari-
ations in the diameter of the apparatus (Vorhees and Williams,
2006). Smaller tanks could make the task more easily solved
and thus mask differences between groups. In addition, both
studies used different protocols from the one employed in this
study. Van de Berg et al. (2000) submitted middle-aged rats to a
two-day protocol (two trials per day), while Weitzdoerfer et al.
(2002) employed a four-day protocol with the last day of spa-
tial learning conducted 10–14 days later from the first three
ones. Furthermore, in the latter study, only female rats were
used as experimental subjects. Nevertheless, in this same study
when the platform was relocated to the opposite quadrant, 10–
14 days after the last learning trial, aged asphyctic rats showed an

impaired ability to re-learn the new platform location. This could
be interpreted as a deficit of cognitive flexibility in aged asphyc-
tic rats. In summary, from the results obtained by Weitzdoerfer
et al. (2002) and by us, it could be concluded that the mat-
uration process in rats which suffered from perinatal asphyxia
at birth could induce cognitive alterations consisting mainly of
spatial learning deficits, spatial long-term memory alterations,
impaired cognitive flexibility and spatial working memory dis-
turbances. In this sense, neurological deficits induced by perinatal
asphyxia may aggravate the cognitive decline induced by the aging
process.

Environmental enrichment could alleviate the cognitive alter-
ations and lead to an improvement of spatial memory perfor-
mance (Kempermann et al., 2002; Sampedro-Piquero et al., 2013,
2014a,b). In this sense, in the present study we showed that a
prolonged exposure to EE had a beneficial effect per se, since
control groups reared in EE (CTL EE and C+ EE) exhibited
a better performance in the spatial learning phase compared
to control animals reared in SE (CTL SE and C+ SE) (see
Figures 2, 3). This beneficial effect of extensive EE on learn-
ing process is consistent with previous results obtained by other
groups (Leggio et al., 2005; Lores-Arnaiz et al., 2006). Thus,
life-long exposure to EE may prevent or delay the cognitive
impairments associated with normal aging. In addition, life-long
exposure to EE was able to recover the spatial learning, ref-
erence and working memory deficits displayed by middle-aged
asphyctic rats reared in SE. To our knowledge, this is the first
study that demonstrates a beneficial effect of life-long expo-
sure to EE on cognitive impairments shown by middle-aged
asphyctic rats. There are some other studies that have evalu-
ated the effects of EE on cognitive deficits induced by neona-
tal anoxia (Iuvone et al., 1996) or neonatal hypoxia-ischemia
(Pereira et al., 2007, 2008). For example, Pereira et al. (2007,
2008) reported that daily exposure (1 h/day for 9 weeks) or
continuous housing in an EE (from postnatal days 8–30) recov-
ered spatial memory deficits in the model of brain damage
induced by neonatal hypoxia-ischemia. Although these studies
were conducted using a different model of perinatal asphyxia
in young animals, it suggests that in both models of perina-
tal asphyxia (the one developed by Bjelke et al., 1991 and that
developed by Rice et al., 1981) exposure to EE prevents the spa-
tial reference and working memory deficits induced by the birth
insult.

Regarding anxiety and locomotion, our results showed that
middle-aged rats subjected to perinatal asphyxia at birth, and
reared in SE, did not differ in anxiety-related behaviors (open
arm entries and time spent in open arms in the EPM; time
spent in central area and central/total distance traveled in the
OF) and locomotor activity (distance traveled and closed arm
entries in the EPM; distance traveled in the OF) compared to
CTL and C+ rats also reared in SE (see Figures 4, 5). We have
previously reported that perinatal asphyxia is not associated with
increased anxiety-related behaviors during adulthood (3-month-
old asphyctic rats) (Galeano et al., 2011). Therefore, our data
seem to indicate that perinatal asphyxia is not linked to increased
anxiety across the lifespan. In contrast to the results obtained for
anxiety-related behaviors, we have also reported that perinatal
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asphyxia led to a significant reduction in locomotion and in nov-
elty exploration during young adulthood, whereas young adult
rats born by cesarean section only displayed a mild deficit in
novelty exploration (Galeano et al., 2011). In the present study,
middle-aged asphyctic rats, reared in SE, showed similar levels
of locomotor activity to middle-aged CTL and C+ rats reared
in the same environment (see Figures 4A,B, 5A,B). This lack
of differences could be explained by an age-induced reduction
in motivation to explore new environments in control rats and
thus, to a possible floor effect. Moreover, horizontal locomo-
tor activity is lower in middle-aged rats than in young adult
rats, regardless of the birth condition, since the distance cov-
ered in the OF in the present study was much lower than in
the previous cited report (Galeano et al., 2011) (taking into
account only the first 10 min of the OF test duration of the
previous report). These results are in agreement with previous
reports that did not find differences in locomotor activity in
the OF test in aged asphyctic rats compared to control aged
rats (Weitzdoerfer et al., 2004a,b). However, in contrast to our
results, Weitzdoerfer et al. (2004a) reported increased anxiety lev-
els in aged asphyctic animals in the EPM test. This discrepancy
could be attributable to the following methodological differences
between both studies: (a) In the study of Weitzdoerfer et al.
(2004a), rats were submitted to 20 min of perinatal asphyxia
instead of the 19 min used in the present study. It is well
known that survival rate is drastically reduced and CNS dam-
age increases with the duration of asphyxia (Loidl et al., 1994;
Capani et al., 1997, 2009; Saraceno et al., 2012); (b) Weitzdoerfer
et al. (2004a) used female rats, while only male rats were used
in the present study. There are well known sex differences in
basal emotional reactivity in the EPM and other anxiety tests;
(c) Weitzdoerfer et al. (2004a) assessed older asphyctic rats (24
months old) than those used in the present study (18 months
old). Such older rats could show confounding factors (lower
mobility, for example) that could affect the anxiety measure-
ment in the EPM test; (d) Finally, Weitzdoerfer et al. (2004a)
measured some unfrequent behaviors to operationalize anxiety-
related behaviors in the EPM test, such as the number of entries
and the time spent in a box located at the end of one of the closed
arms.

On the other hand, our results showed that middle-aged rats
exposed to life-long EE, regardless of the birth condition, reduced
their horizontal locomotor activity, showed a faster habituation
response, and displayed lower anxiety-levels than rats reared in
SE (see Figures 4, 5). In accordance to our data, other authors
have reported a decrease of spontaneous motor activity in rats
living in an enriched environment (Falkenberg et al., 1992; Del
Arco et al., 2007; Segovia et al., 2008a,b). The results from the
present study seem to indicate that these differences in motor
activity could be attributable to a faster habituation shown by
animals reared in EE. This study also shows that life-long expo-
sure to EE produced a strong decrease in anxiety levels in
all experimental groups. This anxiolytic effect is in line with
the results obtained by other research groups which have sub-
jected rodents to EE for medium to prolonged periods of time
(Chapillon et al., 1999; Leal-Galicia et al., 2008; Hughes and
Collins, 2010).

Neither the birth condition nor the housing environment
affected the performance of animals in the NORT (see Figure 6).
Other reports have also found that recognition memory,
evaluated in the NORT, was unimpaired in aged rats (Solas et al.,
2010; Gamiz and Gallo, 2012; Rushaidhi et al., 2013). In these
cited studies and in the present work, the interval between sample
and choice trials employed was one hour or less. When the inter-
trial interval was increased to 24 h, an age-related deficit in the
NORT was found by some other authors (de Lima et al., 2005;
Burke et al., 2010; Leite et al., 2011). Thus, it could be possi-
ble that a one-hour inter-trial interval was too short to detect a
possible deleterious influence of perinatal asphyxia on recogni-
tion memory. We avoided employing longer inter-trial intervals
due to a possible floor effect that could also mask differences
between control and asphyctic groups. On the other hand, EE
was not able to enhance recognition memory in control groups.
In this case, a ceiling effect could have been reached. From the
results of the present study, it seems that EE has a more pro-
found impact on spatial learning memories (MWM) than on
non-spatial memories (NORT), in middle-aged rats.

Regarding the brain modifications induced by EE that could
explain the improvement of cognitive performance, it has been
demonstrated that environmental stimulation improves spatial
cognition by inducing hippocampal neuroplasticity (i.e., den-
tate granule cell neurogenesis and glial proliferation) and by
reducing spontaneous apoptotic cell death in the hippocam-
pus (Young et al., 1999). This enhanced plasticity was asso-
ciated with the induction of growth factor expression by EE
(Young et al., 1999). On the other hand, more recently, it has
been described a beneficial effect of exposure to environmen-
tal enrichment in anxiety-related behaviors (measured in the
EPM test) that was correlated with changes in brain-derived
neurotrophic factor (BDNF) expression in the central amyg-
dala, hippocampus and the caudate putamen (Ravenelle et al.,
2014).

CONCLUDING REMARKS
Our results indicate that perinatal asphyxia affects cognitive pro-
cesses during aging, particularly spatial learning and reference
and working memory. In addition, we also demonstrated that
life-long exposure to EE is associated with reduced anxiety, faster
habituation response to a novel environment, and a better spatial
learning performance in middle-aged rats. Furthermore, life-
long exposure to EE was able to counteract the spatial learning
impairment, and the reference and working memory deficits of
middle-aged asphyctic rats. These results support the impor-
tance of environmental stimulation across the lifespan to prevent
cognitive deficits induced by perinatal asphyxia.
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