
METHODS ARTICLE
published: 30 January 2015

doi: 10.3389/fnbeh.2015.00003

FRIEND Engine Framework: a real time neurofeedback
client-server system for neuroimaging studies
Rodrigo Basilio1, Griselda J. Garrido1, João R. Sato1,2, Sebastian Hoefle1, Bruno R. P. Melo1,

Fabricio A. Pamplona1, Roland Zahn3 and Jorge Moll1*

1 Cognitive and Behavioral Neuroscience Unit and Neuroinformatics Workgroup, D’Or Institute for Research and Education, Rio de Janeiro, Brazil
2 Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo André, Brazil
3 Department of Psychological Medicine, Institute of Psychiatry, King’s College, London, UK

Edited by:

Sergio Ruiz, Pontificia Universidad
Catolica de Chile, Chile

Reviewed by:

Mohit Rana, Tübingen University,
Germany
Francisco Javier Zamorano,
Universidad del Desarrollo, Chile

*Correspondence:

Jorge Moll, Cognitive and Behavioral
Neuroscience Unit and
Neuroinformatics Workgroup, D’Or
Institute for Research and
Education, Diniz Cordeiro 30, Rio de
Janeiro, 22281-100, Brazil
e-mail: jorge.moll@idor.org

In this methods article, we present a new implementation of a recently reported
FSL-integrated neurofeedback tool, the standalone version of “Functional Real-time
Interactive Endogenous Neuromodulation and Decoding” (FRIEND). We will refer to this
new implementation as the FRIEND Engine Framework. The framework comprises a
client-server cross-platform solution for real time fMRI and fMRI/EEG neurofeedback
studies, enabling flexible customization or integration of graphical interfaces, devices, and
data processing. This implementation allows a fast setup of novel plug-ins and frontends,
which can be shared with the user community at large. The FRIEND Engine Framework is
freely distributed for non-commercial, research purposes.

Keywords: brain computer interface (BCI), real-time fMRI, FSL, neurofeedback, EEG

INTRODUCTION
There is a growing push toward the use of real-time fMRI
(rt-fMRI) neurofeedback in experimental and clinical investiga-
tion, with solid prospects for therapeutic applications (Sulzer
et al., 2013; Stoeckel et al., 2014) through the development of
brain computer interface (BCI) software integrated with com-
monly available devices such as fMRI scanners and EEG devices.
Successful scientific exploration and application of rt-fMRI neu-
rofeedback will be facilitated by the existence of freely available,
user-friendly, and flexible software implementations. To this end,
a few research groups have recently contributed with the develop-
ment of computational tools, each with their own strengths and
limitations (LaConte et al., 2007; Zotev et al., 2011; Sorger et al.,
2012; Rana et al., 2013; Sato et al., 2013).

Nevertheless, because of the computational and technical
complexities that are intrinsic to the emerging field of rt-
fMRI neurofeedback and the diversity of approaches, there
are still few available options for investigators in the area.
More importantly, a number of features that could facili-
tate and encourage advanced users and developers to build
on currently available platforms are still lacking. Here, we
introduce a new framework that unleashes users to cre-
ate frontends and customize pipelines for their own stud-
ies using the programming language and platform they are
most familiar with, flexibly connecting them to a core pro-
cessing engine. To attain this goal, we have revamped our
recently reported rt-fMRI neurofeedback standalone software,
“Functional Real-time Interactive Endogenous Modulation and
Decoding system” (FRIEND) (Sato et al., 2013), as described
below.

FRIEND ENGINE FRAMEWORK
The original FRIEND neurofeedback tool comprises three
processing pipelines (Figure 1): (1) the brain decoding-based
feedback using support-vector machines (SVM); (2) the sin-
gle region-of-interest (ROI) based blood-oxygen level depen-
dent (BOLD) feedback; and (3) functional connectivity feedback
based on a sliding window of correlations between ROIs. These
pipelines were developed and implemented across time, on the
basis of research needs in our lab, including the techniques needed
to support these pipelines. As such, the first version of FRIEND
included only the SVM pipeline for brain decoding-based neu-
rofeedback for emotion modulation, using the libSVM library
(Chang and Lin, 2011) and was recently employed in a study of
emotional enhancement (Moll et al., 2014). For the purpose of
a new research line on motor control physiology and rehabilita-
tion, an ROI activation pipeline for FRIEND was implemented,
allowing the flexible creation of anatomically or functionally
defined ROIs. Anatomical ROIs are created by selecting prede-
fined areas from a variety of Montreal Neurological Institute
(MNI) templates, which are automatically transformed into the
subject space. Functionally-defined ROIs can also be created after
running an fMRI functional localizer, and then selecting and
thresholding a functional cluster for subsequent neurofeedback
runs. The third pipeline, focusing on sliding window-based cor-
relations between two brain regions as a guide for neurofeedback
information, was developed to enable an ongoing clinical proof-
of-concept study on remitted major depression, based on the
findings of a recent study (Green et al., 2012).

The provision of the ideal feedback to the participant is cru-
cial for the success of any neurofeedback study. In this vein,

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 1

BEHAVIORAL NEUROSCIENCE

http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/about
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/journal/10.3389/fnbeh.2015.00003/abstract
http://community.frontiersin.org/people/u/175729
http://community.frontiersin.org/people/u/175731
http://community.frontiersin.org/people/u/45669
http://community.frontiersin.org/people/u/175847
http://community.frontiersin.org/people/u/175774
http://community.frontiersin.org/people/u/440
http://community.frontiersin.org/people/u/38060
http://community.frontiersin.org/people/u/6678
mailto:jorge.moll@idor.org
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Basilio et al. FRIEND Engine Framework

FIGURE 1 | Flowchart of three FRIEND processing neurofeedback

pipelines. (1) Support Vector Machine-based neurofeedback, using projected
values onto a discriminative hyperplane; (2) BOLD level real-time display from

a set of pre-specified ROIs; (3) Real-time functional connectivity
neurofeedback based on the correlation between the signals from different
ROIs (Sato et al., 2013).

interoperability with other applications such as well-established
stimulus presentation tools, including virtual reality ones, and
response devices with the neurofeedback interface would be
highly desirable (Renaud et al., 2011; Weiskopf, 2012). In the orig-
inal implementation of FRIEND (Sato et al., 2013), a few standard
strategies were implemented, based on a simple visual feedback
interface (e.g., rings changing in shape or a thermometer). In
that original implementation, the visual feedback could be mod-
ified by simply replacing the bitmap figures. However, this initial
approach neither allows for a more sophisticated control of stim-
uli as specialized stimulus presentation softwares do (e.g., http://
www.neurobs.com/), nor does it offer the possibility of immer-
sive game-like experience, which could be more engaging for
participants of neurofeedback studies.

In order to allow users to use their own stimulus feedback
strategies and to develop additional processing strategies (e.g.,
Matlab® pipelines), we have broken the standalone version of
FRIEND into smaller parts, encapsulating the complex calcula-
tions involving rt-fMRI neurofeedback processing in one unit and
the graphic user interface in another. We expect that this approach
will enable researchers with average to advanced programming
skills to efficiently implement customized graphical interfaces
and data processing functionalities, which can be shared with
other users via NITRC (http://www.nitrc.org/projects/friend)
and GitHub (https://github.com/InstitutoDOr/FriendENGINE).
Toward this aim, FRIEND was restructured based on the well-
established object oriented programming paradigm (Stroustrup,
1988), facilitating modification and implementation of new
functionalities.

In FRIEND Engine, basic processes that are common to
any neurofeedback pipeline such as anatomical segmentation,
motion correction of functional images and gaussian smoothing

(Figure 1)—largely based on FSL code (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/)—are encapsulated in a single unit, called FRIEND
Engine (Figure 2), the first part of the FRIEND Engine frame-
work. The engine determines the main processing pipeline and
defines time points in this pipeline to execute functionalities not
implemented in the engine. These functionalities are geared to
attain the goal of the study (e.g., classification of brain states, ROI
percent signal change and correlation between two ROIs in the
previously presented pipelines) and coded separately in indepen-
dent units, called plug-ins (Figure 2) here, the second component
of the framework. By definition, a plug-in is an extension of
the engine and must therefore be implemented in the same lan-
guage and be executed on the same platform for compatibility. As
such, the engine provides the basic workings whereas the plug-ins
implement the specific functionalities necessary for estimation of
feedback parameters on the basis of data analysis. The engine does
not know and does not need to know how a specific plug-in han-
dles the information. The plug-in library just needs to expose the
necessary functions for the engine to work properly. The coor-
dinator of the engine and the neurofeedback processing is the
frontend (Figure 2), the third part of the FRIEND Engine frame-
work. As the name intuitively implies, it is the graphical interface
for the neurofeedback loop, essentially the interface of a BCI.
It provides feedback information (e.g., BOLD activation level)
to the participant, relevant information to the operator (e.g.,
motion correction parameters), and handles the necessary steps
to synchronize the presentation of the feedback with the scanner
acquisition. Ideally, the construction of the frontend should not
demand learning new and complex technical skills. The optimal
solution is allowing users to customize their applications using the
programming language and platform of their choice. A TCP/IP
network communication protocol is therefore defined to bridge

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 2

http://www.neurobs.com/
http://www.neurobs.com/
http://www.nitrc.org/projects/friend
https://github.com/InstitutoDOr/FriendENGINE
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Basilio et al. FRIEND Engine Framework

FIGURE 2 | The FRIEND Engine framework comprises three major

components. The FRIEND Engine core and plug-ins, written in C++ and
operating on the same platform, and the frontend that can be written in
any language with sockets support. The TCP/IP communication protocol

allows the frontend to be executed on a different computer platform
from the FRIEND Engine. Users may customize or write their own
frontends. Advanced users can also write their own plug-ins and
processing pipelines.

the frontend and the engine. In this configuration, the engine
listens to a port for incoming messages (requests) from the fron-
tend, allowing the engine and frontend to operate on different
platforms.

The first step of a neurofeedback study in the FRIEND Engine
framework is the same as for the standalone version of FRIEND:
the configuration of the specific parameters for the study, such as
the input directory and the number of volumes in the acquisition
run. This configuration should be provided by the frontend appli-
cation, which gets the input from the operator of the study and
passes it to FRIEND Engine. By default, FRIEND Engine reads the
study_params.txt configuration file located in the same directory
of the engine’s executable file. The study_params.txt file is exactly
the same as for the standalone version of FRIEND. The fron-
tend can pass a whole configuration file by the TCP/IP network
communication protocol to the engine by way of the command
“READCONFIG,” as explained in the following section. The next
important and vital command the frontend must pass on, is the
plug-in configuration, which comprises the plug-in library file-
name and the name of the functions that the engine should call at
predefined time points, like the name of the function that calcu-
lates the feedback information for a volume. These two messages
prepare the engine to properly handle the experiment. The next
message the frontend should send is “PREPROC,” which executes
the same steps executed in the standalone version of FRIEND after
the first configuration window.

Next, the frontend needs to send a message indicating that
the engine should start processing the acquisition run. There
are four options, “PIPELINE,” “NBPIPELINE,” “FEEDBACK,”
“NBFEEDBACK” (Table 1), explained in the following section.
This is equivalent to clicking the “TRAIN” or “FEEDBACK” but-
ton in the standalone version of FRIEND. At specific points of
the processing, such as the calculation of the feedback, the engine
executes the proper plug-in function, previously assigned to the

plug-in configuration phase. There is no direct communication
between the frontend and the plug-in components.

During the acquisition run, the frontend sends “TEST” mes-
sages (Table 1), querying for neurofeedback information for
each volume of the acquisition scan. The engine executes the
configured feedback function of the plug-in to get the feedback
information and returns it to the frontend. The frontend must
interpret this value and properly display that information to
the participant of the experiment. Figure 3 depicts this mes-
sage exchange between the frontend and the engine in the avatar
finger tapping virtual scenario. It includes a new command,
“NEWSESSION” (Table 1), which indicates that the engine
should create a new session to work with the frontend. That
message is only needed in asynchronous communications as
explained in Section TCP/IP Communication Protocol. To illus-
trate this, excerpts of programming code from a Matlab® fron-
tend and the libROI plug-in are provided in the Supplementary
Material. FRIEND Engine expects the volume files in exactly the
same way as standalone FRIEND does. This implies that the list of
computers that can run the engine is restricted to the list of com-
puters that can receive the volume files from the fMRI scanner (or
EEG device) in real-time acquisition.

FRIEND Engine runs on Microsoft Windows® (XP or later),
Apple Macintosh (OSX 10.8 and above) and Linux (Debian,
CentOS 6.4). A mid/high end workstation is required (e.g., PC:
quad-core i7, 8 GB RAM or higher, Macintosh: quad-core Intel
Core i5, 8 GB RAM or higher). In the original standalone ver-
sion of FRIEND, FSL (Jenkinson et al., 2012) toolbox commands
were encapsulated in a dynamic link Microsoft Windows® library.
In FRIEND Engine, this interrelationship was changed: for
non-Microsoft Windows® systems, FSL toolbox installation is a
pre-requisite and FSL executables are called using system calls to
the operational system. This simplifies FSL upgrades, as they can
be executed independently from the engine code. In Microsoft

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 3

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Basilio et al. FRIEND Engine Framework

Table 1 | List of commands expected by FRIEND Engine during the TCP/IP communication protocol with the frontend.

Command Action

PREPROC/NBPREPROC Performs the initial preprocessing (co-registration, skull stripping, MNI registration, etc.) steps of
FRIEND

PIPELINE/NBPIPELINE/NBFEEDBACK Starts the processing of each volume in the acquisition run as soon as it becomes available in the input
directory. The difference between the PIPELINE/NBPIPELINE and NBFEEDBACK commands, is that
NBFEEDBACK automatically calculates the feedback values and stores them in a session workspace
after the processing of each volume

GLM/NBGLM Performs the General Linear Model (fsl_glm) calculation using the FSL toolbox

FEATURESELECTION/NBFEATURESELECTION Performs feature selection (see Sato et al., 2013), i.e., identifies the most representative subset of
voxels for the calculation of the feedback value

PLUG-IN Defines the library and the associated plug-in functions to be used in further calls

TRAIN/NBTRAIN Calls the train function plug-in

TEST Calls the plug-in feedback function

NEWSESSION Creates a new session (workspace) in the engine memory

ENDSESSION Indicates that the engine can terminate an opened session and closes the related thread

SESSION/GRAPHPARS Queries for the motion parameters of a given volume

SESSION/TEST Returns the feedback information of a volume, previously stored in the session workspace

SESSION/PREPROC, SESSION/FEEDBACK Queries if a command, e.g. PREPROC or FEEDBACK has ended

READCONFIG Sends an entire configuration file associated with the frontend neurofeedback study to set the
parameters of the experiment

FIGURE 3 | TCP/IP network communication protocol between the

frontend and the FRIEND Engine (avatar finger tapping virtual

scenario). The steps marked with asterisk (∗) are called as many
times as needed. The first message sent is “NEWSESSION,” which

indicates that the engine should create a new session to work with
the frontend. That message is only needed in asynchronous
communications as explained in Section TCP/IP Communication
Protocol.

Windows® FRIEND Engine version, our modified source code
of the FSL toolbox functionality is embedded within the exe-
cutable of FRIEND Engine. This embedding process transforms
each needed FSL command in a function statically linked to the
software. For this reason, no additional installation of the FSL
software is necessary.

TCP/IP COMMUNICATION PROTOCOL
Table 1 lists the commands expected by the engine in the TCP/IP
communication protocol. There are two types of connections:
synchronous (blocked) and asynchronous (non-blocked [NB])
connections. In synchronous connections, the frontend needs
to wait until command completion to receive the acknowledge

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 4

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Basilio et al. FRIEND Engine Framework

response from the engine. Asynchronous connections need to
be established when the frontend is not supposed to freeze the
execution to wait for the acknowledge response, as in virtual
reality scenario frontends. This situation happens when a time-
consuming command needs to be executed, like “PREPROC” or
“TRAIN.” In this case, regular queries for command termination
need to be issued until the expected response is obtained. To
appropriately handle asynchronous connections, a multithread
approach with at least two threads is adamant: one, the main
thread, that performs all the raw real time processing; and the
other, the response thread, which responds to queries of various
types of information related to the main thread processing. The
two threads can respond properly to the frontend by a shared
access to the same session. To make these two threads inter-
operate, the notion of session is introduced. A session is an
independent location in the memory of the computer running the
engine, capable of storing all the information that is required to be
sent back to the frontend, such as neurofeedback information and
motion-corrected volume parameters. It is a role of the frontend
to present this information to the participant in a user-friendly
manner. The Matlab® frontend provided with the software dis-
tribution has some built-in capabilities to display feedback and
motion parameters.

PLUG-IN LIBRARY
A plug-in file is a dynamic library file (a .so file on the
Linux system, a .dylib file on the Mac OSX system and a .dll
file in Microsoft Windows®) that implements specific func-
tions called internally by FRIEND Engine at specific times dur-
ing the pipeline. This is a major advantage of the FRIEND
Engine, because, when in need of additional features, users
can focus on writing just the necessary functionality for their
specific research needs. This allows customization of the neu-
rofeedback tool, using encapsulated codes that run additional
functionalities from external libraries, leaving the engine code
intact. This characteristic favors usability and code maintenance,
because errors in a plug-in library are also encapsulated in
that library and do not affect other plug-ins. This framework
makes it easier to setup pilot experiments and to explore new
hypotheses.

Plug-in functions and parameters
The plug-in library must implement all the computational pro-
cesses required to calculate the feedback responses. A small subset
of variables needs to be defined to be used as parameters of the
plug-in functions (Table 2).

The engine defines six functions (Table 3) that are called at
predefined time points during the pipeline execution. Not all of
those six functions must be implemented in a plug-in library, just
the ones necessary to properly calculate the feedback information.
We recommend advanced users to code those functions in C++
because that minimizes compatibility errors during the execution
of the plug-in functions by the engine.

AVAILABLE PLUG-INS
The FRIEND Engine distribution comes with four plug-ins: one
for the SVM pipeline (libBrainDecoding), using the libSVM

Table 2 | List of parameters used within plug-in functions.

Parameter Definition

studyParams Object that stores information from the
study_params.txt file, which encloses all the
information used by the processing pipeline to
correctly identify the files, directories and expected
number of data volumes

userData Pointer referencing an area of memory created by
the engine to be used by the plug-in for temporary
calculations. The reason behind this approach is
that subsequent calls to the same plug-in from
different frontends would overwrite internal data
structures if they were created within the plug-in
library

classNum Number of the class, i.e., the condition attributed
to the scan during classification

volumeIndex Number of the current processed scan

volumeFileName The filename of the volume in the file system

Projection Feedback value calculated

Index Number of current scan

library (Chang and Lin, 2011); one for the ROI pipeline (libROI),
used in the Matlab® and the first game frontend examples (pre-
sented in the following sections); one for the functional connec-
tivity between two ROIs (libConnectivity) and one (libMotor)
that extracts ROI information from two ROIs located in the
motor cortex area (left and right), used in the avatar finger
tapping virtual scenario.

libROI plug-in functions and feedback value
Table 4 lists functions implemented in the libROI plug-in. The
feedback value calculated by the processROI function (Table 4) is
given by the equation:

ROIcurr_vol − 1
B

∑B
k = 1 ROIk

1
B

∑B
k = 1 ROIk

(1)

where ROIcurr_vol is the mean of the ROI on the current volume, B
is the number of volumes in the previous baseline condition and
ROIk is the mean of the kth volume.

A code snippet of this function can be found in the
Supplementary Material. The feedback function within the lib-
Motor plug-in is similar to the one on libROI, except for the
fact that two feedback values are calculated, one for each existing
ROI.

libBrainDecoding plug-in functions and feedback value
Table 5 lists functions implemented in the libBrainDecoding
plug-in. In trainSVM function, the voxels of an fMRI scan
are first organized (by concatenation) in an input vector x.
In this training phase, the vector is labeled according to the

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 5

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Basilio et al. FRIEND Engine Framework

Table 3 | List of functions a plug-in can define.

Function Definition Parameters

(Table 2)

Train Executed when the frontend issues the TRAIN command (Table 1). Normally, this function is used to analyze a
complete data set (e.g. a training run). This function is generally more time consuming, and is therefore not a
“real-time” operation. It is normally called at the end of the acquisition of a training run (e.g., for a multi voxel
pattern analysis [MVPA] classification approach) or a functional localizer (e.g., for an ROI-based BOLD signal or
functional connectivity study). This function builds a model that can be used on subsequent runs

studyParams
userData

Test Executed when the engine needs to calculate the feedback value for a given volume. There are two predefined
values that the engine returns to the frontend: information about the condition of the processed image volume
indicating, for example, a specific type of image volume classification in a MVPA study, and the feedback
information value. The interpretation of these two variables is left to the frontend, which must implement how this
information will be conveyed to the participant (e.g., a thermometer level, changes in a visual or auditory feedback)

studyParams
userData
classnum
projection
index

Initialization Called after the engine reads information from the study configuration file (see Sato et al., 2013). All the memory
data structure used by the plug-in must be initialized here. A pointer reference for this data structure has to be
returned in the function argument. This reference will be used in further plug-in function calls issued by the FRIEND
Engine

studyParams
userData

Finalization Called right before ending the processing of a session. All the memory data structures allocated in the Initialization
function must be destroyed here

studyParams
userData

Volume Called before the processing of a volume studyParams
volumeIndex
volumeFilename
userData

PostProc Called after the pre-processing of each volume studyParams
volumeIndex
volumeFilename
userData

Table 4 | Functions implemented in the libROI plug-in.

Plug-in LibROI

initializeROIProcessing Initialization function that creates the data
structures necessary for processing ROIs. It
also transforms the user-defined MNI ROI
mask into subject space

processROI Feedback function that calculates the
percent signal change of a ROI in the current
volume compared to the mean activation of a
baseline block

finalizeROIProcessing Finalization function that destroys all data
structures created in the initialization function

corresponding experimental condition (LaConte, 2011; Sitaram
et al., 2011). This initial data is used to train the classifier
(currently, a two-class SVM classifier is implemented) to dis-
criminate between the experimental conditions of interest. The
output of this function is the trained SVM model (i.e., the
hyperplane coefficients). The trained SVM is then used in the
subsequent brain decoding sessions (testing sessions), during
which participants engage in the same tasks and conditions of
interest.

Table 5 | Functions implemented in the libBrainDecoding plug-in.

Plug-in LibROI

trainSVM Function that uses the libSVM library to train the SVM
model

testSVM Function that calculates the feedback value of a scan based
on its projected values on an SVM hyperplane

initSVM Initialization function that creates the data structures
required for SVM training and testing

finalSVM Finalization function that deletes all temporary data
structures created by initSVM

In testSVM function, the projected value of a new observa-
tion is used to define the neurofeedback information (Sato et al.,
2008). The projected value of a new image volume on the SVM
discriminating hyperplane is given by (xTw + b), where w is a
vector containing the hyperplane coefficients and b is a con-
stant. The boundary between conditions is represented by the
value of zero. This value obtained by projecting the new obser-
vation in the SVM discriminating hyperplane is then used to
choose the feedback figure to be shown to the participant. Further
information can be found in Sato et al. (2013).

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 6

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Basilio et al. FRIEND Engine Framework

Table 6 | Functions implemented in the libConnectivity plug-in.

Plug-in LibROI

buildROIs Training function responsible for building
a mask containing two ROIs used to
calculate the associated correlations

calculateFeedback Feedback function that calculates the
sliding window correlations based on the
two ROIs calculated in buildROIs function

initializeFunctionalConnectivity Initialization function that creates the
necessary data structures

finalizeFunctionalConnectivity Finalization function that destroys all data
structures created by
initializeFunctionalConnectivity function

libConnectivity plug-in functions and feedback value
Table 6 lists functions implemented in the libConnectivity plug-
in. The buildROIs function transforms a mask with two MNI
ROIs into the subject space. A subset of voxels from a GLM anal-
ysis of the localizer run is then selected by applying the preceding
masks and selecting a user-defined percentage of these voxels.
These two voxel populations are employed as new ROIs for the
sliding window correlation calculation.

The calculateFeedback function calculates the Pearson corre-
lation coefficient between two ROIs, where ROI1 and ROI2 are
vectors containing the means of the ROIs on the last L scans:

ρ(ROI1, ROI2) =
∑L

i = 1 (ROI1i − ROI1)(ROI2i − ROI2)√∑L
i = 1 (ROI1i − ROI1)2

√∑L
i = 1 (ROI2i − ROI2)2

(2)

Where L is the size of the sliding window, i.e., the last L scans
acquired.

FRONTEND EXAMPLES
In all the “game” examples provided with the distribution, there
is, in the engine directory, a pre-configured study_params.txt file
that is read by default by the engine; all the volume files are already
placed in the input directory referenced by the study_params.txt
file. To read the volume files in a real-time online setup, users
need to configure the arrival of images in the input directory in
the same way as for the standalone version of FRIEND. Triggers
from the scanner can be used to keep track of the time, e.g.,
the onset of a given experimental condition. It is the frontend
that handles the syncing of the experimental paradigm with the
scanner.

MATLAB® FRONTEND
Figure 4 is a screenshot of a frontend designed with the Matlab®
GUIDE tool. Matlab® is a largely used language in the scientific
community so it is important to provide a functional example of
the Matlab® FRIEND Engine connection. GUIDE helps users to
build graphical user interfaces for their applications in Matlab®.

This frontend application shows the activation of a ROI in the
motor cortex during a finger-tapping task. It presents the feed-
back in the shape of a thermometer-like dynamic bar graph. This
example uses the libROI plug-in. In this example and the first
Unity example below, only one ROI located in the left motor
cortex is used.

UNITY FRONTENDS
The frontends based on the Unity game engine (http://unity3d.

com/) employ virtual reality scenarios. These scenarios are com-
posed of objects, like rocks, trees and scripts. The scripts in
Unity play an important role in how the virtual scenarios
behave, such as the interactions between objects, and how, where
and when avatars interact with the environment. This aspect
is especially relevant for the interrelationship between Unity
and FRIEND Engine. Scripts coordinate how the information
returned by the engine will impact on the current state of the
virtual scenario. The complexity of this coordination increases
exponentially with the number of objects and avatars in the
scene. Unity currently offers three options of scripting languages:
C#, JavaScript and Boo. All game examples showed here were
written in C# language. The initial learning curve of Unity
for construction of scenarios and writing the scripts is quite
demanding, but this pays off because of the great variety of
high quality scenarios that can be produced in a short time.
The Unity assets store also helps, because users can find a lot of
interesting and complex materials, like characters, objects, and
animations. The Unity game engine was employed here given
its cross-platform availability (Microsoft Windows®, Linux and
Mac OSX, web player, IOS and Android) and ease of use, but
other tools, such as Unreal Development Kit (UDK, https://www.

unrealengine.com/products/udk) and Cry Engine SDK (http://
www.cryengine.com/), could also be potentially implemented as
frontends.

Medieval virtual scenario frontend
Figure 5 is a screenshot of a frontend made in Unity. This fron-
tend is a medieval virtual reality scenario in which the avatar,
i.e., the participant, hovers over a path and stops in predeter-
mined locations, blocked by a massive rock. Using the same finger
tapping neurofeedback procedure exemplified in the Matlab®
frontend (alternating rest and finger tapping blocks), and the
same libROI plug-in, the feedback information to the participant
is now given in a different way. As the participant moves across
the scenario and stops right before the rock, he/she needs to per-
form the finger tapping task as instructed (as quickly as possible).
If the percentage BOLD signal change returned by the engine
reaches a predefined threshold, the rock levitates, thus unblock-
ing the path so that the journey continues. If the threshold is not
reached, the player stays at the same location until the next try,
i.e., the next activation block. This scenario was constructed using
objects from the iTween path editor and the Big Environment
pack, available in the Unity Assets store.

Avatar finger tapping frontend
Figure 6 shows the screenshots of the avatar finger tapping fron-
tend. It was inspired by the BOLD brain pong (Goebel et al.,

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 7

http://unity3d.com/
http://unity3d.com/
https://www.unrealengine.com/products/udk
https://www.unrealengine.com/products/udk
http://www.cryengine.com/
http://www.cryengine.com/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Basilio et al. FRIEND Engine Framework

FIGURE 4 | Snapshot of a frontend designed with the Matlab® GUIDE tool, showing motion parameters (rotation, translation and root mean square

error) and a thermometer indicating BOLD signal change as a feedback.

FIGURE 5 | Snapshots of the game like frontend designed in Unity,

showing the path that the participant travels during the experiment.

(A) Shows the situation where the rock is blocking the way; (B) shows the
rock being “levitated,” unblocking the way.

2004). This is a finger tapping experiment with intercalating
blocks of rest and finger tapping. Different from the previous
examples, here we use two ROIs located in the primary motor
cortex area of the left and right cerebral hemispheres. The partic-
ipant is asked to perform finger tapping with either their left or
right hand, alternating with resting blocks. This example employs
the libMotor plug-in, which calculates the percent BOLD signal
change in the left and right ROIs in the same way as the libROI
plug-in in the single ROI example. The frontend compares the
feedback values between ROIs, in such a way that the greater
one will inform which hand of the avatar, showed by the fron-
tend, will perform the finger tapping animation. If successfully
performed, this conveys a clear impression that the participant
is controlling the hands of the avatar with his/her own hands.
The avatar and hand animations were implemented using the
VR Hands Unity asset (https://serrarens.nl/passervr/downloads/
vr-hands/).

FIGURE 6 | Two situations of the avatar finger tapping scenario. (A)

During a rest block and (B) during a finger tapping block.

DISCUSSION AND CONCLUSION
In this paper we introduced the FRIEND Engine framework,
a reengineered implementation of our previous work (Sato
et al., 2013) to provide a flexible and user-friendly framework
that enables users to customize frontends and data processing
pipelines for neurofeedback studies. For this aim, the standalone
FRIEND software was re-implemented by breaking apart the core
engine, which performs the basic data processing, the plug-in
functionalities, which implement specifics of the neurofeedback
study, and the frontend, which handles all the necessary graphic
interfaces, external device inputs and sends commands to the
engine.

The separation of the graphical interface from the data pro-
cessing components provides a major advantage because users
can implement virtually any type of feedback visualization strat-
egy, such as images, audio, movie clips and virtual scenarios, by
developing new frontends or connecting with standard stimu-
lus presentation softwares and external devices. The use of the
TCP/IP communication protocol between the frontend and the

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 8

https://serrarens.nl/passervr/downloads/vr-hands/
https://serrarens.nl/passervr/downloads/vr-hands/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Basilio et al. FRIEND Engine Framework

engine provides an interesting “weak connection,” because the
frontend does not need to make any assumptions about data pro-
cessing other than the ones related to the feedback interpretation.
This also enables users to more efficiently share frontends that
can be used for different purposes. Computer processing time
is always a critical concern, especially when real-time process-
ing and feedback are needed. All frontends herein described were
run on a different computer from the one running the FRIEND
Engine application. The mean processing time for one volume
(single-shot EPI, 64 × 64 to 80 × 80 matrix, 22–37 slices) was
about 0.7 s in mid-/high-end workstations (PC, Quad-core i7, 8
GB RAM; Macintosh, quad-core Intel Core i5, 8 GB RAM). The
performance of the game frontends was not affected by the com-
munication with the engine, and no lags were noticed for the
currently implemented routines and data types.

The FRIEND Engine framework flexibility was illustrated
here by the game frontends. This implementation demonstrated
the potential use of virtual reality in neurofeedback studies,
which may increase engagement and compliance with the tasks.
The economic push of commercial games and widely avail-
able software development kits facilitates constant updates and
improvements that can be quickly embedded into new fron-
tends for enhanced neurofeedback studies. The frontend imple-
mentation examples herein provided employed the Unity game
engine (https://unity3d.com/), because of its user-friendliness,
flexibility and availability for the three main operational systems
(Windows®, Linux and Mac OSX).

Source code is available for all the software provided within
the FRIEND Engine distribution, so that seamless customization
is possible. From the user point of view, there is no appar-
ent need to modify the exhaustively tested and well-established
FRIEND Engine core functionalities, though these are open
for improvement. Advanced users can also modify any exist-
ing plug-in (e.g., implementing ROI correlations using more
than two ROIs) or create new ones (e.g., implementing simul-
taneous real-time fMRI and EEG neurofeedback). A few fron-
tends and plug-ins are provided with this first distribution, but
we expect that this can be substantially expanded whenever
users share their developments, with a benefit for the grow-
ing scientific community interested in neurofeedback research
(Sulzer et al., 2013).

Whereas the standalone FRIEND implementation includes
quality controls mechanisms (e.g., a GUI that allows users to
monitor details of the ongoing acquisition, such as motion
parameters, visualization of ROIs transformed from the MNI
space to subject space, the temporal variation of a ROI mean),
FRIEND Engine still lacks a quality control module. While some
of these functionalities are currently available on the Matlab®
frontend (e.g., display of motion parameters), it is not the case
for the game-like frontends. Toward this aim, we are currently
developing an ancillary frontend for quality control, which will
run independently from the main frontend. To access the motion
parameters information and possibly feedback information, this
frontend will only need the ID of the session workspace cre-
ated by the main frontend. This ancillary frontend module also
contains visualization capabilities for displaying anatomical and
functional reference images, source MNI ROIs, ROIs transformed

into subject space, visualization of active voxels prior to neu-
rofeedback based on GLM thresholds or SVM feature-selection
steps, among some other options. This frontend will operate in
a largely generic way, as to be capable of working in conjunc-
tion with current or future frontends. In the short term, we are
also planning to deliver a Python (https://www.python.org/) and
a Presentation® (http://www.neurobs.com/) frontend.

In terms of usage and availability, currently AFNI (Cox, 1996)
and Turbo Brain Voyager (Goebel, 2012) appear to be the leading
packages for rtMRI neurofeedback. AFNI is a highly developed
fMRI package that has pioneered work on real-time neurofeed-
back experiments. Turbo Brain Voyager is a user-friendly fMRI
processing package containing a rtfMRI module that enjoys the
benefits from a number of pre- and post-processing routines and
an attractive graphic interface. Similarly, our package uses fMRI
spatial and temporal processing routines that are largely based on
the widely used and validated FSL package. Both AFNI and Brain
Voyager allow ROI processing and thermometer-like feedback, as
FRIEND Engine does. In a very recent publication, Cohen et al.
(2014) employed Brain Voyager and the Unity environment to
enable participants to control an avatar by hand and leg motion
imagery, similarly as we report here. AFNI and Brain Voyager
also provide interesting quality control functionalities, which are
available in the standalone FRIEND version and which are cur-
rently being implemented and expanded in FRIEND Engine.
For developers, Brain Voyager allows development of plug-ins
for Windows®, MAC® and Linux platforms in C++ language
whereas AFNI allows the addition of run-time functionalities in
C language for MAC® and Linux. For FRIEND Engine, we rec-
ommend plug-ins to be developed in C++ for compatibility.
Brain Voyager is a commercial package, thus source codes are
not available, whereas AFNI and FRIEND Engine Framework are
open source. An optimized FSL embedded functionality allows
FRIEND to run seamlessly on Windows® (the official FSL pack-
age currently does not run on this platform), so there is no
need for a virtual machine. AFNI requires Cygwin (https://www.

cygwin.com) to run on Windows®, although with reduced func-
tionality and possibly reduced performance. FRIEND Engine has
the added advantage of providing full platform and language
freedom for the development of frontends. A recent, freely avail-
able toolbox for rt-fMRI, implements similar capabilities as those
described in FRIEND Engine, Turbo Brain Voyager and AFNI,
and and adds the interesting feature of “subject-independent”
multivariate pattern classification (Rana et al., 2013). However,
so far it has not been made widely available for download, and we
have not been able to evaluate and compare it to existing ones.

With respect to future developments in FRIEND Engine, one
of our main goals is to encourage clinical applications. For this
aim, streamlining routines for blind randomization procedures
are under way. These will allow experimenters to run double-
blind randomized controlled fMRI neurofeedback trials in a
rigorous and straightforward manner.

The importance of building a repository for frontends and
plug-ins is clear. A publicly accessible repository, with a discus-
sion forum for implementations and strategies can be of great
help for the development of new neurofeedback projects. To this
aim, sharing of plug-ins and frontends will be possible through

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 9

https://unity3d.com/
https://www.python.org/
http://www.neurobs.com/
https://www.cygwin.com
https://www.cygwin.com
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Basilio et al. FRIEND Engine Framework

the NITRC repository (http://www.nitrc.org/projects/friend) and
GitHub (https://github.com/InstitutoDOr/FriendENGINE). In
summary, we believe that FRIEND Engine can be a valuable
contribution to the thriving fMRI neurofeedback community,
by providing an open and flexible collaborative platform for
developing new solutions for fMRI neurofeedback research and
clinical applications.

ACKNOWLEDGMENTS
The authors are thankful to colleagues from IDOR for helpful dis-
cussions and support in different stages of this work, in special
to Ivanei E. Bramati, Fernando F. Paiva, Theo Marins, Patricia
P. Bado, Julie Weingartner, Fernanda Tovar-Moll, Fernanda
Meirelles, Luiz Felipe Costa, and Debora O. Lima. This work
was supported from internal grants from the Cognitive and
Behavioral Neuroscience Unit at IDOR, FAPERJ and MCT/INNT.
Roland Zahn was funded by MRC fellowship (G0902304).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fnbeh.2015.

00003/abstract

REFERENCES
Chang, C.-C., and Lin, C.-J. (2011). LIBSVM: a library for support vector

machines. ACM Trans. Intell. Syst. Technol. 27, 1–27. doi: 10.1145/1961189.
1961199

Cohen, O., Koppel, M., Malach, R., and Friedman, D. (2014). Controlling an avatar
by thought using real-time fMRI. J. Neural Eng. 11:035006. doi: 10.1088/1741-
2560/11/3/035006

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional mag-
netic resonance neuroimages. Comput. Biomed. Res. Int. J. 29, 162–173. doi:
10.1006/cbmr.1996.0014

Goebel, R. (2012). BrainVoyager–past, present, future. Neuroimage 62, 748–756.
doi: 10.1016/j.neuroimage.2012.01.083

Goebel, R., Sorger, B., Kaiser, J., Birbaumer, N., and Weiskopf, N. (2004).
BOLD Brain Pong: Self-Regulation of Local Brain Activity During Synchronously
Scanned, Interacting Subjects. San Diego, CA: Society for Neuroscience.

Green, S., Ralph, M. A. L., Moll, J., Deakin, J. F. W., and Zahn, R. (2012).
Guilt-selective functional disconnection of anterior temporal and subgenual
cortices in major depressive disorder. Arch. Gen. Psychiatry 69, 1014–1021. doi:
10.1001/archgenpsychiatry.2012.135

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., and Smith, S. M.
(2012). FSL. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

LaConte, S. M. (2011). Decoding fMRI brain states in real-time. Neuroimage 56,
440–454. doi: 10.1016/j.neuroimage.2010.06.052

LaConte, S. M., Peltier, S. J., and Hu, X. P. (2007). Real-time fMRI using brain-state
classification. Hum. Brain Mapp. 28, 1033–1044. doi: 10.1002/hbm.20326

Moll, J., Weingartner, J. H., Bado, P., Basilio, R., Sato, J. R., Melo, B. R., et al.
(2014). Voluntary enhancement of neural signatures of affiliative emotion

using FMRI neurofeedback. PLoS ONE 9:e97343. doi: 10.1371/journal.pone.
0097343

Rana, M., Gupta, N., Dalboni Da Rocha, J. L., Lee, S., and Sitaram, R.
(2013). A toolbox for real-time subject-independent and subject-dependent
classification of brain states from fMRI signals. Front. Neurosci. 7:170. doi:
10.3389/fnins.2013.00170

Renaud, P., Joyal, C., Stoleru, S., Goyette, M., Weiskopf, N., and Birbaumer, N.
(2011). Real-time functional magnetic imaging-brain-computer interface and
virtual reality promising tools for the treatment of pedophilia. Prog. Brain Res.
192, 263–272. doi: 10.1016/B978-0-444-53355-5.00014-2

Sato, J. R., Basilio, R., Paiva, F. F., Garrido, G. J., Bramati, I. E., Bado, P., et al.
(2013). Real-time fMRI pattern decoding and neurofeedback using FRIEND:
an FSL-integrated BCI toolbox. PLoS ONE 8:e81658. doi: 10.1371/jour-
nal.pone.0081658

Sato, J. R., Thomaz, C. E., Cardoso, E. F., Fujita, A., Martin, M. da G., and Amaro, E.
(2008). Hyperplane navigation: a method to set individual scores in fMRI group
datasets. Neuroimage 42, 1473–1480. doi: 10.1016/j.neuroimage.2008.06.024

Sitaram, R., Lee, S., Ruiz, S., Rana, M., Veit, R., and Birbaumer, N. (2011). Real-time
support vector classification and feedback of multiple emotional brain states.
Neuroimage 56, 753–765. doi: 10.1016/j.neuroimage.2010.08.007

Sorger, B., Reithler, J., Dahmen, B., and Goebel, R. (2012). A real-time fMRI-based
spelling device immediately enabling robust motor-independent communica-
tion. Curr. Biol. 22, 1333–1338. doi: 10.1016/j.cub.2012.05.022

Stoeckel, L. E., Garrison, K. A., Ghosh, S., Wighton, P., Hanlon, C. A., Gilman, J. M.,
et al. (2014). Optimizing real time fMRI neurofeedback for therapeutic discov-
ery and development. Neuroimage. 5, 254–255. doi: 10.1016/j.nicl.2014.07.002

Stroustrup, B. (1988). What is object-oriented programming? IEEE Softw. 5, 10–20.
doi: 10.1109/52.2020

Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N., Blefari, M.
L., et al. (2013). Real-time fMRI neurofeedback: progress and challenges.
Neuroimage 76, 386–399. doi: 10.1016/j.neuroimage.2013.03.033

Weiskopf, N. (2012). Real-time fMRI and its application to neurofeedback.
Neuroimage 62, 682–692. doi: 10.1016/j.neuroimage.2011.10.009

Zotev, V., Krueger, F., Phillips, R., Alvarez, R. P., Simmons, W. K., Bellgowan,
P., et al. (2011). Self-regulation of amygdala activation using real-time FMRI
neurofeedback. PLoS ONE 6:e24522. doi: 10.1371/journal.pone.0024522

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 08 August 2014; accepted: 05 January 2015; published online: 30 January
2015.
Citation: Basilio R, Garrido GJ, Sato JR, Hoefle S, Melo BRP, Pamplona FA, Zahn
R and Moll J (2015) FRIEND Engine Framework: a real time neurofeedback client-
server system for neuroimaging studies. Front. Behav. Neurosci. 9:3. doi: 10.3389/
fnbeh.2015.00003
This article was submitted to the journal Frontiers in Behavioral Neuroscience.
Copyright © 2015 Basilio, Garrido, Sato, Hoefle, Melo, Pamplona, Zahn and Moll.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Behavioral Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 10

http://www.nitrc.org/projects/friend
https://github.com/InstitutoDOr/FriendENGINE
http://www.frontiersin.org/journal/10.3389/fnbeh.2015.00003/abstract
http://www.frontiersin.org/journal/10.3389/fnbeh.2015.00003/abstract
http://dx.doi.org/10.3389/fnbeh.2015.00003
http://dx.doi.org/10.3389/fnbeh.2015.00003
http://dx.doi.org/10.3389/fnbeh.2015.00003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

	FRIEND Engine Framework: a real time neurofeedback client-server system for neuroimaging studies
	Introduction
	Friend Engine Framework
	TCP/IP Communication Protocol
	Plug-In Library
	Plug-in functions and parameters

	Available Plug-Ins
	libROI plug-in functions and feedback value
	libBrainDecoding plug-in functions and feedback value
	libConnectivity plug-in functions and feedback value

	Frontend Examples
	Matlab® Frontend
	Unity Frontends
	Medieval virtual scenario frontend
	Avatar finger tapping frontend

	Discussion and Conclusion
	Acknowledgments
	Supplementary Material
	References

