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The high prevalence of brain disorders and the lack of their efficient treatments necessitate
improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate
species with high genetic and physiological homology to humans, is an excellent organism
for innovative central nervous system (CNS) drug discovery and small molecule screening.
Here, we outline new strategies for developing higher-throughput zebrafish screens to
test neuroactive drugs and predict their pharmacological mechanisms. With the growing
application of automated 3D phenotyping, machine learning algorithms, movement
pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are
expected to markedly improve CNS drug discovery.
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Come on, feel the noise
So jump a little higher,

Jump, jump a little higher. . .
Scooter, “We Take You Higher” (1996)

ZEBRAFISH SCREENS FOR CNS DRUG DISCOVERY
Brain disorders are complex multifaceted illnesses with poorly
understood causes and frequently ineffective therapies (Duman
et al., 1994; Nestler, 2013). Despite the growing public health
impact of these disorders (Mitchell, 2011), the central nervous
system (CNS) drugs have not improved in decades (WHO, 2008;
Griebel and Holmes, 2013), necessitating novel pre-clinical in-
vivo models for drug discovery (Markou et al., 2009; Stewart and
Kalueff, 2013, 2014).

Research in this field is determined by the complex nature
of CNS syndromes, the importance of targeting their biologi-
cal mechanisms, and the need in high-throughput screens (HTS)
for drug targets and potential therapies (Kokel and Peterson,
2008; Rihel et al., 2010; Laggner et al., 2012; Stewart and Kalueff,
2014). With the recent progress of medicinal chemistry, mathe-
matical modeling and bioinformatics, drug discovery has started
to embrace systematic, large-scale screening approaches (Bruni
et al., 2014). As a vertebrate species with high genetic and physio-
logical homology to humans, the zebrafish (Danio rerio) is rapidly
emerging as an excellent model to address these needs (Kalueff
et al., 2014a,b; Stewart et al., 2014a).

Importantly, using zebrafish as a first-choice vertebrate species
for screening has several advantages. First, it helps narrow down
the list of potential “hits” for their subsequent validation in
more complex and expensive rodent tests. Second, it helps assess
drug responses following various genetic manipulations, the tool-
box for which is becoming increasingly diverse and efficient in

zebrafish (Bernier et al., 2014; Kalueff et al., 2014b; Stewart
et al., 2014a). Finally, larval and adult zebrafish screens are also
useful for dissecting the drugs’ psychopharmacological profiles
(e.g., using multiple receptor agonists and antagonists prior to
a more targeted rodent testing)—an approach that focuses on
“core,” evolutionarily conserved (and, thus, translationally more
relevant) molecular pathways shared by zebrafish and humans
(Kalueff et al., 2014a,b; Stewart et al., 2014a).

Complementing larval zebrafish HTS, extensively used for
modeling brain disorders and testing new compounds, adult
zebrafish in-vivo testing is often performed as low-to-moderate
neurophenotypic screens (Gerlai et al., 2000; Baraban et al., 2005;
Kily et al., 2008; Maximino et al., 2010, 2011, 2013, 2014b; Mathur
and Guo, 2011; Mathur et al., 2011a,b; Norton et al., 2011; Pan
et al., 2011; Rosemberg et al., 2011; Griffiths et al., 2012; Lange
et al., 2012a,b; Parker et al., 2013; Ziv et al., 2013; Stewart et al.,
2014b; Li et al., 2015).

Current in-vivo zebrafish HTS typically utilize extensive or
intensive approaches to generate “big data” for translational
neuroscience research (Figure 1). For instance, applying a
barcoding strategy (Glossary), extensive analyses of several
basic locomotor and sleep/wake parameters in larval zebrafish
have successfully identified neuroactive drugs from a large
library of screened compounds (Kokel and Peterson, 2008,
2011; Kokel et al., 2010; Rihel et al., 2010; Laggner et al.,
2012; Jin et al., 2013). Recent intensive studies analyz-
ing 20–30 three-dimensional (3D) behavioral endpoints in
adult zebrafish (Glossary, Supplementary Table 1S online),
have detected potential commonalities and differences in pro-
files of several tested neuroactive drugs (Egan et al., 2009;
Grossman et al., 2010; Wong et al., 2010; Cachat et al., 2011,
2013).
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FIGURE 1 | The use of video-tracking tools to assess neural phenotypes in

zebrafish. (A) Shows video-tracking of an individual zebrafish (left) or a
zebrafish group (shoal, right); side view vide-recording in the novel tank test.
Tracking individual fish with one camera in 2D, or with two cameras in 3D, can
generate up to 50–60 individual endpoints (see Supplementary Table 1S online
for examples) which can be sensitive to neuroactive properties of the drugs.
Tracing selected endpoints in zebrafish shoals, such as assessing the average
inter-fish distance and velocity, is also possible in zebrafish models (Green et al.,
2012) (although more sophisticated computer tools and optimized animal
tagging methods are needed to monitor each individual fish within the group).
(B) Illustrates the potential of 3D behavioral video-tracking in zebrafish to

predict drug pharmacology (also see Soleymani et al., 2014). In this example,
top swimming combined with elevated angular velocity in zebrafish treated
with a hallucinogenic drug phencyclidine (PCP, inset) shows a striking difference
from control fish, supporting the value of various computer-based neural
phenotypes for predicting the pharmacological profile of different CNS-active
compounds. (C) Shows examples of representative 3D phenotypes for control
fish and animals acutely exposed to several CNS drugs. LSD, Lysergic acid
diethylamide (images: courtesy of Noldus IT, Netherlands, in collaboration with
the Kalueff Laboratory, Stewart et al., 2014a). Note distinct patterns of
locomotion evoked by drugs from different pharmacological classes (also see
Cachat et al., 2011, 2013; Soleymani et al., 2014 for discussion).
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Figures 1, 2 further illustrate how a comprehensive evaluation
of individual compounds can foster objective, computer-based
prediction of the drugs’ pharmacology. For example, phency-
clidine (PCP) is a hallucinogenic glutamatergic antagonist that
acutely evokes characteristic “top circling” behavior in zebrafish
(Figures 1, 2). Assessed by elevated angular velocity and rotation
index, this response is similar for anti-glutamatergic hallucino-
gens, but not other classes of hallucinogenic agents (Kyzar et al.,
2012; Neelkantan et al., 2013; Stewart et al., 2013). Analyzing such
3D profiles, it is therefore possible to generate decision trees for
predicting the pharmacological profile of different groups of neu-
roactive compounds, based on zebrafish swimming patterns and
their geometry (Figure 2) (Cachat et al., 2010, 2011; Soleymani
et al., 2014). Likewise, acute nicotine evokes characteristic top
swimming along perimeter of the tank, strikingly differing from
top circling (typical for many anti-glutamatergic drugs) or top
surfacing without peripheral swimming (typical for serotonergic
agents; Figure 1C) (Kyzar et al., 2012; Neelkantan et al., 2013;
Stewart et al., 2013). Importantly, such accumulation of large
libraries of drugs’ behavioral signatures in zebrafish can paral-
lel the application of machine learning algorithms, leading to
further refinement and optimization of the prediction of drugs’
pharmacological profiles (Soleymani et al., 2014) (Figure 2C).

DEVELOPING HIGHER-THROUGHPUT ZEBRAFISH SCREENS
The choice between extensive and intensive analyses in zebrafish
models no longer poses a critical dilemma for researchers,
because modern information technology tools and the low cost
of zebrafish (vs. rodent) assays markedly facilitate the collection
and computer processing of data (Figures 2D,E). Here, we argue
that the two strategies can now be co-applied in zebrafish screen-
ing studies, resulting in “higher-throughput” screens capable of
generating “super-big data” (Figures 2D,E, Glossary). Enhancing
the efficiency of zebrafish-based models for innovative CNS drug
discovery, this strategy combines the advantages of the extensive
approach (utilizing large numbers of drugs and animals tested)
with the benefits of using extensive studies (focusing on a large
number of phenotypes that help generate mechanistic insights;
Figures 2D,E).

In addition to zebrafish’s utility for HTS per se, this species
also enjoys the advantage of having a sophisticated molecular
genetic toolset developed for it. For example, traditional N-
ethyl-N-nitrosourea (ENU)-induced (Mullins et al., 1994) or
viral vector-mediated (Amsterdam et al., 1999) mutagenesis and
gene silencing using morpholinos complement other genetic
tools recently developed for zebrafish, such as “gene-breaking
transposon” (GBT) (Petzold et al., 2009) screens, “clustered reg-
ularly interspaced short palindromic repeats” (CRISPR) (Hwang
et al., 2013), zinc finger nucleases(Doyon et al., 2008), “transcrip-
tion activator-like effector nuclease” (TALEN) (Zu et al., 2013)
and “targeting induced local lesions in genomes” (TILLING)
(Moens et al., 2008). As these genetic tools may manipulate a
wide range of zebrafish genes, the ability to apply informatics-
driven methods to systematically collect, store and analyze
zebrafish pharmacogenetics data further empowers CNS drug
discovery. For example, Figure 2E shows how increasing the
“dimensionality” of traditional phenotypic screens by including

an additional (genetic) dimension becomes a useful strategy of
research in this field. Thus, systematic accumulation of pharma-
cogenetic evidence (with comparative analyses of drug response
in wildtype vs. mutant fish) into large online data libraries
becomes key for biomolecular data validation and generating
novel mechanistic insights into drugs’ action (Figure 2E) as part
of higher-throughput screening using zebrafish.

INCREASINGLY SOPHISTICATED BEHAVIORAL SCREENING
TOOLS
The higher-throughput screening approach in today’s drug dis-
covery also becomes possible due to a combination of rapidly
increasing computer processing power with sensitive video-
recording tools that generate automated phenotypic data with
high spatial and temporal resolution (Figure 2E) (Cachat et al.,
2011; Branson, 2014). In addition to testing individual fish with
multiple individual endpoints to generate super-big data, simul-
taneous video-tracking of multiple fish swimming in groups
(shoals) (Green et al., 2012; Branson, 2014; Kalueff et al., 2014b)
is another strategy to achieve this goal. Moreover, recent advances
in automated behavioral recognition (Glossary) further facilitate
efficient in-vivo drug screens using zebrafish. For example, mon-
itoring several zebrafish body points (e.g., nose, mid-body and
tail) enables both automated quantification of fish locomotion
and interpretation of complex zebrafish behaviors (e.g., chasing,
biting, social approach or reduced sociability Kalueff et al., 2013)
that parallel human phenotypes (see Stewart et al., 2014a for
details).

Finally, as behavioral analyses become more efficient, stim-
uli that induce fish responses also become better standardized
in zebrafish models. For example, currently available automated
drug and/or food delivery tools improve zebrafish studies of
drugs that affect reward mechanisms. Likewise, zebrafish oper-
ant behavior can be examined by using changes in zebrafish
body position (e.g., swimming to a specific location) to deliver
behavioral stimuli, such as punishment or reward. Exposing fish
to predator or conspecific images on a computer screen (Luca
and Gerlai, 2012), as well as using a computer-animated robotic
“fish” (Butail et al., 2013; Cianca et al., 2013), represent other
excellent examples of improved controllability of stimulus presen-
tation in zebrafish models. Because stimulus delivery, behavioral
quantification and phenotype recognition/interpretation are now
increasingly computerized, zebrafish-based in-vivo screening in
general is becoming more automated and higher-throughput.

CONCLUDING REMARKS
Fully automated robot-based screening platforms for larval
and, eventually, adult zebrafish will soon become routine in
zebrafish neurophenotyping studies. The HTS systems devel-
oped specifically for CNS drugs that affect complex behaviors
will increase both the “width” and the “depth” of such screens
(Figures 2D,E). Coupled with HTS, the ever increasing sophis-
tication of genetic and behavior-recognition tools transform
zebrafish models into higher-throughput in-vivo assays, allow-
ing comprehensive coverage of the biological mechanisms of
complex brain disorders, and leading to innovative CNS drug
discovery.
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FIGURE 2 | Continued
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FIGURE 2 | Example of potential decision trees (A,B) that can be used by

automated in-vivo drug-screening platforms in adult zebrafish to predict

the drugs’ pharmacological profiles (see Figures 1B,C for examples of 3D

traces). (C) Illustrates the general strategy of drug screening based on
machine learning algorithms and 3D trace analyses. Summary of different
strategies that can be used to generate high-density biological “big data”

from zebrafish in-vivo screens. (D) Illustrated the extensive approach, testing
a large number of drugs (D) in multiple animals (N) but recording few
endpoints/phenotypes (P). This approach is markedly facilitated by using
phenotypic barcoding approaches (Glossary). In contrast, the intensive
approach screens few drugs, uses few animals but records many endpoints.

(Continued)
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FIGURE 2 | Continued

The higher-throughput strategy, based on screening many compounds with
multiple endpoints in a large number of animals, is empowered by locomotor
pattern and behavioral recognition (Glossary) as well as automated slimuli
delivery and experimental manipulations. (E) Shows the value of increased
drug data “dimensionality” by including pharmacogenetic results (from wild
type vs. mutant zebrafish) for providing important mechanistic insights into

the drugs action. For example, a hypothetical antagonism of a drug A at a
receptor R can be confirmed by screening the reference compound B (with
known anti-R activity) and by mutating zebrafish gene R to abolish A/B-like
activity in the mutants. Applying bioinformatics-based approaches and
combining both lines of such evidence will facilitate the discovery of anti-R
compounds (based on A-like pharmacology in zebrafish), followed by
subsequent target validation in rodents and clinical studies.
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GLOSSARY
Barcoding is a phenotyping approach that expresses complex
behavioral changes by splitting them into simple behav-
ioral “barcodes” (Kokel et al., 2010, 2012), to classify psy-
chotropic drugs and determine their mechanisms of action. This
approach streamlines and facilitates the analysis of zebrafish
phenotypes by providing a concise quantitative and visu-
alized summary of the observed behaviors (Figures 2D,E)
(Kokel et al., 2010, 2012). Typically applied to larval fish,
this approach has recently been applied to adult zebrafish
(Maximino et al., 2014a).

Behavioral recognition complements traditional behavioral
quantification methods (e.g., Supplementary Table 1S online) and
analyzes the location and temporal dynamics of multiple body
parts, in order to interpret complex behaviors. For instance, mov-
ing fast nose-to-tail with another fish represents chasing, fast
moving head toward another fish is attack, whereas slow mov-
ing head to head of another fish can be interpreted as social
investigation (Kalueff et al., 2013). Behavioral recognition is
markedly enhanced by using computer-based automated video-
tracking combined with analyses of multiple body parts (Stewart
et al., 2014a).

“Big data” represents collected data sets which are difficult
to process using traditional data processing approaches due to
their size/density (e.g., currently, big data involves millions of
terabites of information). In zebrafish screens, big data can be
generated using sophisticated automated computer-based video-
tracking tools, recording spatial coordinates of zebrafish and their
alterations over time.

Extensive strategy in zebrafish drug discovery (Figures 2D,E)
employs multiple zebrafish (large animal numbers, N) to rapidly
screen many CNS drugs (large D’s) and identify novel promis-
ing compounds, based on alteration in selected well-validated
individual phenotypes (small P’s).

High-throughput screens (HTS) in zebrafish involve rapid
testing of a very large number of compounds (typically >500–
1000 per day) vs. medium- or low-throughput screens. The
process often entails a high degree of automation. Traditionally,

HTS utilize an extensive strategy (Figure 2D), yet are limited in
their ability to thoroughly examine large numbers of endpoints
and their associated patterns.

Intensive strategy in zebrafish drug discovery (Figure 2D)
focuses on in-depth analyses of multiple phenotypes (large P’s)
evoked by a small number of experimental manipulations (e.g.,
drugs, small D’s) in a fewer animals (small N’s), aiming to increase
our mechanistic understanding of various CNS processes and
their experimental modulation.

Neurophenomics is an area of neuroscience research (part
of phenomics) that examines the interactions between various
CNS phenotypes (e.g., zebrafish behaviors) and their response
to endogenous (e.g., genetic mutation) or exogenous (e,g., drugs,
environmental stressors) factors. A primary aim of zebrafish neu-
rophenomics is to increase the ability to measure and dissect
various phenotypes (e.g., by using HTS and test batteries).

Higher-throughput screening in zebrafish neurophenomics
combines principles of intensive and extensive screening
high-throughput approaches to generate a higher-density data
(“super-big data,” Figure 2D). Specifically, the extensive nature
of conventional zebrafish HTS is utilized while further assess-
ing in-depth multiple novel endpoints and motor patterning. In
general, the higher-throughput strategy “digs deeper” as it uncov-
ers rich phenotypical information hidden in datasets, while still
maintaining the rapid and expansive output of HTS.

Three-dimensional (3D) phenotyping is an approach that is
based on recording zebrafish locomotor responses, such as 3D
swim traces in XYZ coordinates, by several cameras (e.g., two
angled cameras as in Figure 1B) (Cachat et al., 2011), enabling
in-depth characterization of phenotypic patterns after acute or
chronic drug treatment.

Video-tracking is a method of behavioral registration in a sin-
gle or grouped zebrafish (Figure 1A), using computer-generated
2D (e.g., top- or side-view recording) or 3D phenotyping analy-
ses. Importantly, video-tracking technology is highly automated,
and offers the ability to measure a wide array of endpoints not
quantifiable through manual observation (Cachat et al., 2011;
Branson, 2014).
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