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The migratory locust, Locusta migratoria, shows remarkable phenotypic plasticity

at behavioral, physiological, and morphological levels in response to fluctuation in

population density. Our previous studies demonstrated that dopamine (DA) and the

genes in the dopamine metabolic pathway mediate phase change in Locusta. However,

the functions of different dopamine receptors in modulating locust phase change have

not been fully explored. In the present study, DA concentration in the brain increased

during crowding and decreased during isolation. The expression level of dopamine

receptor 1 (Dop1) increased from 1 to 4 h of crowding, but remained unchanged during

isolation. Injection of Dop1 agonist SKF38393 into the brains of solitary locusts promoted

gregarization, induced conspecific attraction-response and increased locomotion. RNAi

knockdown of Dop1 and injection of antagonist SCH23390 in gregarious locusts induced

solitary behavior, promoted the shift to repulsion-response and reduced locomotion.

By contrast, the expression level of dopamine receptor 2 (Dop2) gradually increased

during isolation, but remained stable during crowding. During the isolation of gregarious

locusts, injection of Dop2 antagonist S(–)-sulpiride or RNAi knockdown of Dop2 inhibited

solitarization, maintained conspecific attraction-response and increased locomotion; by

comparison, the isolated controls displayed conspecific repulsion-response and weaker

motility. Activation of Dop2 in solitary locusts through injection of agonist, R(-)-TNPA, did

not affect their behavioral state. Thus, DA-Dop1 signaling in the brain of Locusta induced

the gregariousness, whereas DA-Dop2 signaling mediated the solitariness. Our study

demonstrated that Dop1 and Dop2 modulated locust phase change in two different

directions. Further investigation of Locusta Dop1 and Dop2 functions in modulating

phase change will improve our understanding of the molecular mechanism underlying

phenotypic plasticity in locusts.

Keywords: Locusta migratoria, neurotransmitter, gregarious, solitary, RNA interference, phenotypic plasticity,

behavior, phase change

Introduction

Phenotypic plasticity contributes to the adaptation of animals, in vertebrates and invertebrates,
to environments at behavioral, physiological, and morphological levels (West-Eberhard, 2003;
Moczek, 2010). Behavioral phenotypes of animals are affected and modified by external
and internal factors (Caspi and Moffitt, 2006). Internal factors allow animals to acclimate
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during environmental changes to trigger the evolution of biolog-
ical traits (West-Eberhard, 2003; Grether, 2005). For instance,
the migratory locust, Locusta migratoria, one of the important
economic pest species, shows density-dependent polyphenism,
gregarious phase and solitary phase (Uvarov, 1966). Locusts
in gregarious phase are active for aggregation and swarming,
whereas locusts in solitary phase tend to avoid contact with con-
specifics and exhibit weak motility (Uvarov, 1966; Pener and
Simpson, 2009). Molecular and genetic mechanisms underlying
behavioral changes between solitary and gregarious phases of
Locusta have been revealed (Kang et al., 2004; Guo et al., 2011;Ma
et al., 2011; Wu et al., 2012). Among these vital findings, we con-
firmed that key genes in the catecholaminemetabolic pathway are
active in gregarious locusts; we also found that DA concentration
in the brain of gregarious locusts is higher than that of solitary
locusts. Moreover, the activation of dopamine pathway through
injection of DA and its receptor agonists promotes behavioral
phase change from solitariness to gregariousness. By contrast,
specific RNAi knockdown of pale, henna, vat 1, dopamine recep-
tor 1 (Dop1) in dopamine pathway in gregarious locusts results in
their behavioral changes toward solitary phase (Ma et al., 2011).
A recent study has found that miR-133 also modulates behav-
ioral phase change by inhibiting DA synthesis in aggregation of
Locusta (Yang et al., 2014). Transcriptome analysis has further
revealed that neurochemicals including DA may be involved in
behavioral phase changes through G protein-coupled receptor
(GPCR) pathways (Chen et al., 2010).

The desert locust, Schistocerca gregaria, another locust species,
also exhibits reversible changes between solitary and gregarious
phases (Pener and Simpson, 2009). In contrast to Locusta show-
ing quick solitarization and slow gregarization (Guo et al., 2011;
Wang and Kang, 2014), Schistocerca exhibits quick gregariza-
tion and slow solitarization (Roessingh and Simpson, 1994). Pre-
vious studies confirmed the alternative mechanism underlying
phase change between these two locust species. In particular,
Schistocerca shows behavioral change from solitary to gregarious
phase when serotonin (5-HT) is applied to the thoracic ganglia
of this locust (Anstey et al., 2009; Rogers et al., 2014). Likewise,
cAMP-dependent protein kinases (PKA) is proposed to link with
5-HT signaling and mediates gregarization in Schistocerca (Ott
et al., 2012). However, attraction/avoidance behavior, which is
one of the most important behavioral traits in aggregation, is
not affected by injection of 5-HT in the hemocoel of Schisto-
cerca from another laboratory (Tanaka and Nishide, 2012). Con-
versely, injection of 5-HT and its receptor agonist in the brain
of Locusta leads to the behavioral change to solitary phase and
inhibits gregarization in crowding (Guo et al., 2013). In another
study, the solitarization of Schistocerca is modulated by DA, in
which DA amount in the thoracic ganglia increases during iso-
lation of the gregarious locusts; solitary-like behavior is also
induced by DA injection into the hemocoel of gregarious Schisto-
cerca (Alessi et al., 2014). By contrast, gregarious-like behavior is
triggered when non-selective antagonist of dopamine receptors,
fluphenazine is injected into the thoracic hemocoel of gregari-
ous locusts isolated for 1 h (Alessi et al., 2014). Basing on the
results, Alessi et al. (2014) concluded that the solitary behavior
of Schistocerca is promoted by DA.

In Locusta and Schistocerca, the contrasting roles of DA are
elucidated through systematic pharmacology (Ma et al., 2011;
Alessi et al., 2014). In Locusta, the roles of DA and its related
genes have been confirmed through systematic pharmacological
intervention and RNAi knockdown. In Schistocerca, the function
of DA has been verified by systematic injection of chemicals into
the hemocoel. In the central nervous system, the brain integrates
information from the sensory system in the head and transmits
sensory information to the thoracic ganglia for motility; the tho-
racic ganglia mainly regulate general motor programs (Schaefer
and Ritzmann, 2001; Wessnitzer and Webb, 2006; Zill, 2010).
Thus, systematic injection of neurochemicals into the hemocoel
may interfere with specific roles in the brain and the thoracic
ganglia. However, the specific roles of DA and corresponding
receptor subtypes in the brain of Locusta and Schistocerca during
phase change remain poorly understood.

DA modulates diverse behaviors in vertebrates and inverte-
brates through varied receptors in specific regions of the central
nervous system (Romanelli et al., 2010; Mustard et al., 2012). In
vertebrates, five dopamine receptor subtypes have been identi-
fied; these subtypes have been further classified into two major
groups, namely, D1-like (D1 and D5) and D2-like (D2, D3, and
D4) receptors (Romanelli et al., 2010). In invertebrates, specifi-
cally in insects, four subtypes of dopamine receptors, which gen-
erally named as D1-like dopamine receptor (Dop1), invertebrate
type dopamine receptors (INDRs or Dop2), D2-like dopamine
receptor (Dop3), and DopEcR, have been identified (Mustard
et al., 2005; Srivastava et al., 2005; Watanabe et al., 2013). Among
these subtypes, D1-like dopamine receptor, INDRs, and DopEcR
up-regulate intracellular cAMP levels, whereas D2-like dopamine
receptor decreases intracellular cAMP levels (Beggs et al., 2005;
Mustard et al., 2005; Srivastava et al., 2005; Verlinden et al., 2015).
Indeed, these dopamine receptor subtypes show significant dif-
ferences in sequence, structure, and function in animals (Mustard
et al., 2005; Romanelli et al., 2010); as such, the opposite effects of
DA on the regulation of phase change of the two locust species
through different receptor subtypes may be a very interesting
phenomenon.

In this study, the levels of DA and the expression of the two
dopamine receptors in the brains were determined to elucidate
their roles in phase change of Locusta. Our findings clarified the
roles of DA and its receptors in gregarization and solitarization of
Locusta. Specific agonist and antagonist combined RNAi knock-
down were also used to distinguish the roles of LocustaDop1 and
Dop2 implicated in behavioral phase change of Locusta. We con-
firmed that DA-Dop1 signaling in the brain modulated the gre-
garization of Locusta, whereas DA-Dop2 signaling mediated the
solitarization of Locusta. Furthermore, DA-Dop1 mediated con-
specific attraction behavior and increased motility. By contrast,
DA-Dop2 signaling induced avoidance behavior and reduced
motility during phase change.

Materials and Methods

Animal Husbandry
Experiments were performed using fourth-stadium migratory
locust (L. migratoria) from the solitary and gregarious colonies
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maintained in the Institute of Zoology, Chinese Academy of Sci-
ences, Beijing, China. Gregarious locusts were cultured in large
boxes (40×40×40 cm3) at a density of 500–1000 locusts per con-
tainer. Solitary locusts were obtained from the gregarious colony
and cultured individually in separate white metal boxes (10 ×

10 × 25 cm3). These boxes were supplied with charcoal-filtered
compressed air. Gregarious and solitary locusts were maintained
for at least three generations before the experiments were con-
ducted. Gregarious and solitary colonies were maintained in a
14 h light/10 h dark cycle at 30 ± 2◦C and fed with fresh wheat
seedlings and bran (Kang et al., 2004).

Measurement of DA levels in the Brain of the
Migratory Locust
DA in the brain (without optic lobe) of Locusta was quantified
through reverse-phase high-performance liquid chromatogra-
phy (HPLC) and electrochemical detection (ECD), as previously
described (Guo et al., 2013). DA levels were quantified by refer-
ring to external standards. A standard curve was generated
through serial dilutions of standard solution containing DA
(Sigma-Aldrich, USA).

Phylogenetic Analysis of Dopamine Receptors
To confirm the receptor subtypes, we cloned sequences of
dopamine receptors by referring to putative sequences in
genome and transcriptome database of Locusta (Wang et al.,
2014). We uploaded the nucleotide sequences of Locusta Dop1
and Locusta Dop2, and acquired the corresponding Genbank
accession numbers (Locusta Dop1, KP780182; Locusta Dop2,
KP780183). The other sequences for phylogenetic analysis
were downloaded from NCBI databases. Multiple sequence
alignments of 300 amino acids (including TM2 to TM7) in
these insect dopamine receptors were performed in Clustal W
and curated in MEGA 5.34 (Tamura et al., 2011) to classify the
subtypes of dopamine receptors. Neighbor-joining analysis was
performed using MEGA 5.34 with 1000 bootstrap replicates.
The following Genbank accession numbers (NCBI) were used
in this study: Acromyrmex Dop1, EGI58704; Acromyrmex Dop2,
EGI63314; Acyrthosiphon Dop1, XP_001947683; Acyrthosiphon
Dop2, XP_003241369; Aedes Dop1, AFB73766; Apis Dop1,
NP_001011595; Apis Dop2, NP_001011567; Apis.f Dop1,
XP_003697539; Apis.f Dop2, XP_003696107; Bombus.i Dop1,
XP_003487004; Bombus.i Dop2, XP_003490584; Bombus.t
Dop1, XP_003401071; Bombus.t Dop2, XP_0034019c; Bom-
byx Dop1, NP_001108459; Bombyx Dop2, NP_001108338;
Camponotus Dop1, EFN72198; Camponotus Dop2, EFN69323;
Drosophila Dop1, P41596; Drosophila Dop2, Q24563; Gryllus
Dop1, BAM15634; Gryllus Dop2, BAM15635; Harpegnathos
Dop1, EFN84948; Harpegnathos Dop2, EFN84440; Manduca
Dop1, AEU17117; Megachile Dop1, XP_003708644; Megachile
Dop2, XP_003704778; Nasonia Dop1, XP_001606438; Nasonia
Dop2, NP_001155849; Tribolium Dop1, XP_971542; Tribolium
Dop2, XP_972779; Apis Dop3, NP_001014983; Drosophila
DDR2, NP_001014760;NasoniaDop3, XP_001602510; Pediculus
Dop3, XP_002426923; Tribolium Dop3, EFA02832; Agrotis
DopEcR, AGN74919; Drosophila DopEcR, AAF47893; and
Gryllus DopEcR, BAM15638.

Isolation and Crowding Treatments of the
Migratory Locust
Fourth-stadium gregarious locusts were isolated and individually
reared as solitary locusts. After 1, 4, 16, or 32 h of isolation, the
brains of isolated locusts were dissected and immediately placed
in RNAlater solution (Ambion, Austin, Texas, USA) for quantita-
tive real-time PCR (qRT-PCR) analysis. The brains of gregarious
locusts were sampled as the control group for isolation treat-
ment. Meanwhile, 10 solitary locusts at the fourth-stadium were
introduced to an optic perplex-made box (10× 10× 10 cm3) and
allowed to live with 20 gregarious locusts at the same stadium.
After these solitary locusts were allowed to stay with the gregari-
ous locusts for 1, 4, 16, or 32 h, the brains of the crowded locusts
were dissected and immediately placed in RNAlater solution for
subsequent qRT-PCR analysis. The brains of solitary locusts were
sampled as the control group for crowding treatment. All of the
locusts were sampled at the same time point for eight biological
replicates, and equal numbers of male and female locusts were
sampled per replicate.

RNA Preparation and qRT-PCR Assay
Total RNA was extracted from brain tissues by using RNAeasy
mini kit in accordance with the manufacturer’s protocol (QIA-
GEN, Hilden, Germany). DNase was applied to eliminate DNA
contamination in RNA samples. To analyze the expression lev-
els of the target genes, we reversely transcribed 2µg of total RNA
in each sample by using MMLV reverse transcriptase (Promega,
Madison, USA, Madison, USA) in accordance with the manufac-
turer’s instructions. PCR amplification was conducted in Roche
Light Cycler 480 using RealMaster-Mix (SYBR Green) kit (Tian-
gen, Beijing, China). Amplification was initiated by incubation at
95◦C for 5min, followed by 40 cycles at 95◦C for 20 s, 58◦C for
20 s, and 68◦C for 20 s. Melting curve was detected to confirm the
amplification specificity of target genes. Table 1 lists the primers
used in qRT-PCR assay. We also screened the expression levels
of housekeeping genes and then analyzed the expression levels of
the target genes. The most stably expressed gene RP–49 was cho-
sen as reference to normalize and calculate the expression levels
of the target genes (Ma et al., 2015).

Behavioral Pharmacology
Behavioral Pharmacology of Solitary Locusts
We injected SKF38393, a specific agonist of D1-like dopamine
receptor (Feng et al., 1996; Titlow et al., 2013), in the brains of
solitary locusts to determine the role of Locusta Dop1 in modu-
lating behavioral transition from solitary to gregarious phase. All
injection procedures were performed under a stereo-dissection
microscope using a NANOLITER injector 2000 (World Precision

TABLE 1 | Primer sequences for quantitative RT-PCR.

Genes Forward primer Reverse primer

Dop1 GCGCATCGGCAACCTCTTC GATCCAGGTGTCGCAGAAC

Dop2 GTTACAATAATTTCCGTTCC GGCTTTACACCGTTCTCAT

RP–49 CGCTACAAGAAGCTTAAGAGGTCAT CCTACGGCGCACTCTGTTG
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Instruments, Sarasota, FL, USA) with a glass micropipette tip
(Guo et al., 2013). Brain tissue dissection was performed as
described in previously published methods (Guo et al., 2013).
After SKF38393 (5mM × 69 nL; Sigma-Aldrich, USA) was
injected, each of the solitary locusts was placed in separate
solitary-rearing cages to live individually for 4 h or 10 solitary
locusts were allowed to live with 20 gregarious locusts in a plastic
box (10 × 10× 10 cm3) for 4 h before behavioral assay. The con-
trol group received the same volume of saline before behavioral
assay was conducted.

We then injected R(-)-2,10,11-trihydroxy-N-propyl-
noraporphine hydrobromide hydrate [R(-)-TNPA] (5mM × 69
nL; Sigma-Aldrich, USA), a D2-like receptor selective agonist
(Keating and Orchard, 2004; Marg et al., 2004), in the brains
of solitary locusts to determine the role of Dop2 in modulating
behavioral transition. After the agonist was injected, each of
the fourth-stadium solitary locusts was placed in separate cages
for 60min to live individually before behavioral assay was
conducted.

Behavioral Pharmacology of Gregarious Locusts
We injected SCH23390 (5mM × 69 nL; Sigma-Aldrich, USA),
a specific antagonist of D1-like receptor (Kokay and Mercer,
1996; Titlow et al., 2013) in the brains of gregarious locusts
before behavioral assay was performed to determine the role
of Dop1 in gregarization of solitary locusts. After the antago-
nist was injected, fourth-stadium gregarious locusts were reared
with other gregarious locusts for 1 h before behavioral assay was
conducted.

To evaluate the role of Dop2 in the solitarization of gregari-
ous locusts, S(-)-sulpiride (5mM× 69 nL; Sigma-Aldrich, USA),
a specific antagonist of Dop2 (Feng et al., 1996), was injected in
the brains of gregarious locusts before behavioral assay was per-
formed. After the antagonist was injected, fourth-stadium gre-
garious locusts were placed in separate solitary-rearing cages to
live individually for 15, 30, or 60min before behavioral assay was
conducted. All of the control groups received the same volume of
saline before behavioral assay was carried out.

RNA Interference of Dopamine Receptors
Double-stranded RNA (dsRNA) of green fluorescent protein
(GFP), Dop1 and Dop2 were prepared using the T7 RiboMAX
Express RNAi system (Promega, Madison, USA) according to the
manufacturer’s instructions. We then selected the fragment with-
out homologies with other genes in the genome database to avoid
non-specificity in RNAi knockdown. Table 2 lists the primers
for dsRNA preparation. We directly injected 36 ng of dsRNA
into the brains of the fourth-stadium gregarious locusts. After
injection for 72 h, the dsDA1-injected gregarious locusts were
directly assayed. The dsDA2-injected gregarious locusts were
directly assayed or lived individually in solitary-rearing cages for
15, 30, or 60min before behavioral assay was conducted. The
effects of RNAi on the relativemRNA level were detected through
qRT-PCR after dsRNA was injected for 72 h.

Behavioral Assay
EthoVision system (Noldus Inc., Wageningen, The Netherlands)
was used for video recording and data extraction. The arena

TABLE 2 | Primer sequences for RNAi.

Genes Forward primer Reverse primer

Dop1 TCAACGACCTGCTGGGCTA AAGGGCACCCAGCAGATGA

Dop2 TTCGTGCGGATACTGTGCG AGGCGGACAGTTGGAGACC

GFP CACAAGTTCAGCGTGTCCG GTTCACCTTGATGCCGTTC

behavior assay was performed in a rectangular arena (40 × 30×
10 cm3). The wall of the arena is opaque plastic, and the top
is clear. One of the separated chambers (7.5 × 30× 10 cm3)
contained 20 fourth-stadium gregarious locusts as the stimulus
group, and the other end of the chamber with the same dimen-
sions was left empty. Both ends of the chamber were equally illu-
minated to prevent formation of locust shadows. The floor of the
open arena was covered with filter paper to avoid contamination
during the behavior assay. The locusts were gently transferred
through a tunnel to the arena. Each locust was recorded for 6min
and examined only once (Roessingh et al., 1993; Ma et al., 2011;
Guo et al., 2013).

We constructed a binary logistic regressionmodel in SPSS 15.0
to measure and evaluate the phase state of the fourth-stadium
solitary and gregarious locusts and to measure and quantify their
behavioral phenotype. Eleven different behavioral parameters
were expressed as a mixture of behavioral or categorical mark-
ers. These markers were acquired as follows: entry frequency in
the stimulus area (EFISA, stimulus area was defined as 25% of
the arena closest to the stimulus group), latency of first occur-
rence in the stimulus area (LFOISA), total duration in the area
close to the arena wall (TDCW), entry frequency in the area
close to the arena wall (EFCW), entry frequency in the region
opposite the stimulus area (EFIOSA, the opposite of the stim-
ulus area was defined as 25% of the arena at the opposite end
of the stimulus group), latency of first occurrence opposite the
stimulus area (LFOIOSA), mean distance to the stimulus group
(MDTSG), total distance moved (TDM), total duration of move-
ment (TDMV), frequency of movement (FOM), and attraction
index (AI, AI is the extent of tested animals attracted by the
stimulus group; AI = total duration in stimulus area-total dura-
tion in opposite area). The behavioral parameters of this model
were adjusted until the regression model discriminated the two
phases at the optimum level according to the following equation:
P-sol = eη/(1 + eη), where η = β0 + β1·X1 + β2·X2 + . . . +

βk·Xk, X1, X2,. . . , where Xk is the behavioral covariates. P-sol is
the probability that the locusts should be regarded as amember of
the solitary phase population. The probability value ranges from
1 to 0, where 1 indicates that individuals display solitary behavior
and 0 indicates that individuals display gregarious behavior. The
most robust indicators (TDM, FOM, and AI) of the phase state
were retained in the model. P-sol was calculated according to the
following equation: P-sol = 2.361 − 0.016 × TDM − 0.172 ×

FOM− 0.005×AI (Guo et al., 2013; Ma et al., 2015). This model
correctly classified 89.2 and 91.2% of the solitary and gregarious
populations, respectively. The model also shares similar features
with previous regression models used for binary discrimination
of solitary and gregarious locusts (Roessingh et al., 1993; Anstey
et al., 2009; Guo et al., 2011; Ma et al., 2011, 2015).
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Statistical Analysis
DA content and expression levels of dopamine receptors over
a time course of crowding and isolation were analyzed by
One-Way ANOVA, followed by post-hoc Tukey test for mul-
tiple comparisons. The data for behavioral phase change were
analyzed by Mann–Whitney U (MWU) test because of their
non-normal distribution characteristics. Student’s t-test was con-
ducted to analyze the changes of specific parameters, including
TDM and FOM, between saline- and agonist-injected, saline- and
antagonist-injected, dsGFP- and dsDop1-injected groups. The
changes of TDM and FOM during isolation were analyzed by
One-Way ANOVA, followed by post-hoc Tukey test for multi-
ple comparisons. The change of parameter AI was analyzed by
MWU test. The data were expressed as mean± standard error of
the mean. P < 0.05 was considered statistically significant. The
probabilistic metric of solitariness (P-sol) is presented as median
values. All statistical data were analyzed with SPSS 15.0 (SPSS
Inc., Chicago, IL, USA).

Results

Fluctuations of DA Level in the Locust Brains
Ma et al. (2011) reported that DA concentration in the brains of
gregarious locusts is higher than that of solitary locusts. To deter-
mine the association of DA with phase change, we detected its
concentration in the brains of Locusta during crowding and iso-
lation. During the crowding of solitary locusts (CS), the DA level
in the brains increased after 4 h of crowding and decreased there-
after (One-Way ANOVA, F = 4.760, P = 0.004) (Figure 1A).
During the isolation of gregarious locusts (IG), the DA level sig-
nificantly decreased after 1 h of isolation (One-Way ANOVA,
F = 40.890, P < 0.001) (Figure 1B). These results suggest that
the changes of DA levels are possibly related to the behavioral
phase change of Locusta.

Expression of Dopamine Receptors in the Locust
Brains
We cloned two dopamine receptors referring to genome and
transcriptome databases (Ma et al., 2011; Wang et al., 2014) to

further investigate the role of DA in modulating the behavioral
phase change of Locusta. A phylogenetic analysis was performed
using MEGA5.34 (Tamura et al., 2011) to validate and classify
the dopamine receptor subtypes. The results showed that the
two orthologous receptors belonged to the two insect dopamine
receptor families, namely, D1-like receptors (Dop1) and inverte-
brate type dopamine receptors (INDRs or Dop2) (Figure 2). The
conserved transmembrane (TM) segments of dopamine recep-
tors were analyzed by TMHMM Server 2.0 (Sonnhammer et al.,
1998). The full length of Locusta Dop1 cDNA encoded seven
TM segments, which corresponded to all GPCR TM segments
(TM1–TM7 in Supplementary Figure 1). The partial sequence
of Locusta Dop2 encoded the second to seventh TM segments
among all Dop2 TM segments (TM2 and TM7 in Supplementary
Figure 2).

To further determine the association of dopamine receptors
with the behavioral phase change of Locusta, we detected their
expressions during crowding and isolation. qRT-PCR analysis
identified that the expressions of Dop1 mRNA in solitary locusts
increased five-fold after 4 h of crowding (One-Way ANOVA,
F = 10.438, P < 0.001) (Figure 3A). However, the mRNA
expression level of this receptor did not change during the iso-
lation (One-Way ANOVA, F = 0.993, P = 0.447) (Figure 3B).
By contrast, the expression of Dop2 mRNA remained relatively
stable (One-Way ANOVA, F = 0.422, P = 0.831) during crowd-
ing (Figure 3C), significantly increased after 1 h of isolation,
and remained relatively stable thereafter (One-Way ANOVA,
F = 6.910, P = 0.001) (Figure 3D). These results suggest that
DA-Dop1 signaling is positively associated with gregarization,
whereas DA-Dop2 signaling is positively related to solitarization
of Locusta.

DA-Dop1 Signaling Modulates Gregarious
Behavior
The up-regulation of DA concentration and Locusta Dop1
expression in the brains of solitary locusts after 4 h of crowding
leads us to explore the roles of Locusta Dop1 in regulating locust
gregarization. Thus, we injected SKF38393, the specific agonist
of D1-like receptor, into the brains of the migratory locust and

FIGURE 1 | Dopamine levels in the brains of the migratory locust

during the time course of crowding and isolation. (A) Concentration of

DA in the brains of solitary locusts in the time course of crowding. (B)

Concentration of DA in the brains of gregarious locusts in the time course of

isolation. Dopamine levels in crowding and isolation were analyzed by

One-Way ANOVA, followed by post-hoc Tukey test for multiple comparisons

(n = 8 for each point, P < 0.05). Abbreviations: DA, dopamine; CS, crowding

of solitary locusts; IG, isolation of gregarious locusts.
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FIGURE 2 | Phylogenetic analysis of dopamine receptors.

Phylogenetic and molecular evolutionary analyses were conducted using

MEGA 5. The dopamine receptors of the migratory locust (Locusta

Dop1 and Dop2) are indicated by gray bars. Abbreviations:

Acromyrmex, Acromyrmex echinatior; Aedes, Aedes aegypti; Agrotis,

Agrotis ipsilon; Apis, Apis mellifera; Apis.f, Apis florea; Bombus.i,

Bombus impatiens; Bombus.t, Bombus terrestris; Bombyx, Bombyx

mori; Camponotus, Camponotus floridanus; Drosophila, Drosophila

melanogaster; Harpegnathos, Harpegnathos saltator; Gryllus, Gryllus

bimaculatus; Locusta, Locusta migratoria; Manduca, Manduca sexta;

Megachile, Megachile rotundata; Nasonia, Nasonia vitripennis; Pediculus,

Pediculus humanus corporis; Tribolium, Tribolium castaneum.
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FIGURE 3 | Expression patterns of Locusta Dop1 and Dop2 in the

brains of migratory locust during the time course of crowding

and isolation. (A) Level of Locusta Dop1 mRNA in the brains of

solitary locusts in the time course of crowding. (B) Level of Locusta

Dop1 mRNA in the brains of gregarious locust in the time course of

isolation. (C) Level of Locusta Dop2 mRNA in the brains of solitary

locusts in the time course of crowding. (D) Level of Locusta Dop2

mRNA in the brains of gregarious locust in the time course of isolation.

Levels of Locusta Dop1 and Dop2 mRNA in crowding and isolation

were analyzed with One-Way ANOVA, followed by post-hoc Tukey test

for multiple comparisons (n = 8 for each point). Abbreviations: CS,

crowding of solitary locusts; IG, isolation of gregarious locusts.

detected its effects on behavioral changes after 4 h. The behavioral
assay showed that solitary locusts changed their behaviors toward
gregarious phase [Mann–Whitney U (MWU) test, U = 119,
P = 0.008, SKF38393 vs. saline] (Figure 4A). When coupled with
4 h of crowding, SKF38393 injection induced more pronounced
behavioral change toward the gregarious phase (MWU, U =

119, P = 0.008, SKF38393 with CS 4 h vs. saline with CS 4 h)
(Figure 4B). We also examined the behavioral state of gregarious
locusts after blocking Dop1 signaling through RNAi knockdown
and specific antagonist injection in brain tissue. The injection of
Locusta Dop1 dsRNA into the brains of solitary locusts resulted
in approximately 40% reduction of Dop1 expression level (Stu-
dent’s t-test, t = 3.068, P = 0.008) (Supplementary Figure 3A),
and RNAi knockdown of Dop1 in gregarious locusts induced
their behavioral change to solitary phase (MWU, U = 231, P <

0.001, dsDop1 vs. dsGFP) (Figure 4C). In addition, injection of
SCH23390, the specific antagonist of Dop1 receptors, into the
brains of gregarious locusts, induced their significant behavioral
change to the solitary phase (MWU, U = 190, P < 0.001,
SCH23390 vs. saline) (Figure 4D). These results indicate that
DA-Dop1 signaling mediates gregarization of Locusta.

We applied a logistic regression model that encapsulates three
behavioral markers to evaluate the change of behavioral phase on
the entire level. To explore the behavioral changes after injecting
Dop1 agonist, we analyzed the change of the specific behavioral

parameters: total distance moved (TDM), frequency of move-
ment (FOM), and attraction index (AI) in phase change. Injec-
tion of SKF38393 into the brains of solitary locusts did not
increase their TDM and FOM, but induced the shift from avoid-
ance to approaching the stimulus locusts (the gregarious locusts
in one of the end chambers in the assay arena) (Student’s t-
test, t = 1.795, P = 0.078 for TDM; t = 1.925, P = 0.062
for FOM; MWU, U = 265, P = 0.039 for AI) (Figures 5A–C).
By contrast, when coupled with 4 h of crowding, the injection
of SKF38393 increased TDM and FOM of the solitary locusts
(Student’s t-test: t = 2.519, P = 0.020 for TDM; t = 2.494,
P = 0.022 for FOM) (Figures 5A,B) and induced their attrac-
tion toward the stimulus locusts (MWU, U = 359, P = 0.028)
(Figure 5C). Thus, DA-Dop1 signaling in the brains not only
mediated their attraction-response to gregarious conspecifics,
but also modulated the motility during the crowding of solitary
locusts.

RNAi knockdown of Locusta Dop1 mRNA in the brains of
gregarious locusts significantly reduced their TDM and FOM, as
well as induced the shift from approaching to avoiding the stim-
ulus locusts (Student’s t-test, t = 7.205, P < 0.001 for TDM;
t = 5.958, P < 0.001 for FOM; MWU, U = 244, P = 0.015
for AI) (Figures 5D–F). Similarly, injection of SCH23390 in gre-
garious locusts reduced their TDM and TOM, as well as induced
the avoidance to the stimulus locusts (Student’s t-test, t = 3.986,
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FIGURE 4 | Locusta Dop1 promotes the gregariousness of solitary

locusts. (A) The behavioral phase state of solitary locusts after injection of

Dop1 agonist, SKF38393. (B) The behavioral phase state of crowded solitary

locusts after injection of Dop1 agonist, SKF38393. (C) The behavioral phase

state of gregarious locusts after RNAi knockdown of Locusta Dop1. (D) The

behavioral phase state of gregarious locusts after injection of Dop1 antagonist,

SCH23390. The behavioral comparison between controls and the treatments

were analyzed by Mann–Whitney U-test (P < 0.05). Red lines indicate the

medians of P-sol values. P-sol, probabilistic metric of solitariness.

Abbreviations: CS, crowding of solitary locusts.

P < 0.001 for TDM; t = 3.442,P = 0.001 for FOM; MWU, U =

348, P = 0.018 for AI) (Figures 5D–F).

DA-Dop2 Signaling Mediates Solitary Behavior
During the isolation of the migratory locust, the level of DA
decreased, whereas the expression of LocustaDop2mRNA signif-
icantly increased. These results suggest that Locusta Dop2 medi-
ated the solitarization of Locusta. To explore this, we injected
S(-)-sulpiride, the antagonist of Dop2, in the brains of gregari-
ous locusts and detected its effects on their behavioral state. The
injection of S(-)-sulpiride into the brains of gregarious locusts
(IG 0min) did not change their behavioral phase (MWU, U =

351, P= 0.834) (Figure 6A). After 15min of isolation, the saline-
injected gregarious controls showed behavioral change toward
the solitary phase (MWU, U = 249, P = 0.005), but significant
difference was not observed between saline-injected gregarious
controls and S(-)-sulpiride-injected gregarious locusts (MWU, U
= 367, P = 0.222) (Figure 6B). After 30 or 60min of isolation,
the injection of S(-)-sulpiride significantly inhibited the behav-
ioral change of the isolated gregarious locusts toward the solitary
phase (MWU, U = 307, P = 0.010 for 30min; U = 534, P =

0.002 for 60min), despite that the gregarious controls injected
with saline exhibited the solitary-like behavior compared with

gregarious locusts (MWU, U = 162, P < 0.001 for 30min; U =

245, P < 0.001 for 60min) (Figures 6C,D).
To avoid the off-target effects of Dop2 antagonist, we cloned

a fragment of Dop2 and designed the dsRNA to specifically
knockdown the expression of Locusta Dop2 mRNA for func-
tional validation. The injection of Locusta Dop2 dsRNA in the
brains of solitary locusts resulted in approximately 50% reduc-
tion of Locusta Dop2 mRNA level (Student’s t-test, t = 6.142,
P < 0.001) (Supplementary Figure 3B), whereas no effects on the
gregarious behaviors was observed (MWU, U = 256, P = 0.514)
(Figure 6E). As above, after 15, 30, or 60min of isolation, the
gregarious locusts injected with dsGFP showed behavioral shift
toward solitary phase (MWU,U = 174, P= 0.007 for 15min;U =

93, P < 0.001 for 30min;U = 93, P < 0.001 for 60min), whereas
the deficiency of Locusta Dop2 inhibited the behavioral change
of gregarious locusts toward solitary phase, as compared with
the corresponding dsGFP-injected controls (MWU, U = 201,
P = 0.003 for 15min; U = 137, P = 0.001 for 30min; U = 100,
P = 0.019 for 60min) (Figures 6F–H).

On the other hand, we activated Locusta Dop2 in solitary
locusts through injection of Dop2 specific agonist, and detected
their behavioral state after 60min. However, the reported ago-
nists in insects will activate both Dop1 and Dop2 (Feng et al.,
1996; Blenau et al., 1998; Weisel-Eichler et al., 1999; Mustard
et al., 2003), or are almost ineffective (Feng et al., 1996). Thus,
we selected another vertebrate D2-receptor selective agonist,
R(-)-TNPA, to examine its effect on behavioral phase state of
solitary locust. The results showed that injection of R(-)-TNPA
into the brain of solitary locusts did not affect their behavioral
phase state (MWU, U = 306, P = 0.327) (Supplementary
Figure 4).

Moreover, we evaluated the logistic regression model and
specifically analyzed the encapsulated behavioral parameters.
During isolation, TDM and FOM in gregarious locusts signif-
icantly decreased (One-Way ANOVA, F = 6.331, P < 0.001
for TDM; F = 13.381, P < 0.001 for FOM), whereas
changes were not observed after Dop2 antagonist was injected
(One-Way ANOVA, F = 1.315, P = 0.273 for TDM; F =

1.736, P = 0.273 for FOM) (Figures 7A,B). The AI analy-
sis showed that gregarious controls significantly avoided the
stimulus locusts after 60min of isolation (MWU, U = 415,
P = 0.006, saline-injected gregarious locusts with IG 60min
vs. saline-injected gregarious with IG 0min), whereas the
antagonist-injected groups tended to approach the stimulus
locusts (MWU, U = 346, P = 0.405, antagonist-injected gregar-
ious with IG 60min vs. antagonist-injected gregarious with IG
0min) (Figure 7C).

Similarly, TDM in RNAi-knockdown groups remained stable
during the time course of isolation (One-Way ANOVA, F =

2.246, P = 0.086) compared with the dsGFP-injected groups,
which displayed a significant decrease in TDM during isola-
tion (One-Way ANOVA, F = 5.777, P = 0.001) (Figure 7D).
The isolated gregarious controls showed significant reduction in
FOM after 15min of isolation (One-Way ANOVA, F = 8.095,
P < 0.001). However, the deficiency of Dop2 signaling caused by
RNAi-knockdown inhibited the decrease in FOM, and the treated
gregarious locusts showed significant decrease in FOM after
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FIGURE 5 | Change in behavioral markers after activation and

inhibition of Locusta Dop1. (A) Change in total distance moved

(TDM) of solitary and crowded solitary locusts after injection of

SKF38393. (B) Change in frequency of movement (FOM) of solitary

and crowded solitary locusts after injection of SKF38393. (C) Change

in attraction index (AI) of solitary and crowded solitary locusts after

injection of SKF38393. (D) Change in total distance moved (TDM) of

gregarious locusts after RNAi knockdown of Dop1 and injection of

SCH23390. (E) Change in frequency of movement (FOM) of gregarious

locusts after RNAi knockdown of Dop1 and injection of SCH23390.

(F) Change in attraction index (AI) of gregarious locusts after RNAi

knockdown of Dop1 and injection of SCH23390. Comparisons of

specific behavior markers between controls and the treatments were

analyzed by Student’s t-test (A,B,D,E) and Mann–Whitney U-test (C,F).

*P < 0.05; **P < 0.01; ***P < 0.001; n.s., not significant. Abbreviations:

CS, crowding of solitary locusts.

60min of isolation (One-Way ANOVA, F = 4.046, P = 0.009)
(Figure 7E). After 60min of isolation, dsGFP-injected gregarious
controls significantly avoided the stimulus locusts (MWU, U =

225, P = 0.011, dsGFP-injected gregarious with IG 60min vs.
dsGFP-injected gregarious with IG 0min), whereas the dsDop2-
injected groups tended to approach the stimulus locusts (MWU,
U = 414, P = 0.900, dsDop2-injected gregarious with IG 60min
vs. dsDop2-injected gregarious with IG 0min) (Figure 7F). In
solitary locusts, injection of R(-)-TNPA did not affect their TDM,
FOM and their response to the stimulus locusts (Student’s t-test,
t = 0.430, P = 0.354 for TDM; t = 0.277, P = 0.783 for FOM;
MWU, U = 315, P = 0.384 for AI) (Supplementary Figure 5).
These results suggest that Locusta Dop2 induced the solitariza-
tion of Locusta by decreasing motility and inhibiting conspecific
attraction.

Discussion

In this study, we found two dopamine receptors playing differ-
ent roles in phase change of Locusta. The increased DA level
and up-regulation of Locusta Dop1 expression in crowding sug-
gested their correlations with the gregarization of Locusta, and
we verified that dopamine-Dop1 signaling mediated behavioral
gregariousness. Moreover, the increased expression of Locusta
Dop2 in isolation suggested its correlations with solitarization,

and we confirmed that dopamine-Dop2 signaling mediated
the behavioral solitariness in Locusta. This study clarified the
different functions of dopamine receptors underlying behavioral
phase change in Locusta.

Locusta Dop1 mediated the gregariousness of Locusta by
inducing the attraction-response and increasing motility, and
Locusta Dop2 regulated the solitariness of Locusta by inducing
the repulsion-response and decreasing the motility, suggesting
that DA-Dop1 and DA-Dop2 signaling mediate sensory inter-
action between conspecifics during aggregation. A number of
studies have suggested that dopamine mediates the sensory
perception of vertebrates and invertebrates, such as olfaction
(Kim et al., 2007; Serguera et al., 2008), taste (Cannon et al.,
2005), vision (Jackson et al., 2012), and auditory (Li et al.,
2013). Specifically, dopamine is reported to mediate social inter-
actions in insects. A study on crickets has found that DA
involves the shift from avoiding conspecific males to agonis-
tic dispute with conspecifics during the recovery of aggression
after social defeat (Rillich and Stevenson, 2014). In the antenna
of worker bees (Apis mellifera L.), AmDOP3 receptors regulate
their attraction-response to the queen mandibular pheromone
(QMP) (Vergoz et al., 2009). In ants (Harpegnathos saltator), the
fluctuation of DA levels in brains and ovaries are respectively
associated with ritualized combat and the formation of a repro-
ductive hierarchy (Penick et al., 2014). Therefore, dopamine may
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FIGURE 6 | Behavioral change in isolated gregarious locusts with

deficiency of Locusta Dop2 signaling. (A) Behavioral state of gregarious

locusts after injection of Dop2 antagonist S(-)-sulpiride. (B–D) Behavioral

state of gregarious locusts with 15min (B), 30min (C), and 60min (D) of

isolation after injection of S(-)-sulpiride. (E) Behavioral state of gregarious

locusts after RNAi knockdown of Locusta Dop2. (F–H) Behavioral state of

gregarious locusts with 15min (F), 30min (G), and 60min (H) of isolation

after RNAi knockdown of Locusta Dop2. The behavioral comparison

between controls and the treatments were analyzed by Mann–Whitney

U-test (P < 0.05). Red lines indicate the medians of P-sol values.

Abbreviations: IG, isolation of gregarious locusts; P-sol, probabilistic metric

of solitariness.

integrate the outer stimuli for the decision to join the group
or conspecific withdrawal through Locusta Dop1 and Dop2,
respectively.

The level of DA, the expression, and the functional prop-
erties of Locusta Dop1 and Dop2 may also contribute to their
divergent functions. Locusta Dop1 and Dop2, which belong to
D1-like receptors and INDRs, both activate the cAMP-PKA sig-
naling (Beggs et al., 2005; Mustard et al., 2005). In Schisto-
cerca, cAMP-dependent protein kinases (PKA) is critical in the
acquisition of the gregarious behavior (Ott et al., 2012). Besides
linking with 5-HT signaling in mediating the crowding of Schis-
tocerca (Ott et al., 2012), PKA is also involved in DA signaling
(Romanelli et al., 2010; Mustard et al., 2012). Thus, the higher
level of cAMP-PKA may be related to the gregarization in the
two locust species. In Locusta, cAMP-PKA signaling may be
greatly activated by the increasing of DA level and Dop1 mRNA
expression in crowding, and the up-regulation of cAMP-PKA
signaling promotes the locust gregarization. During isolation,
the tendency of dopamine level in isolation is contray to the
expression of Dop2 mRNA. The decrease in dopamine concen-
tration in the brain will reduce the cAMP-PKA level, and the
increasing of Dop2 expression may regulate other downstream
signaling and finally result in quick solitarization in Locusta.
Thus, the tendency of DA concentration and the expression and
functional properties of Locusta Dop1 and Dop2 may result in
the divergence of these two receptors underlying locust phase
change.

In Schistocerca, injection of DA into the thoracic cavities of
gregarious locusts induces solitarization and avoidance behav-
ior (Alessi et al., 2014). This result is similar to that obtained
in our study where DA-Dop2 signaling in brains mediated
solitarization and conspecific avoidance-response in the migra-
tory locust. However, the study in Schistocerca did not point
out that dopamine mediates solitarization through Dop1 or
Dop2, or other receptor subtypes simultaneously. Meanwhile,
the non-selective antagonist fluphenazine (Degen et al., 2000)
in Schistocerca has been employed for administrations to con-
firm the function of dopamine (Alessi et al., 2014). We can-
not definitely clarify whether the mediation of solitarization and
avoidance behavior by dopamine in the two locust species are
through identical or different mechanisms. Moreover, the func-
tion of dopamine mediating solitarization of Schistocerca is con-
trary to the function of Locusta Dop1 in the gregarization of
Locusta. The applications of 5-HT also lead to distinct effects
on phase change of Schistocerca from different laboratories and
Locusta (Anstey et al., 2009; Tanaka and Nishide, 2012; Guo et al.,
2013). These results would partially be attributed to their species-
specific traits because Locusta and Schistocerca belong to different
Acrididae subfamilies, Cyrtacanthacridinae and Oedipodinae,
respectively.

The function of dopamine in regulating locust phase change
may be closely correlate with the target tissues where dopamine
is located and where its function is apparent. In Locusta, the fluc-
tuations and functions of DA and its receptors were analyzed
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FIGURE 7 | Change in behavioral markers in isolated gregarious

locusts with Dop2 blockade. (A) Changes in total distance moved

(TDM) in isolated gregarious locusts after injection of Dop2 antagonist,

S(-)-sulpiride. (B) Changes in frequency of movement (FOM) in isolated

gregarious locusts after injection of S(-)-sulpiride. (C) Changes in

attraction index (AI) in isolated gregarious locusts after injection of

S(-)-sulpiride. (D) Changes in total distance moved (TDM) in isolated

gregarious locusts after RNAi knockdown of Locusta Dop2. (E) Changes

in frequency of movement (FOM) in isolated gregarious locusts after

RNAi knockdown of Locusta Dop2. (F) Changes in attraction index (AI)

in isolated gregarious locust after RNAi knockdown. The comparison

between controls and the treatments (A, B, D, E) was analyzed with

One-Way ANOVA followed by post-hoc Tukey test for multiple

comparisons. The behavioral comparison between controls and

treatments (C, F) was analyzed by Mann–Whitney U-test. Abbreviations:

IG, isolation of gregarious locusts.

and verified in the brain, whereas in Schistocerca, the investi-
gation of dopamine function in phase change mainly focused
on the thoracic ganglia. In Schistocerca, the application of DA
induced a significant reduction in the amplitude of the CS-FETi
EPSP in the metathoracic ganglia, and the systematic injection of
dopamine in gregarious locust induced more behavioral avoid-
ance (Alessi et al., 2014). However, the systematic injection of
dopamine into the thoracic cavity may merge its effects in the
brain and thoracic ganglia. The brain of an insect can integrate
multisensory inputs and direct patterns of activity ascended by
“lower” neural centers, such as thoracic ganglia and abdomi-
nal ganglia (Schaefer and Ritzmann, 2001; Zill, 2010), and many
complex and important behaviors of insects are integrated and
controlled by the brain (Wessnitzer and Webb, 2006). Many
innate behaviors, such as locomotion, feeding, and mating, are
controlled by body ganglia, but not the brain (Wessnitzer and
Webb, 2006). Thus, whether thoracic ganglia can regulate attrac-
tion and repulsion behavior through the sensory system in the
brain during locust phase change should be fully explored in
the future. The present study in Locusta suggests that the func-
tions of dopamine in gregarization and solitarization are closely
related to the receptor subtypes to which dopamine binds. By
contrast, in Schistocerca, the expression patterns and functions
of different receptor subtypes were unclear; the injection of
dopamine and non-selective antagonist in thoracic cavity may
merge the functions of multi receptor subtypes in behavioral
plasticity.

The functions of dopamine-Dop1 and Dop2 signaling in
phase change of Locusta were confirmed via pharmacological

intervention and RNAi-knockdown. Pharmacological
intervention by injecting agonists and antagonists of dopamine
receptors may introduce off-target effects and therefore non-
specifically activate or inhibit other biogenic amine receptors.
Meanwhile, RNA interference, through exogenous introduc-
tion of dsRNA with sequences complementary to the targeted
genes, provides specific manipulation of gene expression and
is widely used to investigate gene functions (Fire et al., 1998;
Bosher and Labouesse, 2000; Milhavet et al., 2003). The cou-
pled application of these two methods in the present study
verified the different functions of Locusta Dop1 and Dop2
during phase change of Locusta. By contrast, in Schistocerca,
pharmacological injection was applied to confirm the function
of dopamine in solitarization (Alessi et al., 2014) and this study
lacks necessary gene function study, such as RNAi knockdown,
to avoid the off-target and non-specificity effects of dopamine
antagonists on receptors in phase change of Schistocerca.
Therefore, genetic information and functional verification of
dopamine signaling involved in modulating phase change from
Schistocerca are very essential, because it will be beneficial
for the clarification of the divergence and convergence of
the functions of dopamine in phase change of the two locust
species.

In conclusion, different neurochemicals and molecular mech-
anisms are likely to perform on the same behavioral paradigm
of transition in different species. With the development of
next generation sequencing, dissection of genome sequences
in closely related locust species and deep exploration of
molecular mechanism of phase change will be helpful in
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understanding the divergence and convergence of mechanisms
underlying the classical phenotypic plasticity in different locust
species.
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