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Elucidation of reinforcing mechanisms for associative learning is an important subject

in neuroscience. Based on results of our previous pharmacological studies in crickets,

we suggested that octopamine and dopamine mediate reward and punishment signals,

respectively, in associative learning. In fruit-flies, however, it was concluded that

dopamine mediates both appetitive and aversive reinforcement, which differs from our

suggestion in crickets. In our previous studies, the effect of conditioning was tested at

30min after training or later, due to limitations of our experimental procedures, and thus

the possibility that octopamine and dopamine were not needed for initial acquisition of

learning was not ruled out. In this study we first established a conditioning procedure

to enable us to evaluate acquisition performance in crickets. Crickets extended their

maxillary palpi and vigorously swung them when they perceived some odors, and we

found that crickets that received pairing of an odor with water reward or sodium chloride

punishment exhibited an increase or decrease in percentages of maxillary palpi extension

responses to the odor. Using this procedure, we found that octopamine and dopamine

receptor antagonists impair acquisition of appetitive and aversive learning, respectively.

This finding suggests that neurotransmitters mediating appetitive reinforcement differ in

crickets and fruit-flies.

Keywords: classical conditioning, memory acquisition, dopamine, octopamine, appetite learning, aversive

learning, Gryllus bimaculatus, insects

Introduction

Associative learning provides animals with the ability to adapt their behavior to a change in
the environment. Elucidation of reinforcing mechanisms for associative learning is an important
subject in neuroscience. In mammals, there is strong evidence that midbrain dopamine neurons
mediate appetitive reinforcement signals (Schultz, 2006, 2013), and results of some studies have
suggested that they also mediate aversive reinforcement signals (Matsumoto and Hikosaka, 2009).
In crickets, we obtained pharmacological evidence suggesting that octopamine receptor antagonists
(epinastine and mianserin) impair appetitive learning but not aversive learning, whereas dopamine
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receptor antagonists (flupenthixol, fluphenazine,
chlorpromazine, and spiperone) impair aversive learning
but not appetitive learning, and we thus proposed that
octopamine and dopamine neurons mediate reward and
punishment, respectively, in associative learning (Unoki et al.,
2005, 2006; Mizunami et al., 2009; Nakatani et al., 2009). This is
in accordance with suggestions from pharmacological studies on
honey bees that octopamine participates in appetitive learning
with sucrose reward (Hammer and Menzel, 1998) and dopamine
participates in aversive learning with electric shock punishment
(Vergoz et al., 2007). Based on results of recent studies using
transgenic fruit-flies, however, it was concluded that different
sets of dopamine neurons mediate appetitive and aversive
reinforcements, while octopamine neurons transmit sweet taste
signals to dopamine neurons in appetitive learning with sugar
reward (Kim et al., 2007; Selcho et al., 2009; Burke et al., 2012;
Liu et al., 2012; Lin et al., 2014). These findings in fruit-flies differ
from those in crickets and urge us to re-examine the validity of
our suggestions.

It should be pointed out that tests on the effects of
conditioning in our studies in crickets were preformed 30min
after training or later, due to limitations of our previous “classical
conditioning and operant testing” procedure (Matsumoto and
Mizunami, 2002; Unoki et al., 2005), and thus the possibility
that octopamine and dopamine are needed for 30min memory
retention but not for initial acquisition of learning was not ruled
out. In our previous studies, crickets that received conditioning
trials were allowed to rest for at least 15min in the conditioning
beaker before being transferred to the test apparatus because we
speculated that disturbance immediately after conditioning may
disrupt consolidation of memory. Moreover, after transferring
the crickets to the test arena, crickets were first placed in a
waiting chamber for at least 4min for acclimation. Thus, we
were not able to test acquisition performance immediately after
training. This is in contrast to studies in flies in which the
effect of conditioning was tested immediately after training.
Therefore, it is critically important to establish procedures to
allow investigation of possible roles of octopamine and dopamine
in initial acquisition of learning in crickets.

In this study, we first established a conditioning procedure
to allow evaluation of acquisition performance in crickets.
We observed that crickets extended their maxillary palpi and
vigorously swung them when water was applied to the antennae,
which we refer to as maxillary palpi extension responses (MERs).
Some odors such as vanilla and maple odors easily evoked
MERs, while other odors such as peppermint and apple odors
rarely induced MERs. In this study, we found that the MER
to an odor is increased by pairing of the odor with water
reward. This is analogous to olfactory conditioning of proboscis
extension responses (PER) in honey bees, in which pairing
of an odor and sucrose reward leads to an increase of the
PER (Menzel and Giurfa, 2006; Giurfa, 2007; Menzel, 2012;
Matsumoto et al., 2014). Moreover, we found that crickets
exhibit a decrease in the MER to some odors by pairing of
the odors with sodium chloride punishment, thus allowing the
study of appetitive conditioning and aversive conditioning in a
very similar experimental situation. We used these procedures

to determine whether octopamine and dopamine are indeed
required for acquisition of appetitive and aversive learning in
crickets.

Materials and Methods

Insects
Adult male crickets, Gryllus bimaculatus, at 1–2 weeks after the
imaginal molt were used. They were reared in a 12 h: 12 h light:
dark cycle at 27 ± 2◦C and were fed a diet of insect pellets and
water ad libitum. Three days before the start of the experiment,
crickets were individually placed in 100ml glass beakers and fed
a diet of insect pellets ad libitum but were deprived of drinking
water to enhance their motivation to search for water.

Conditioning
We used differential appetitive or aversive conditioning
procedures with water reward or sodium chloride punishment.
In differential appetitive conditioning, individual animals
received five trials, in which one of the two odors (peppermint
and apple odors) was paired with water (unconditioned stimulus,
US) and another odor was presented alone without pairing
with US with an inter-trial interval (ITI) of 5min (Figure 1).
We refer to the former odor as paired odor (or conditioned
stimulus, CS) and the latter odor as unpaired odor. Hypodermic
syringes of 1ml each were used for conditioning. A small filter
paper was attached to the needle of the syringe. The syringe was
filled with water, and the filter paper was soaked in peppermint
or apple essence. For odor presentation, the filter paper was
placed within 1 cm of the cricket’s head. At 3 s after the onset
of odor presentation, a drop of water was given to the mouth
of the cricket for 2 s. The presence or absence of an MER was
recorded during the first 3 s of odor presentation. In differential
aversive conditioning experiment, individual animals received
six trials, in which one of the two odors (vanilla and maple
odors) was paired with a high concentration (20%) of sodium
chloride solution (aversive US) and another odor was presented
alone. Crickets exhibited MERs to these odors with high
percentages (60–80%) prior to conditioning. The sequence of
odor presentations was pseudo-randomized to avoid a possible
sequential effect (Figure 1).

We also performed experiments using absolute appetitive
conditioning procedures, in which an odor is paired with water
reward, to facilitate comparison with results of our previous
studies using absolute conditioning procedures (Unoki et al.,
2005; Mizunami et al., 2009). The methods and the results of
absolute appetitive conditioning are described in Supplementary
Figures S3–S5.

Retention Test
For evaluation of retention performance, the rates of MER to the
paired odor and the unpaired odor were compared (Figure 1) at
1 day after conditioning. After the last odor presentation in the
test, a drop of water was presented to the mouth or an antenna
and the resulting MER was tested. Crickets that did not exhibit
an MER to water US were not used for data evaluation. Crickets
discarded by this criterion were less than 3% in total.
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FIGURE 1 | Procedures for differential olfactory conditioning with

water reward or sodium chloride punishment. Crickets were subjected to

presentation of one odor (paired odor: CS) paired with water (appetitive US) or

a high concentration (20%) of sodium chloride solution (aversive US) and

another odor (unpaired odor) without pairing with US five or six times each with

pseudo-random sequences and with 5-min intervals. Retention was tested at

1 day after training. For pharmacology, 3µL of saline or saline containing 2µM

epinastine or 200µM flupentixol was injected into the hemolymph at 20min

before training.

Pharmacology
For pharmacology, saline containing flupenthixol (Mustard et al.,
2003) or epinastine (Roeder et al., 1998) was injected into the
head haemolymph at 20min before the start of training (Unoki
et al., 2005). These drugs were purchased from Sigma-Aldrich
(Tokyo, Japan).

Data Analysis
Occurrence of MER to odor presentation was measured during
acquisition and in retention tests. In all experiments, percentage
of MER (%MER) was calculated as the number of crickets
that exhibited MER to the CS in the total number of crickets
studied. Cochrans Q-test was used for within-group comparison
of %MER during acquisition. McNemar’s test was used for
pairwise comparison of %MER between the odor paired with the
US and the odor presented alone in acquisition. In the retention
test, McNemar’s test was used to compare %MER to the paired
odor and the unpaired odor.

Results

Maxillary Palpi Extension Response of Crickets
Maxillary palpi of crickets are equipped with a number
of olfactory receptors, contact chemoreceptors and
mechanoreceptors, and crickets use these receptors to locate
nearby food or water sources (Klein, 1981). When crickets
are stationary, their maxillary palpi are usually held loosely
beneath the mouthpart (Figure 2A). Upon application of water
to the antennae, crickets extended and vigorously swung their
maxillary palpi (Figure 2B). This response, which we term
maxillary palpi extension response (MER), accompanied raising
of the head and extension and swinging of the labial palpi and
was immediately followed by vigorous swinging of the antennae,

FIGURE 2 | Maxillary palpi extension response (MER) of the cricket.

(A) When a cricket is stationary, its maxillary palpi are typically held loosely

beneath the mouthparts (red circles). (B) Upon presenting a drop of water to

an antenna of the cricket, the cricket extended (red circles) and vigorously

swung its maxillary palpi while raising its head.

protraction of the mouth forward and upward, and frequent
initiation of locomotor actions (Supplementary Movie 1). In
short, MER is an initial phase of exploratory behavior in search
for water or odor source.

We observed that crickets often extended and vigorously
swung their maxillary palpi when a small piece of filter paper
soaked with an essence of some odors, such as vanilla and
maple odors, was presented near the antennae. In contrast,
presentation of other odors, such as peppermint odor and
apple odor, rarely induced MER (10% or less). In subsequent
experiments, peppermint and apple odors were used for
appetitive conditioning with water reward, while vanilla and
maple odors were used for aversive conditioning with sodium
chloride punishment.

Acquisition and Retention in Differential Aversive
MER Conditioning
We first attempted to establish a procedure for aversive olfactory
conditioning of MER. We used a high concentration (20%)
of sodium chloride solution as aversive US and vanilla and
maple odors as CSs. We observed that repeated presentation
of these odors alone without pairing with US led to a slight
decrease of %MER to the odor (see Figure 3A). Therefore,
in order to discriminate pairing-specific decrement of %MER
(associative conditioning effect) from this non-associative effect
(habituation), we used a differential conditioning procedure in
which one of the two odors (vanilla and maple odors) was paired
with US (paired odor; CS) and another odor was presented alone
(unpaired odor) to allow comparison of MERs to the CS and
the unpaired odor. The odors were presented six times each in
a pseudo-random sequence and with 5-min ITIs. Percentages
of MER to vanilla odor and those to maple odor were similarly
high (>70%) in the first trials, and acquisition and retention
performances of the vanilla CS group did not differ from those
of the maple CS group (Supplementary Figure S1). Therefore,
data from the two subgroups, vanilla CS group and maple CS
group, were pooled. Percentage of MER to the CS significantly
decreased with increase in the number of trials (Figure 3A,
Cochran’s Q-test: χ

2
= 38, df = 5, p = 0.00000032). For
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FIGURE 3 | Differential aversive olfactory conditioning of MER with

sodium chloride US. (A) Acquisition performance. Percentages of MER to an

odor paired with 20% sodium chloride solution (paired odor, open circle) and

those to an odor presented alone (unpaired odor, filled circle) in each

conditioning trial are shown. Crickets were subjected to six pairing trials to

associate an odor with sodium chloride solution (aversive US) and to

presentation of another odor without pairing with the US with 5-min intervals,

and percentages of MERs to the paired odor (gray graph) and the unpaired

odor (black graph) were compared. The number of animals tested is shown in

parentheses. (B) Retention performance at 1-day after conditioning.

Percentages of MERs to the paired odor (white bar) and the unpaired odor

(black bar) are shown. Percentage of MER to the paired odor was significantly

lower than that to the unpaired odor. *p < 0.05; **p < 0.01.

the unpaired odor, we observed a slight decrease of %MER by
repeated presentation of the odor, although the difference was
not statistically significant (Cochran’s Q-test: χ2

= 5.1, df = 5,
p = 0.41). Percentages of MER to the CS did not significantly
differ from that to the unpaired odor in the 1st trial (McNemar’s
test: χ

2
= 0.0, df = 1, p = 1.0) and in the 2nd trial (χ2

=

2.3, p = 0.13), but it was significantly greater than that to the
unpaired odor in the 3rd (χ2

= 6.8, p = 0.0094), 4th (χ2
= 4.9,

p = 0.027), 5th (χ2
= 4.2, p = 0.041), and 6th trials (χ2

= 7.1,
p = 0.0077). Thus, we conclude that the decrease of %MER to
the paired odor is pairing-specific.

Next, retention performance was tested at 1 day (24 h) after
six-trial aversive conditioning. Aversively conditioned crickets
exhibited a significantly lower %MER to the CS (paired odor)
than to the unpaired odor (Figure 3B, McNemar’s test: χ2

= 7.1,
df = 1, p = 0.0077). Thus, 1-day aversive memory is in large part
pairing-specific.

Acquisition and Retention in Differential
Appetitive MER Conditioning
We next attempted to establish a procedure for appetitive
conditioning with water reward. In one group of crickets, one
of two odors (peppermint and apple odors) was paired with
water and the other odor was presented alone without pairing
with US for five times each in a pseudo-random sequence
and with 5-min ITIs (Figure 1). Because acquisition and 1-day
retention performances in the peppermint CS group did not
differ from those in the apple CS group (Supplementary Figure
S2), data from the two sub-groups were pooled. In the first
trial, %MER to either peppermint or apple odor was low (<15%),
and it significantly increased with increase in the number of
trials (Figure 4A, Cochran’s Q-test: χ

2
= 53, df = 4, p =

FIGURE 4 | Differential appetitive olfactory conditioning of MER with

water US. (A) Acquisition performance. Percentages of MER to the odor

paired with water (paired odor: black graph) and the odor presented alone

(unpaired odor; gray graph) are shown. Animals were subjected to five pairing

trials to associate an odor with water and to presentation of another odor

without pairing with the US with 5-min intervals. The number of animals tested

is shown in parentheses. (B) Retention performance at 1 day after

conditioning. Percentages of MERs to the paired odor (black bar) and those to

the unpaired odor (white bar) are shown. The %MER to the paired odor was

significantly higher than that to the unpaired odor. **p < 0.01; ***p < 0.001.

0.000000000086). For the unpaired odor, we observed a slight
decrease of %MER by repeated presentation of the odor, although
the difference was not statistically significant (Cochran’s Q-test:
χ
2
= 2.4, df = 4, p = 0.67). The %MER to the paired odor

did not significantly differ from that to the unpaired odor in the
1st trial (McNemar’s test: χ

2
= 0, df = 1, p = 1), but it was

significantly greater than that to the unpaired odor in the 2nd
(χ2

= 8.6, p = 0.0033), 3rd (χ2
= 14, p = 0.00014), 4th (χ2

=

18, p = 0.000023), and 5th trials (χ2
= 25, p = 0.00000056).

Thus, we conclude that the increase of %MER to the paired odor
is pairing-specific.

Retention performance was tested at 1 day (24 h) after
conditioning. The group that received differential appetitive
conditioning exhibited a significantly larger %MER to the paired
odor than to the unpaired odor (Figure 4B, McNemar’s test:χ2

=

20, df = 1, p = 0.0000076). Thus, 1-day appetitive memory is in
large part pairing-specific.

We also attempted to establish a procedure of absolute
appetitive olfactory conditioning of the MER, in which an odor
was paired with water reward (Supplementary Figures S3, S4).
This was to facilitate comparison with results of our previous
studies using a dual-choice preference test, in which we used
absolute conditioning procedure (Matsumoto and Mizunami,
2002; Unoki et al., 2005; Mizunami et al., 2009). We found
that a few pairing trials of absolute appetitive conditioning are
sufficient to achieve pairing-specific associative effect and that 30-
min or 1 day memory is in large part CS-specific (Supplementary
Figure S4), in agreement with our findings using a dual-choice
preference test.

Epinastine, but not Flupenthixol, Impairs
Acquisition of Differential Appetitive MER
Conditioning
We then proceeded to a study on the effects of dopamine
and octopamine receptor antagonists on appetitive and aversive
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learning using differential procedures. We used epinastine
(Roeder et al., 1998) and flupenthixol (Mustard et al., 2003),
potent antagonists of insect octopamine and dopamine receptors,
respectively, since they were the most effective drugs to impair
appetitive and aversive learning among drugs we used in our
studies in crickets (Unoki et al., 2005, 2006;Mizunami et al., 2009;
Nakatani et al., 2009; Matsumoto et al., 2013).

We first tested the effects of epinastine and flupentixol on
differential MER conditioning with water reward. Three groups
of crickets were each injected with 3µl of saline (saline group)
or saline containing 2µM epinastine (epinastine group) or
200µM flupenthixol (flupenthixol group) at 20min prior to 5
trials of appetitive conditioning. The doses and the timing of
injection were based on previous studies (Unoki et al., 2005,
2006; Mizunami et al., 2009; Nakatani et al., 2009). The saline
and flupenthixol groups exhibited significant increases in %MER
to the CS with progress of training (Figures 5A,E, Cochran’s Q-
test: saline: χ

2
= 36, df = 4, p = 0.00000025; flupenthixol:

χ
2

= 46, p = 0.0000000022), but the epinastine group did
not (Figure 5C, Cochran’s Q-test: χ

2
= 8.5, df = 4, p =

0.074). In these three groups, %MER to the unpaired odor,
on the other hand, did not change with progress of training
(Figures 5A,C,E, Cochran’s Q-test: saline: χ2 = 4.82, df = 4,
p = 0.31; epinastine: χ2 = 0.76, p = 0.94; flupenthixol:
χ2 = 3.0, p = 0.55). The saline and flupenthixol groups
exhibited significantly higher %MER to the CS than to the
unpaired odor in the 3rd (Figures 5A,E, McNemar’s test: saline:
χ2 = 8.6, df = 1, p = 0.0033; flupenthixol: χ2 = 12,
p = 0.00069), 4th (saline: χ2 = 12, p = 0.00051; flupenthixol:
χ2 = 14, p = 0.00018), and 5th trials (saline: χ2 = 13,
p = 0.00030; flupenthixol: χ2 = 20, p = 0.0000076).
However, %MER to appetitive CS in the epinastine group did
not significantly differ from that to the unpaired odor in all
trials (Figure 5C, McNemar’s test: p > 0.05). The results
indicate that epinastine, but not flupenthixol, impairs acquisition
of appetitive learning with water reward. We thus suggest that
octopamine, but not dopamine, participates in acquisition of
appetitive learning.

Retention performance was tested at 1 day (24 h) after
conditioning. The saline and flupenthixol groups exhibited a
high %MER to the CS (>60%), and it was significantly greater
than that to the unpaired odor (Figures 5B,F, McNemar’s test:
saline: χ

2
= 12, df = 1, p = 0.00051; flupenthixol:

χ
2

= 21, p = 0.0000044). In the epinastine group, on the
other hand, %MER to the CS was low (<40%) and it did not
significantly differ from that to the unpaired odor (Figure 5D,
χ
2

= 0.25, p = 0.62). Thus, the epinastine group exhibited
no CS-specific memory, whereas 1-day retention of CS-specific
memory was intact in the flupenthixol group as in the saline
group.

We also confirmed that epinastine, but not flupenthixol,
impaired initial acquisition and 1-day retention using
a five-trial absolute appetitive conditioning procedure
(Supplementary Figure S5). Thus, we suggest that octopamine,
but not dopamine, is required for acquisition of appetitive
learning, regardless of the procedure being differential or
absolute.

FIGURE 5 | Epinastine, but not flupenthixol, impairs acquisition of

appetitive MER conditioning. At 20min prior to differential appetitive

conditioning, crickets in three groups were each injected with 3µl of saline

(saline group, A,B) or saline containing 2µM epinastine (epinastine group, C,D)

or 200µM flupenthixol (flupenthixol group, E,F). (A,C,E) Acquisition

performance of the saline group (A), epinastine group (C) and flupenthixol

group (E). Percentages of MER to the paired odor (black graphs) and those to

the unpaired odor (gray graphs) in each conditioning trial are shown. The saline

group and flupenthixol group exhibited effective acquisition, but the epinastine

group did not. (B,D,F) One-day retention performance of the saline group (B),

epinastine group (D), and flupenthixol group (F). Percentages of MER to the

paired odor and those to the unpaired odors are shown. The saline group and

flupenthixol group exhibited significantly higher %MER to the CS (black bars)

than to the unpaired odor (white bars), indicating that the memory is

CS-specific. In contrast, in the epinastine group, percentage of MER to the CS

was as low as that to the unpaired odor, indicating no CS-specific

memory. ***p < 0.001; **p < 0.01; NS: non-significant (p > 0.05).

Flupenthixol, but not Epinastine, Impairs
Acquisition of Aversive MER Conditioning
In the final experiment, we tested the effects of epinastine
and flupenthixol on differential MER conditioning with sodium
chloride punishment. Three groups of crickets were each
subjected to injection of 3µl saline (saline group) or saline
containing 2µM epinastine (epinastine group) or 200µM
flupenthixol (flupenthixol group) at 20min before 6 trials of
differential aversive conditioning. In the saline and epinastine
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groups, %MER to aversively conditioned odor (CS, paired)
significantly decreased with progress of training (Figures 6A,C,
Cochran’s Q-test: saline: χ

2
= 42, df = 5, p = 0.000000048;

epinastine: χ
2
= 39, p = 0.00000021). Percentages of MER to

the unpaired odor slightly decreased with progress of training,
but the difference was not statistically significant (Cochran’s Q-
test: saline: χ

2
= 5.0, df = 5, p = 0.42; epinastine: χ

2
=

10, p = 0.076). The saline and epinastine groups exhibited
significantly lower %MER to the CS than to the unpaired odor in
the 3rd (Figures 6A,C, McNemar’s test: saline: χ2

= 7.1, df = 1,
p = 0.0077; epinastine: χ2

= 10, p = 0.0015), 4th (saline: χ2
=

13, p = 0.00030; epinastine: χ2
= 6.8, p = 0.0094), 5th (saline:

χ
2
= 10, p = 0.0015; epinastine: χ2

= 10, p = 0.0015), and 6th
trials (saline: χ

2
= 9.1, p = 0.0026; epinastine: χ

2
= 10, p =

0.0015). In the flupenthixol group, on the other hand, there were
no significant changes of %MER not only to the control odor
(unpaired odor) but also to aversive CS with training (Figure 6E,
Cochran’s Q-test: to CS: χ

2
= 5.0, df = 5, p = 0.42; to the

unpaired odor: χ
2

= 7.9, p = 0.16). The %MER to aversive
CS in this group did not significantly differ from that to the
unpaired odor in all trials (McNemar’s test: p > 0.05). The results
indicate that flupenthixol, but not epinastine, impairs acquisition
of aversive learning with sodium chloride US. We thus suggest
that dopamine, but not octopamine, is required for acquisition of
aversive learning.

In a 1-day retention test, the saline and epinastine groups
exhibited significantly lower %MER to the aversive CS than to
the unpaired odor (Figures 6B,D, McNemar’s test: saline: χ2

=

8.1, df = 1, p = 0.0044; epinastine: χ2
= 12, p = 0.0005). In

the flupenthixol group, on the other hand, %MER to the aversive
CS did not significantly differ from that to the unpaired odor
(Figure 6F, χ

2
= 0.36, p = 0.55). Thus, the epinastine group

exhibited CS-specific memory as did the saline group, but the
flupenthixol group did not.

Discussion

We showed that olfactory conditioning of MER provides an
excellent paradigm to investigate acquisition performance of
appetitive and aversive conditioning in crickets. MER is an initial
phase of exploratory movements in search for water or odor
sources, and the occurrence of MER to an odor can be easily
judged if crickets and their palpi are stationary prior to water
or odor presentation. Crickets exhibited high percentages of
MER to some odors but not to other odors, and we used the
former odors in aversive conditioning and the latter odors in
appetitive conditioning. We observed that repeated presentation
of one of the former odors alone led to a slight decrease of the
MER, although the difference was not statistically significant.
We thus used a differential aversive conditioning procedure for
evaluation of the pairing-specific effect. In contrast, we observed
that repeated presentation of one of the latter odors alone did
not lead to a change of the MER. In appetitive or aversive
conditioning, we observed a significant difference in the MER
between the paired and unpaired odors in the 2nd or 3rd trial.
Thus, only a few trials are sufficient to induce a conditioning
effect. Retention tests performed 1 day after appetitive or aversive

FIGURE 6 | Flupenthixol, but not epinastine, impairs acquisition of

aversive MER conditioning. At 20min prior to differential aversive

conditioning, crickets in three groups were each injected with 3µl of saline

(saline group, A,B) or saline containing 2µM epinastine (epinastine

group, C,D) or 200µM flupenthixol (flupenthixol group, E,F). (A,C,E)

Acquisition performance of the saline group (A), epinastine group (C) and

flupenthixol group (E). Percentages of MER to the paired odor (gray graph)

and those to the unpaired odor (black graphs) in each conditioning trial are

shown. The saline and epinastine groups exhibited significantly lower

%MER to the aversive CS (gray graph) than to the unpaired odor (black

graph), but the flupenthixol group exhibited no significantly different %MER

to the CS than that to the unpaired odor. (B,D,F) Retention performance

at 1 day after conditioning of the saline group (B), epinastine group (D)

and flupenthixol group (F). Percentages of MER to the paired odor and the

unpaired odor are shown. The saline and epinastine groups exhibited

significantly lower %MER to the aversive CS (white bars) than to the

unpaired odor (black bars), indicating CS-specific aversive memory. In the

flupenthixol group, on the other hand, %MER to the CS did not

significantly differ from that to the unpaired odor, indicating no CS-specific

memory. The number of animals tested is shown in parentheses.**p < 0.01;

***p < 0.001; NS: non-significant (p > 0.05).

conditioning demonstrated that the memory is in large part
CS-specific. Olfactory MER conditioning thus provides a robust
measure of acquisition and retention in olfactory learning in
crickets.
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In addition to differential conditioning procedures used in this
study, we established absolute appetite conditioning procedure
to associate an odor with water reward (Supplementary Figure
S3), and we observed that only a few trials are sufficient to
induce a conditioning effect (Supplementary Figure S4A) and
memory at 30min or 1 day after 5-trial absolute appetitive
conditioning is in large part CS-specific (Supplementary
Figure S4B). Therefore, both of the differential and absolute
olfactory MER conditioning procedures provide robust
measures of acquisition and retention in olfactory learning in
crickets.

We now have two procedures to test the effect of olfactory
conditioning training, the MER test and the operant dual-
choice preference test. The former is useful for studying
mechanistic aspects of learning and memory, while the
latter provides insights into the behavioral significance of
them. Crickets should open up further possibilities for
studying mechanistic and adaptive aspects of learning and
memory.

Comparison of MER Conditioning with
Conditioning of Feeding Responses in Other
Insects
Conditioning of MER by pairing an odor with water reward
described here is analogous to olfactory conditioning of
mouthpart movements reported in several insects, especially that
of proboscis extension response (PER) in honey bees (Giurfa
and Sandoz, 2012). We observed 60–80% MERs to an odor
paired with water US in crickets after four pairing trials, the
percentages being slightly less than those of PERs to sucrose-
associated odor in honey bees (more than 80% after three or
more trials; Menzel and Giurfa, 2006; Matsumoto et al., 2014)
and being comparable or slightly higher than those of PERs
in the moth Manduca sexta (50–70%; Daly and Smith, 2000),
those of maxilla-labium extension responses in Camponotus
ants (40–60%; Guerrieri et al., 2011) and those of maxillary
palpi opening reactions in the desert locust Schistocerca gregaria
(40–50%; Simões et al., 2011). In all of those studies, the
conditioned response (mouthpart movement) was measured
in harnessed insects, but we measured it from freely moving
animals placed in a small beaker in this study. We found that
harnessed crickets also exhibit MER, but the percentage of
MER was not as high as that in crickets placed in a beaker
(data not shown).

We were able to evaluate aversive conditioning by a decrease
of the MER to odors paired with sodium chloride punishment.
This allows evaluation of appetitive conditioning and aversive
conditioning in very similar experimental conditions and thus
facilitates comparisons of the neural basis and molecular basis
of acquisition in appetitive and aversive conditioning. For future
studies, it will be more ideal to find odors that produce MER at a
rate of about 50% and use them in both appetitive and aversive
conditioning. To our knowledge, little effort has been directed
toward establishing a procedure to use the decrease in the rate of
feeding response for evaluation of aversive conditioning in other
species of insects.

Roles of Octopamine and Dopamine in Appetitive
and Aversive Conditioning
We found that octopamine and dopamine receptor antagonists
specifically impair acquisition of appetitive learning with water
reward and aversive learning with sodium chloride punishment,
respectively (Figures 5, 6, Supplementary Figure S5). It should
be pointed out that the experimental procedures for appetitive
and aversive learning were not exactly the same, namely,
the odors used as CS and the number of conditioning trials
differed. Therefore, whether such differences might account
for different effects of antagonists should be discussed. This
possibility, however, is unlikely since we observed that the effects
of antagonists were conserved in experiments with different
kinds of CS and different number of trials (Unoki et al., 2005,
2006; Mizunami et al., 2009; Nakatani et al., 2009; Mizunami
and Matsumoto, 2010). Therefore, we suggest that octopamine
and dopamine mediate reinforcement signals for acquisition
of appetitive and aversive learning, respectively, in crickets. In
accordance with our suggestion, it has been suggested in honey
bees that octopamine participates in appetitive learning with
sucrose reward (Hammer and Menzel, 1998) and that dopamine
participates in aversive learning with electric shock punishment
(Vergoz et al., 2007).

Based on results of recent studies on fruit-flies, however, it
was concluded that different sets of dopamine neurons mediate
appetitive and aversive reinforcements in olfactory conditioning
with sucrose, water, or electric shock, while octopamine neurons
convey sweet taste signals of sucrose reward to dopamine
neurons (Burke et al., 2012; Liu et al., 2012; Lin et al., 2014;
Yamagata et al., 2015: For an alternative view, see Kim et al.,
2013.). Thus, we suggest that neurotransmitters mediating
appetitive reinforcement differ in crickets and fruit-flies, at least
in learning with water reward, whereas those mediating aversive
reinforcement are the same. In order to confirm that octopamine
and dopamine mediate appetitive and aversive reinforcement,
respectively, we are currently performing studies using RNAi
(Shinmyo et al., 2006; Takahashi et al., 2009) and CRISPR/Cas9
systems (Cong et al., 2013; Mali et al., 2013) to knockdown or
knockout expression of octopamine and dopamine receptor
genes in crickets.

Concerning signals that animals use for reinforcement,
we recently obtained evidence that the prediction error theory,
which states that the discrepancy, or error, between actual reward
and predicted reward determines whether learning occurs
(Rescorla and Wagner, 1972), is applicable to crickets (Terao
et al., 2015). This theory is known as the best theory to account
for associative learning in mammals (Schultz, 2006, 2013) and
there is strong evidence that dopamine neurons in the midbrain
mediate appetitive prediction error signals (Schultz, 2013),
although whether they also mediate aversive prediction error
signals is controversial (Matsumoto and Hikosaka, 2009; Fiorillo,
2013). For crickets, we reported results of pharmacological
analysis suggesting that octopamine neurons mediate appetitive
prediction error signals (Terao et al., 2015), although it remains
to be determined whether dopamine neurons mediate aversive
prediction error signals in crickets. Future electrophysiological
studies on dopamine and octopamine neurons projecting to the
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mushroom body, a higher-order associative center participating
in olfactory learning (Menzel and Giurfa, 2006; Davis, 2011;
Menzel, 2012), are needed to clarify neural mechanisms of
prediction error computation in associative learning in crickets.

In conclusion, we suggest that there is an unexpected diversity
in neurotransmitters mediating appetitive reinforcement, while
those mediating aversive reinforcement are conserved, among
different species of insects. There arises a question of to
what extent the neurotransmitter mechanisms of learning differ
between different insect species and how such diversity has
evolved (see also Mizunami et al., 2015). Further studies on a
number of insects, such as honey bees, moths, and cockroaches,
are needed for answering this interesting question.
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