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According to an emerging view, decision-making, and motor planning are tightly

entangled at the level of neural processing. Choice is influenced not only by the values

associated with different options, but also biased by other factors. Here we test the

hypothesis that preliminary action planning can induce choice biases gradually and

independently of objective value when planning overlaps with one of the potential

action alternatives. Subjects performed center-out reaches obeying either a clockwise

or counterclockwise cue-response rule in two tasks. In the probabilistic task, a pre-cue

indicated the probability of each of the two potential rules to become valid. When the

subsequent rule-cue unambiguously indicated which of the pre-cued rules was actually

valid (instructed trials), subjects responded faster to rules pre-cuedwith higher probability.

When subjects were allowed to choose freely between two equally rewarded rules (choice

trials) they chose the originally more likely rule more often and faster, despite the lack of an

objective advantage in selecting this target. In the amount task, the pre-cue indicated the

amount of potential reward associated with each rule. Subjects responded faster to rules

pre-cued with higher reward amount in instructed trials of the amount task, equivalent to

the more likely rule in the probabilistic task. Yet, in contrast, subjects showed hardly any

choice bias and no increase in response speed in favor of the original high-reward target

in the choice trials of the amount task. We conclude that free-choice behavior is robustly

biased when predictability encourages the planning of one of the potential responses,

while prior reward expectations without action planning do not induce such strong bias.

Our results provide behavioral evidence for distinct contributions of expected value and

action planning in decision-making and a tight interdependence of motor planning and

action selection, supporting the idea that the underlying neural mechanisms overlap.

Keywords: reach movement, decision-making, action selection, motor planning, bias, prior probability, expected

value

INTRODUCTION

During economic choice, we weigh potential options. In general, the most beneficial or
least costly option directs our decision. When deciding between equally valued options, an
economic decision results in choice of either option with equal probability, known as matching
behavior (Herrnstein, 1961; Pierce and Epling, 1983; Sugrue et al., 2004; Lau and Glimcher,
2005). However, factors other than value-based preference can also influence our choices.
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In statistical decision theory, value is one building block, which
together with prior probability and evidence, forms the three
main computational elements of decision-making processes
(Gold and Shadlen, 2007). Furthermore, choices normally require
action selection. Independent of the expected reward, differences
in physical effort between response options can be an obvious
motor-related decision factor (Kurniawan et al., 2011; Rigoux
and Guigon, 2012; Burk et al., 2014). But more than that,
covert motor-related factors, like prior action planning, could
also be expected to influence later overt responses, and hence
decision outcomes (Cisek, 2007; Gallivan et al., 2015). Here we
compare the effect of prior motor planning with prior value-
based preference on choice probabilities and choice reaction
times in situations with balanced reward (neutral free choice) at
the time of the actual decision.

Imagine you are late for dinner. Your two alternative routes
home are on average equally fast but depend on current traffic.
In scenario 1, the slow truck in front of you indicates a turn to
the right. This will likely make you plan a left turn at the next
intersection, because with the truck going right, the left route now
is faster, hence has a higher value. If the truck then unexpectedly
pulls into a rest area you are free to choose between equal-valued
options (neutral choice) once you arrive at the intersection (time
of commitment).Will you stick with your prior plan, even though
both alternatives would now be equally attractive? In scenario
2, the truck’s indicators are so dirty that you cannot identify an
indicated direction, but you know that the left route would allow
you to overtake the truck more easily than the right route. This
means the left route has a higher (truck-conditional) value, as the
truck would slow you down less. If the truck then unexpectedly
pulls into a rest area, both options are equal-valued again. Will
you decide based on your prior value-based preference? Both
scenarios have in common that the value is initially higher for the
left route, in scenario 1 due to an imbalance in prior probability,
in scenario 2 due to an imbalance in prior value of a decision-
critical event that is yet to happen (the truck’s actual turn =

evidence). Also, in both scenarios, you will be provided with
evidence immediately before your commitment, and most times
(truck turns left or right) this will directly instruct your choice
(go the other way). Finally, in both scenarios, the expected value
becomes neutralized when the truck pulls into the rest area,
rendering both of your alternatives equally valued. The scenarios
differ in their intuitive effect on action planning. In scenario
1 your initial preference based on the probability of the later
event encourages you to preliminarily plan your action. Instead,
in scenario 2, even though you also have an initial value-based
preference, the situation discourages specific action planning
until you know the truck’s actual turn, since each turn is equally
likely. Will an a priori value-based preference in which action
planning is discouraged affect your later neutral choice differently
to an a priori preference that is associated with an action plan?
This is the question we address in this study.

To investigate the effect of motor planning on choice, we
need to dissociate planning from value-based preference. It
is known that movement planning is encouraged by motor-
goal predictability. For example, tasks with probabilistic pre-
cues, as used in early attention studies (Posner et al., 1980),

have been adopted in sensorimotor studies to test the ability to
plan movements in Parkinson’s disease patients (Stelmach et al.,
1986; Jahanshahi et al., 1992; Praamstra et al., 1996; Leis et al.,
2005). In such tasks, the pre-cue correctly indicates the location
of an upcoming target with a typical probability of 80% (cue
validity) while in the remaining 20% of trials the non-cued target
will be instructed. A subsequent imperative cue instructs the
subject when and toward which target location to act. The prior
information contained in the pre-cue encourages subjects to plan
the movement toward the pre-cued target, confirmed by effects
of cue-validity on reaction times and, in some cases, movement
times (Leis et al., 2005). Following the rationale of cue validity,
a neutral pre-cue indicating equal probability of occurrence for
each target should not evoke imbalanced preliminary planning.
We used this rationale for testing the biasing effect of motor
planning on reward-balanced choices. For this we manipulated
the degree of motor planning by different degrees of motor-goal
predictability.

However, probabilistic pre-cues can confound predictability
with preferability of a motor goal. Among multiple targets, if the
validity of one target becomes larger, the probability of receiving
reward at that target also increases, and hence the expected value,
defined as the product of probability and amount of reward (Von
Neumann and Morgenstern, 1944; Gold and Shadlen, 2007; Levy
and Glimcher, 2012), will also increase for the higher-validity
target. In order to disentangle the effect of planning from the
effect of reward expectation, we designed two tasks with matched
expected rewards but only one of which encouraged preliminary
action planning.

In the context of probabilistic choice behavior, a prior should
have more impact when evidence is weaker (Körding and
Wolpert, 2004; Vilares et al., 2012). Therefore, the effect of the
prior is typically investigated in situations when decisions are
based on ambiguous evidence. For example, using random dot
motion stimuli, priors were shown to influence the interpretation
of ambiguous visual sensory evidence (e.g., Mulder et al., 2012)
and affect the latency of action initiation (e.g., Carpenter and
Williams, 1995). Yet, if the perceptual interpretation of the
evidence is one-to-one associated with a behavioral response then
a prior is also likely to invoke preliminary action planning. It
can therefore be difficult to disentangle whether the effect of the
prior on choice is mediated via an effect on sensory processing or
on action planning. Here we test the effect of prior probabilities
without any perceptual uncertainty, emphasizing the effect of
action planning on choice.

Even though our experiment did not utilize ambiguous
cumulative sensory evidence toward a perceptual decision,
but rather immediate unambiguous evidence (instructed trials)
or rule-neutral evidence (choice trials), we find it helpful
to conceptualize our study in the context of drift-diffusion
models (DDM). On the basis of the DDM, conceptualizing
decision processes as a gradual accumulation of evidence toward
one of two alternative boundaries (e.g., Ratcliff, 1978; Ratcliff
et al., 1999), bias can be explained by different computational
mechanisms: (1) a shorter migration distance, either due to a
baseline shift (Ratcliff, 1985) or a bound shift (Ratcliff, 1978),
or (2) a change in drift rate (Ratcliff, 1981). These mechanisms
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allow accumulated evidence to reach one bound with smaller
reaction times (RT) and higher choice probabilities (CP). Which
mechanism is responsible for RT reduction and CP increase
in which behavioral context is a topic of ongoing research
(Summerfield and Tsetsos, 2012). In the context of perceptual
decision-making, previous studies showed that prior probability
adapts migration distance (Bogacz et al., 2006; Simen et al.,
2009; Mulder et al., 2012) while strength of evidence steers drift
rate (Roitman and Shadlen, 2002; Coallier and Kalaska, 2014;
Coallier et al., 2015; Hanks et al., 2015). However, the effect of
expected value as been accounted for by different explanations:
baseline shift (Maddox, 2002; Bogacz et al., 2006; Mulder et al.,
2012) or drift rate change (Diederich and Busemeyer, 2006).
The diversity of explanations for the effect of expected value
could be due to insufficient systematic dissociation of other
factors from the effects of movement planning as previous studies
usually involved probabilistic choice tasks, which we avoid here.
Additionally, we test the specific hypothesis that preference leads
to the same biasing effects as planning, except for a downscaling
factor that reduces effect strength (Maddox and Bohil, 1998;
Bogacz, 2007; Mulder et al., 2012). Such downscaling should be
particularly obvious when testing multiple levels of bias, in which
case it should be possible to estimate the value-based bias from
the probabilistic bias by applying a fixed gain factor. Instead
of using only a single level of bias manipulation, we therefore
probed for a graded effect of graded prior probability as opposed
to graded value.

To our knowledge, no study has directly tested the
proportional effect of action planning on choices in which
there is no difference in expected value between options.
According to emerging evidence, neural mechanisms overlap
between decision-making and movement planning (Cisek, 2007;
Scherberger and Andersen, 2007; Lindner et al., 2010; Klaes et al.,
2011; Coallier et al., 2015; Gallivan et al., 2015; Hanks et al., 2015).
We therefore hypothesize that previously planned actions should
bias later neutral choices in favor of these actions, independently
of reward expectation.

MATERIALS AND METHODS

Participants
Forty-three subjects (30 females, age (mean ± SD): 27.45 ±

4.89) participated in the study as paid volunteers. Among the 43
subjects, 31 participated in both AMNT and PROB tasks (on 2
separate days; 19 did PROB task first and 12 did AMNT task first),
10 in only PROB task, and 2 in only AMNT task. All subjects
were healthy, right-handed, and had self-reported normal or
corrected-to-normal vision. Detailed written instructions were
given to the subjects before the experiment. Prior to each
recording session, subjects were familiarized with the set-up and
practiced the task. All subjects gave written informed consent for
participation. Experiments were in accordance with institutional
guidelines for experiments with humans and adhered to the
principles of the Declaration of Helsinki. The experimental
protocol was approved by the ethics committee of the Georg-
Elias-Mueller-Institute for Psychology, University of Goettingen.

We included all 43 subjects in the analyses. When comparing
among conditions within each task with post-hoc tests, we
included the 33 subjects who participated in the AMNT task and
41 subjects who participated in the PROB task. When comparing
between tasks with post-hoc tests, we included the 31 subjects who
participated in both tasks.

Rule-selection Task with Sequential Cueing
The idea of the study was to investigate the influence of rule
predictability and pure preference on choice behavior. The task
implements the idea of the traffic example in the introduction.
We designed a center-out reach task with sequential cueing. A
first pre-cue raised expectations on either the probability or the
value of a later rule instruction (Figure 1). The rule instruction
(rule-cue) provided final information on the actual rule and
hence the action(s) to be rewarded. Two potential reach goals
had to be inferred from the single pre-cued location based
on clockwise (cw) and counterclockwise (ccw) transformation
rules. We implemented two variants of this rule selection
task, one in which the prior probability of either rule to be
instructed was announced in advance by the pre-cue (PROB
task), another in which the reward of either rule, in case it
would be instructed, was announced (AMNT task). The choice
experiment was risk-free, since at the time of the required
behavioral response (decision), there was no uncertainty about
the outcome; subjects were either instructed about the correct
response immediately before the decision (instructed trials =

truck turns left or right in the example from the Introduction), or
they were free to choose among both options with 100% reward
probability and equal reward amount for each option (choice
trials = truck pulls into rest area). Note that the pre-cue was
only informative about the reward structure of the instructed
trials, while free-choice options were safe and equal-valued. As
a consequence, subjects could achieve 100% reward probability
with proper performance in all task conditions. The reward
delivered in each trial was accumulated and translated into the
compensation that participants received at the end of the session
(see below).

Due to the temporal separation between pre-cue and rule-
cue, each choice was preceded by a brief planning period
(approaching the intersection in the truck example). During the
planning period subjects were uncertain about the type of trial
(instructed or choice), and uncertain about what the instruction
will be. For optimal performance, subjects in response to the
final instruction had to either follow their initial expectation or
countermand it (instructed trials), or freely choose (choice trials).
For example, a pre-cue in the AMNT task might raise the initial
expectation that a left-side reach would be preferable, but the rule
cue at the end of the planning period could still indicate a left-
side or right-side single correct option (instructed trials) or two
correct options (choice trial). The pre-cue could not be ignored,
though, since the rule-cue only was meaningful in relation to the
pre-cue.

The idea of this task design was that with a majority
of instructed trials the pre-cue would induce a trial-by-trial
behavioral bias, either based on predictability or preferability. In
a first step, we had to confirm that both manipulations were
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FIGURE 1 | Rule-selection tasks with probabilistic (PROB) and amount (AMNT) bias manipulations. A trial starts with eye-hand fixation. Next, a pre-cue

appears at one of the four cardinal locations (top, down, left, right), indicating two potential goals and the probability of each goal in the PROB task (big triangle - high

probability), or the reward amount associated with each goal in the AMNT task (big triangle - more reward). In the PROB task, the reward amount is kept constant in

all conditions, whereas in the AMNT task the probability is kept equal in all conditions. After a memory period, the rule-cue appears and either indicates one valid

target or leaves the options open so that subjects can freely choose. Both options in choice trials always provide equal value.

effective in by analyzing subjects’ responses in the instructed
trials. In instructed trials the manipulations had an actual effect
on the reward outcome, hence an effect on behavior had to be
expected. As the main research question, we test if the variable
predictability and preferability had the same effects on free-
choice behavior. We probed this with randomly interspersed
choice trials. Since the choice trials were value-balanced and risk-
free, any choice probabilities and other behavioral biases should
reflect the subject’s a priori bias induced by the predictability
or preferability resulting from the pre-cue, since no further
immediate evidence supporting either rule is provided during the
remainder of a choice trial.

Importantly, in the AMNT task, we aimed to induce a
preference in the subjects without encouraging planning of
the according action since either rule was equally likely to be
instructed. On the other hand, the PROB task instead would
encourage preliminary planning of the action that was associated
with the most likely correct option since, in the likely case of an
instructed trial, the instruction would match the rule expectation.
We tested the assumption that predictability, as opposed to
preferability, would lead to target-specific motor planning
by additionally analyzing movement execution parameters in
instructed trials. If such test yielded evidence for motor planning
in predictable but not in preferable trials then any effects of
predictability on choice behavior could be explained by an effect
of motor planning.

We then compared the effect on risk-free choice behavior of
either a preliminary value-based target preference (henceforth
referred to as “preferability,” AMNT experiment) or a
preliminary motor plan toward a probable target (henceforth
referred to as “predictability,” PROB experiment). We will first
describe in detail the elements of the task that are common to
both experiments and then the differences in the reward schedule
of the two experiments.

Graded Bias Manipulation in the
Rule-selection Tasks
Subjects in both experiments had to choose between either a
clockwise (cw) or counter-clockwise (ccw) spatial mapping rule to
infer the reach target relative to the position of the pre-cue (rule-
selection task). Subjects were requested to perform reaches from
the center to one of the four cardinal (0◦, 90◦, 180◦, and 270◦)
targets in the periphery (center-out reach) on a touch screen
(eccentricity of 9 cm with ∼40 cm of screen distance, depending
on subjects’ reaching range), while maintaining gaze at the screen
center (eye fixation) throughout the trial. The target locations had
to be inferred from an incongruent cue location and were not
marked by visual stimuli (rule-based movement).

Each trial started with a fixation period. Small red and white
squares were presented at the center of the screen as eye and
hand fixation points, respectively (Figure 1). Subjects initiated
the trial by directing gaze to the eye fixation spot and, at the

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 November 2015 | Volume 9 | Article 315

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Suriya-Arunroj and Gail Interdependence of Planning and Choice

same time, touching the hand fixation spot (tolerance window:
3 cm radius). After a random period of 500–1000ms fixation, a
spatial pre-cue flashed briefly (200ms) at one of the four cardinal
target positions. The pre-cue consisted of two differently colored
triangles, one pointing to the cw, the other to the ccw direction.
The two triangles indicated the only two possible reach targets in
a given trial, one at 90◦ cw and one at 90◦ ccw from the pre-cue,
at identical eccentricity.

There was no fixed association between rules (cw or ccw) and
colors. Subjects had to remember the pre-cue colors and match
these with the subsequent color information of the rule-cue to
complete the trial correctly. At the end of the following random-
length memory period (500–1000ms), the rule-cue appeared.
The rule-cue consisted of a box framing the fixation points
and was either colored to match one of the pre-cue triangles
(instructed trials), or color-neutral (white; choice trials). In the
instructed trials the colored rule-cue narrowed down the two
potential targets to only one single correct target (cw or ccw).
The reward probability for the instructed target was always 100%,
for the alternative target 0%. In the choice trials, both potential
targets indicated by the pre-cue were rendered valid with 100%
reward probability by the color-neutral rule-cue. In choice trials
the reward amount was always fixed and independent of the
size of the pre-cue or any previous choice responses (reward-
all schedule). Simultaneously with the onset of the rule-cue,
the hand fixation point disappeared (“go” signal) and subjects
had to reach toward the instructed or chosen target within a
maximum of 1000ms. In each block of six trials, two trials were
randomly set to be choice trials, and the remaining four were
instructed trials. Each unsuccessful trial was reinserted into the
trial sequence.

In case of successful acquisition of a rewarded target, subjects
received positive feedback in the form of a circular patch at
the target position with an encouraging high-pitched tone (coin
sound). If subjects failed to reach the correct target, the trial
was aborted and a demotivating low-pitched tone was played.
Failure trials included aborted trials due to ocular fixation breaks,
incorrect reaches to locations on the screen outside the tolerance
window (3 cm radius) around the valid target(s), and reaches
later than the maximal response time. Subjects were explicitly
requested to respond as accurately and as rapidly as possible.

Subjects had to perform the rule-selection task in two variants,
which differed only in the instructed trials, not the choice trials.
The idea was to induce a graded level of predictability (PROB
task) or preferability (AMNT task) between the two possible
rules. For this, the relative size of the two triangles in the pre-
cue was varied in seven steps corresponding to seven instructed
expectation levels. Note, for convenience we refer to these levels
jointly as “bias conditions” even though the behavioral bias that
will be potentially induced by this task parameter is our tested
variable. In the zero-bias trials the triangles had equal size. In the
100% bias level conditions either only the cw or the ccw triangle
was visible and larger than in the zero-bias condition. In the
intermediate bias conditions the two triangles had intermediate
sizes. The seven instructed-bias conditions used the following
combinations of pre-cue triangles (base lengths of the triangle):
{3.5:0.0, 3.0:0.7, 2.5:1.4, 2.0:2.0, 1.4:2.5, 0.7:3.0, 0.0:3.5}. The bias

level was kept constant within each block of six trials as will be
described below.

Probabilistic Rule-selection Task (PROB)
The idea of the PROB task was to induce a graded level of rule
predictability across trials, without a difference in the final value
of the two motor-goal options. In the PROB task, we assigned the
colors magenta and cyan to the two pre-cue triangles. The size
of the pre-cue triangles indicated the likelihood with which the
cw and ccw rules would be instructed by the rule-cue later in the
trial. The reward for the targets associated with either rule was
identical. Seven bias levels corresponded to likelihoods of {6:0,
3:1, 2:1, 1:1, 1:2, 1:3, 0:6} for an instruction of the ccw or cw rule,
respectively. In the case of a bias level 2:1 toward ccw, subjects
were offered 4 ccw trials and 2 cw trials. Subjects received three
reward units for each correctly performed instructed trial and
1.5 reward units for either choice in the choice trials. Thus, at
the 100% bias levels (6:0 or 0:6), the low probability rule had 0%
chance of getting 3 units in instructed trials and 100% of getting
1.5 units in choice trials, resulting in an expected value of 0×3×
2/3 + 1 ×1.5 ×1/3 = 0.5 reward units. The high probability rule
had a 100% chance of getting 3 units in instructed trials and
100% chance of getting 1.5 units in choice trials, resulting in an
expected value of 1 ×3 ×2/3+ 1 ×1.5 ×1/3 = 2.5 reward units.
The ratios of initially expected values (EV) associated with the
two rules at the seven bias levels were then {2.5:0.5, 2:1, 1.83:1.17,
1.5:1.5, 1.17:1.83, 1:2, 0.5:2.5}. Note that these initial EVs were
only valid for the time between the pre-cue and the rule-cue.
After the rule-cue, the final value for instructed trials was 3 for
the instructed rule, zero for the non-instructed rule, and 1.5 for
both rules in the choice trials.

Reward-amount Based Rule-selection
Task (AMNT)
The idea of the AMNT task was to induce a graded preference
for the different options without being encouraged to plan an
according movement. In the AMNT task we assigned colors
orange and green to the two pre-cue triangles. The size of the
pre-cue triangles indicated the amount of reward that would be
associated with each rule in case it was instructed later in the trial.
The probability of each rule being instructed was kept 50:50. The
reward units at the seven bias levels corresponded to {6:0, 5:1, 4:2,
3:3, 2:4, 1:5, 0:6}. For example, in the case of a bias level 4:2 toward
ccw, subjects got 4 reward units for an instructed ccw reach and 2
units for an instructed cw reach, whereas in the case of a bias level
6:0 toward cw, subjects received six reward units for cw reach but
nothing for ccw reach (but still have to reach to the unrewarded
target to complete that experimental block and proceed to the
next block). The length of the feedback sound at the end of
successful trials matched the amount of reward subjects received
in that given trial. The ratios of initial EV associated with the
two rules at the seven bias levels were then {2.5:0.5, 2.17:0.83,
1.83:1.17, 1.5:1.5, 1.17:1.83, 0.83:2.17, 0.5:2.5}. Again, these EVs
were only valid for the time between pre-cue and rule-cue. After
the rule-cue, the final EV for instructed trials was equal to the
reward units assigned to the instructed rule (6:0, 5:1, etc.), always
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zero for the non-instructed rule, and 1.5 for both rules in the
choice trials.

Importantly, we matched the preliminary EVs in the PROB
and AMNT tasks as closely as possible, given the block structure
of trials. In five out of seven conditions the EVs matched exactly.
In two conditions the EV ratios matched approximately (PROB
2:1, AMNT 2.17:0.83). Choice trials and zero-bias trials were
identical between both tasks in all other respects. Thus, prior to
the rule-cue (when subjects did not know yet if a given trial will
be instructed or choice) and after the rule-cue, the EVs for choice
trials in both tasks matched. Hence our task design ensures that
any observed differences in the free-choice behavior between the
two tasks should be attributable to biases that were introduced by
the purposeful manipulation of the expectation for the instructed
trials, and not to differences in the choice trials.

We also ran a control experiment for the AMNT task in
which we doubled the reward contrast between high- and low-
valued options. The reward units at the seven bias levels in this
AMNT-double task corresponded to {12:0, 8.5:0.5, 5:1, 3:3, 1:5,
0.5:8.5, 0:6}. Sixteen subjects who had previously participated
to the AMNT experiment were invited to perform the AMNT-
double task. The subgroup selection depended only on subject
availability and was independent of previous performance on the
AMNT task.

Subject Compensation and Bonus
Recording sessions terminated when subjects reached 600
successful trials. By design, the same amount of reward was
reached in both types of task. In the PROB task, in one block
of six trials, the four instructed trials (4 × 3 units) and two
choice trials (2 × 1.5 units) led to 15 reward units. To reach 600
trials, subjects needed to complete 100 blocks, i.e., a total of 15×
100 = 1500 units. In the AMNT task, in each biased block, two
out of four instructed trials delivered high reward and another
two delivered low reward, e.g., in a 1:5 condition block, subjects
received (5 × 2) + (1 × 2) = 12 reward units. Two choice trials
(2 × 1.5 units) added to the same total of 15 units per block as
in the PROB task. We converted three reward units to 2 Euro
cent, which finally made 2/3 × 1500 units = 1000 cent, thus
e10 per session. As there was no penalty for aborted trials and
subjects had to reach the same number of successful trials, the
total compensation per session was identical between tasks.

Additional to the baseline compensation of e10 for each
accomplished session, a bonus of up to e6 for good performance
could be achieved: performance under 50%: no bonus; 50%:
bonus of e1; then each step of 5% will add e0.5 until reaching
maximal bonus of e6 at 100%). Alternatively, subjects received
a compensation of e6 per hour, if this yielded the higher
compensation. For example, subjects with very high performance
typically spent about 1 h and received e15–16 whereas subjects
who made many error trials and/or multiple pauses (self-paced
task design) spent about 2 h in the setup and received e12–13).

Pre-recording Procedure and Balancing
Subjects were required to maintain gaze at the center of the
screen. For this, a calibration of the eye-tracking system was
first carried out. Then a short (5–10min) training session was

run to accustom subjects to the task and setup condition.
Since our experiment aimed at quantifying biasing effects, we
wanted subjects to explore the range of possible free-choice
responses before the start of the experiment. For this, we ran an
initial balancing session for each subject to discourage subjects
from repeating the same default reach choices through the
rest of the experimental session. The balancing task contained
only trials with a zero-bias condition (equal triangle sizes) and
differed from the rule-selection task described above only in the
reward schedule that we applied on the choice trials. Instead of
rewarding both options with 100% probability, we used a bias-
minimizing reward schedule (BMRS). In the BMRS the reward
probabilities for free-choice targets were calculated based on the
individual subject’s choice history. The less often a target was
freely chosen in the previous two choice trials, the higher the
reward probability in favor of this target was (Klaes et al., 2011):

p(Rcw) = F(nccw − ncw)

p(Rccw) = F(ncw − nccw)

where ncw is the total number of rewarded cw reaches and nccw is
the total number of rewarded ccw reaches. F was defined as:

F (x) =























1, x > 1
2/3, x = 1
1/2, x = 0 .
1/3, x = −1
0, x < −1

Subjects were explicitly told that chosen targets would
successively stop being rewarded and they needed to explore all
possible reaches to complete this task. The balancing task was
run until the subject made at least two cw and two ccw reaches at
each pre-cue position, which means at least 16 choice trials. As
choice trials made up 33% of all trials, the balancing task then
comprised a minimum of 48 trials.

Apparatus and Data Acquisition
Subjects were seated in a dimly lit room facing an LCD screen
(19” ViewSonic VX922) mounted behind a transparent touch
sensitive screen (IntelliTouch, ELO Systems, CA, USA), with
a chinrest and forehead band used to stabilize head position.
The screen was mounted with a tilt of 33◦ from the vertical for
subject’s comfort, with the lower edge on the table at ∼40 cm
distance from the chinrest base and the top edge at eye level.
The luminance of all colored stimuli was in the range 12–
13 cd/m2 (luminance meter LS-100, Minolta, Japan). Luminance
was measured at eye level when positioning the color cues at
the top of the four positions used in the experiment, i.e., at a
direction of 90◦ from the screen center and with an eccentricity
of 9 cm. Throughout the trial, the gaze direction of the subjects
was constrained at the central fixation point (red square) within
a tolerance window of 3 cm (∼4.3◦ VA radius). Eye positions were
monitored by a camera placed in front of the screen’s lower edge
(Eyelink 1000, Kanata, Canada). A real-time LabView program
running on a PXI computer (National Instruments) was used
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to control the tasks and to register relevant stimulus properties,
event timings, and subject’s behavioral responses in each trial.

Behavioral Data Analysis
The main goal of this study was to quantify the biasing effect
of predictability and preferability on choice behavior. Since
preliminary analysis revealed symmetric effects of cw/ccw rule
in our data (effects of interaction between bias degrees and rule
types (cw-ccw) on reaction times in instructed follow trials: PROB
task: t-statistic = −1.59, p > 0.05; AMNT task: t-statistic =

0.11, p > 0.05; interaction between bias degrees and rule types
(cw-ccw) on choice probabilities: PROB task: t-statistic = −0.07,
p > 0.05; AMNT task: t-statistic = −0.44, p > 0.05, GLMM; see
details on GLMM below), we chose the absolute value of the pre-
cued bias level as the independent variable and merged all trials
with different pre-cue positions. In other words, we grouped the
data into four bias conditions, one zero-bias condition plus three
non-zero bias conditions. Bias degrees were quantified by the
contrast in preliminary EV associated with each pair of reward
amount or probability: higher EV−lower EV/higher EV + lower
EV. Bias degrees were {0, 0.22, 0.33, 0.67} for the PROB task and
{0, 0.22, 0.45, 0.67} for the AMNT task.

Additionally, we sorted the data according to rule-
congruency, i.e., according to whether the reach was conducted
to the same (follow) or the opposite (against) direction as the
direction indicated by the bigger pre-cue triangle (bias direction).
Note that follow and against responses could occur by instruction
in instructed trials and by subjects’ choice in choice trials and
the instructed trials of the probabilistic task are equivalent to
typical cue-validity tasks in which follow trials would correspond
to valid trials, and against trials to invalid trials.

We analyzed error rate (ER), reaction time (RT) in both
error and correct trials, and movement time (MT) in instructed
trials. ERs were defined as the fraction of trials not leading to a
successful target acquisition within the reach period, either due
to miss-reaching or fixation breaks (often occurring together).
As errors other than miss-reaches were in general very rare and
both targets were considered valid in choice trials, we report ERs
and error RTs only in instructed trials. RTs were defined as the
time between the go-signal and the subject’s release of the touch
screen from the fixation position and MTs as the time between
the subject’s release of the fixation point to the time that the
subject’s finger arrived at the target position. Both RTs and MTs
were corrected for display and touch screen delays. Trials with
invalid RTs (0.5% of total number of trials) were excluded from
the RT analysis as subjects might have prematurely released the
screen before the rule-cue was perceived. As rejection threshold
we used 2.5 interquartile ranges below Q1 (25% quartile) or
100ms, whichever value was higher.

We analyzed RTs and choice probability (CP) in choice trials.
CP was defined as the fraction of correct choices following the
bias introduced by the pre-cue. For the zero-bias condition we
show the fraction of cw choices.

We tested for biasing effects in all aforementioned
dependent variables. For this, a generalized linear mixed
model (“fitglme”; MATLAB R2014b) was fitted to assess
influences of bias degrees on ER, RT, MT, and CP, as well as

differential effects between PROB and AMNT tasks. Full models
included the factors bias degree (Bias: continuous variable),
rule congruency (Congruency: categorical responses follow
vs. against biased direction), and task type (Task: categorical
variable: AMNT vs. PROB) and all interaction terms, as fixed
effects. Note that we considered ER, RT, and MT at zero-bias
degree in both follow and against categories to keep the zero-bias
level included in both follow and against fittings. Subjects were
included as random effect (uncorrelated random intercepts and
slopes for bias levels, congruency, and tasks) to account for the
variance across subjects. The likelihood of the models including
or excluding different fixed and random effects were compared
using the Matlab function “compare(model1, model2).”

We used the following model to test overall differential
effects of bias between follow-against responses on ER (binomial
response), RTs, and MTs with interaction term between Bias and
Congruency in each task separately:

X ∼ Bias ∗ Congruency + (Bias ∗ Congruency | Subjects), (M1)

and to test the differential effects on ERs, RTs, and MTs between
tasks:

X ∼ Bias ∗ Congruency ∗ Tasks

+ (Bias ∗ Congruency ∗ Tasks | Subjects). (M2)

Next, only for RTs, we additionally tested the differential effects
on error RTs between tasks using the model:

RT ∼ Bias ∗ Error (success/error) ∗ Tasks

+ (Bias ∗ Error ∗ Tasks | Subjects). (M3)

When instructed to go against the bias, DDMs predict short error
RTs in case of a bias mechanism mediated by a baseline shift
whereas long error RTs in case of a drift rate change (Simen et al.,
2009; Leite and Ratcliff, 2011). As errors were rare in instructed
follow trials and choice trials, we inspected error RTs only in
instructed against trials.

When there was a biasing effect, we asked further whether
(a) the biasing effect was symmetric for costs (against) and
benefits (follow) and whether (b) the biasing effect was graded,
i.e., scaled with the strength of the bias signal. With the model
M1 we computed the slopes for follow and against and compared
their confidence intervals to test whether the absolute values
of the slope differed (asymmetry) or overlapped (symmetry)
between both conditions. Note that the obviously different slopes
(Figure 2B) between follow and against conditions were the
reasons why we introduced congruency as a factor in the model.
By modeling the data separately for each “branch” of the bias
factor separately, we got better linear fits than when treating the
seven bias levels as a single factor (data not shown). We tested for
graded biasing effects vs. a single step-like effect of bias, with post-
hoc tests (paired t-tests with Bonferroni corrections for multiple
comparisons) comparing each pair of successive bias conditions.

We tested biasing effects on CP using a separate full model
without the Congruency term as there was no follow-against
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FIGURE 2 | Biasing effects on instructed responses. (A) Average error rates (ER): proportion of error trials committed during the reach period, (B) average

reaction time (RT) difference from average RTs in instructed trials of zero-bias condition of each task in all bias levels in AMNT (left) and PROB (right) tasks, (C) average

error RT difference (zero line indicates average correct RTs in instructed trials of zero-bias condition of each task). Dark and light colors represent follow and against

responses, respectively. Error bars depict standard errors. (* p < αcorr at 5%, ** p < αcorr at 1%, *** p < αcorr at 0.1%, paired t-test with Bonferroni correction).

distinction in this case:

CP (binomial response) ∼ Bias ∗ Tasks

+ (Bias ∗ Tasks |Subjects) (M4)

With additional post-hoc tests corrected formultiple comparisons
we tested the graded effect as introduced above.

RESULTS

We probed the biasing effect of motor-goal preferability and
predictability on later risk-free choices in two steps. First,
we wanted to confirm that both our value and probability
manipulations were effective in affecting subject behavior. To
do so, we analyzed error rates (ER), reaction times (RT), and
movement times (MT) in instructed trials. If the pre-cue had a
biasing effect then there should be costs and benefits involved
with having to go against or being allowed to follow one’s
internal bias as a result of an instruction. Specifically, follow
trials should lead to faster RTs and lower ER than against trials.
Second, we wanted to test if preferability and predictability have
similar or differential biasing effects on later choice behavior. For
this, we analyzed RTs and choice probabilities (CP) in choice
trials. If preferability and predictability induce the same biasing
mechanism, we should observe the same response pattern across

tasks. If instead preferability and predictability induce different
biasing mechanisms, we should observe different response
patterns. The former hypothesis might still be supported if the
behavioral response patterns in instructed and choice trials are
the same in the PROB and AMNT task, except for a potentially
reduced effect in the AMNT task compared to the PROB task
(Maddox and Bohil, 1998; Mulder et al., 2012).

Performance Comparison PROB vs. AMNT
Task
We first tested if the AMNT and the PROB experiment were
different in task difficulty. For this we did not compare only
the total performance, but particularly the zero-bias trials. Zero-
bias trials were identical in both experiments, except for the task
context.

Average performance was 86.84 ± 2.1% in AMNT task (N =

33) and 91.53 ± 0.8% (mean ± SEM) in PROB task (N =

41). Subjects who participated in both tasks showed slightly
better overall performance in PROB task than AMNT task
(AMNT: 88.13 ± 1.7%, PROB: 91.91 ± 0.8%, mean ± SEM,
N = 31, p < 0.05, paired t-test). However, importantly,
when comparing performance only in the zero-bias condition
of the instructed trials, which served as our reference condition,
subjects performed equally well (AMNT: 87.53 ± 1.75%, PROB:
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89.67 ± 1.37%, mean ± SEM, N = 31, p > 0.05, paired
t-test).

Subjects performed both tasks with shorter RT in
instructed compared to choice trials (AMNT [instructed-
choice]: −24.48 ± 2.47ms, p < 10−9, PROB [instructed-
choice]: −38.00 ± 4.24ms, p < 10−9, mean ± SEM, N = 31,
paired t-test) and overall responded faster in PROB task than in
AMNT task (AMNT-PROB: 21.03 ± 6.62ms, p < 0.01, mean ±

SEM,N = 31, paired t-test). However, when comparing only RTs
from the zero-bias condition, subjects showed no RT difference
between tasks (inst [AMNT-PROB]: 7.95 ± 7.87ms, p > 0.05,
choice [AMNT-PROB]: −0.31 ± 8.07ms, p > 0.05, mean ±

SEM, N = 31, paired t-test).
In summary, the AMNT and the PROB task contexts did not

lead to performance differences in the zero-bias trials, i.e., in the
trials which do not differ between the tasks. In trials with non-
zero bias levels, subjects responded on average more quickly and
made fewer errors in the PROB task than in the AMNT task.

Effects of a Priori Preferability vs.
Predictability in Instructed Behavior
We first needed to establish whether our manipulations of
probability and amount were strong enough to be effective. We
compared ERs, RTs, and MTs in instructed trials between the
PROB andAMNT task to test if they depended on the bias degree.
If so, we further tested if bias degree led to symmetry in costs and
benefits, and if the effect was gradually increased with increasing
bias degree. In both tasks we found significant effects of bias
degree on instructed behavior, but with differences in individual
aspects, as detailed in the following.

Error Rates (ER)
Error rates (ER) depended on the instruction to follow or go
against the bias in both tasks (Figure 2A). A generalized linear
mixed effect model (GLMM) showed higher ERs when subjects
were instructed to reach against the bias than follow the bias in
both tasks (interaction between Bias and Congruency: AMNT: t-
statistic = 6.07, p < 10 −8; PROB: t-statistic = 10.05, p < 10−9,
N = 43). The effect on ERs differed between the PROB and
AMNT task quantitatively. The ER full model confirmed that
the ER cost was significantly higher in against-instructed trials
in the PROB task than in the AMNT task (interaction between
Bias and Tasks on against trials: t-statistic = −3.47, p < 0.001).
Further there were overall significant difference in ER patterns
between tasks (interaction between Bias, Congruency, and Tasks:
t-statistic= −3.96, p < 10−4).

The ER dependency on the bias degree was symmetric in
strength in instructed trials of both tasks. Decrease in response
to follow instructions was not significantly steeper than the ER
increase in response to against instructions. (AMNT-against: 95%
confidence interval CI = [−0.01, 1.03] (increase in percentage
of error trials per one bias degree); AMNT-follow: CI =

[−2.89, −0.97]; PROB-against: CI = [1.41, 3.21]; PROB-follow:
CI= [−3.61,−1.92]).

ER in neither tasks showed a gradual effect as function of bias
degree (Figure 2A).

Reaction Times (RT)
Reaction times (RT) depended on the bias degree in both
tasks similarly to ERs, but partially in a more gradual fashion
(Figure 2B). GLMM showed an overall differential effect of
biasing degree on RT between follow and against instructed
reaches in both tasks (interaction between Bias and Congruency:
AMNT: t-statistic = 9.72, p < 10−9; PROB: t-statistic = 12.28,
p < 10−9). This means the bias degree induced systematic costs
and benefits for RTs in instructed reaches. Also, the RT full model
showed significantly different patterns of RTs between tasks
(interaction between Bias, Congruency, and Tasks: t-statistic =

6.23, p < 10−9), and a smaller RT benefit in the AMNT task as
compared to the PROB task (interaction between Bias and Tasks:
t-statistic= −5.65, p < 10−9).

RT costs and benefits in the instructed trials of each task were
not symmetric. The PROB task showed a significantly larger RT
benefit of following than cost for going against the bias (PROB-
against: CI = [16.99, 46.79] (increase in RTs (ms) per one bias
degree); PROB-follow: CI = [−85.31, −63.71]). Asymmetry was
not as strong in the AMNT task, since the absolute values of the
confidence limits partly overlapped (AMNT-against: CI= [12.94,
27.50]; AMNT-follow: CI= [−44.41,−27.39]).

RTs in instructed trials partially showed a gradual increase
in effect strength with increasing bias degree (Figure 2B). In
the AMNT task, RTs decreased in one significant step when
subjects were instructed to follow the bias. In the PROB task RTs
decreased with each step in response to follow instructions with
increasing bias level.

Analysis of Error RTs
Depending on which mechanism explains the decision process,
RTs in unsuccessful trials can be expected to be either faster
or slower than successful trials (e.g., Smith and Ratcliff, 2004;
Bogacz, 2007; Brown and Heathcote, 2008; Heitz, 2014). We
analyzed error RTs when an instruction to go against a bias was
violated; since error rates in follow trials were too rare to be
analyzed properly. Error RTs depended on the bias condition
in opposite ways in the AMNT and PROB task. Error RTs
showed significant differential effects in response to follow or
against instructions in the PROB task, but not in the AMNT
task (interaction between Bias and Congruency: AMNT: t-
statistic = −1.07, p > 0.05; PROB: t-statistic = 2.59, p <

0.01). Due to limited number of errors in follow trials of both
tasks, slope analyses detected no significant slopes in follow
trials (AMNT-follow: CI = [−36.90, 67.87]; PROB-follow: CI =
[−64.10, 7.51]; not shown). Importantly, in against trials, slope
analyses revealed significant increase in error RTs with bias
levels in AMNT task, as opposed to significant decrease in
PROB task (AMNT-against: CI = [8.64, 80.66]; PROB-against:
CI = [−127.78, −50.155]; Figure 2C). RT differences between
individual consecutive bias levels did not reach significance in
either task, likely due to the limited number of error trials.

Overall, analysis of the instructed trials showed that
manipulation of both preferability and predictability were
effective and had consequences on RTs and ERs, yet, with
indications from the error trials analysis that underlying
mechanisms might differ.
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Effects of a Priori Preferability vs.
Predictability on Free-choice Behavior
The main goal of our study was to investigate the effects of prior
probability and expected amount on risk-free, reward-balanced
choice behavior.We quantified choice probabilities (CP), and RTs
for the randomly interspersed choice trials.

Choice Probabilities (CP)
Choice probabilities (CP) depended on the bias degree in both
tasks (AMNT: t-statistic = 2.14, p < 0.05; PROB: t-statistic =

7.90, p < 10−9), however with a significantly smaller biasing
effect in AMNT task than in PROB task (interaction between
Bias and Tasks: t-statistic = −6.88, ∗p < 10 − 11). Bonferroni
corrected post-hoc t-tests revealed a graded biasing effect in the
PROB task, in which choice bias became stronger for each step of
bias degrees. In contrast, choice bias in the AMNT task showed
only a single significant step between balanced and [1/3] bias
degree, and no difference between different non-zero bias degrees
(Figure 3A).

Choice Reaction Times (RT)
Choice reaction times (RT) were only affected by bias degree
in the PROB task. GLMM showed a differential effect between
follow-against reaches in PROB task but not in the AMNT
task (interaction between Bias and Congruency: AMNT: t-
statistic = −1.91, p > 0.05; PROB: t-statistic = 7.02, p < 10−9).
The RT full model confirmed significantly different patterns of
RTs between tasks (interaction between Bias, Congruency, and
Tasks: t-statistic= 7.16, p < 10−9) with the PROB task showing a
significantly larger effect on RT benefits when following the bias

(interaction between Bias and Tasks: t-statistic= 8.49, p < 10−9).
In addition, a clear asymmetry of choice RTs was revealed in the
PROB task (PROB-against: CI = [−30.16, −4.44]; PROB-follow:
CI= [−92.78,−61.25]).

RTs in the choice trials showed a gradual increase in effect
strength with increasing bias degree only for benefits in the PROB
task. Post-hoc tests showed no significant RT differences between
individual neighboring bias degrees in the AMNT task but RTs
that increased gradually with the bias degree in follow-choices in
the PROB task (Figure 3B).

Notably, the RT benefit in follow reaches was comparable
between instructed and choice trials in the PROB task, while in
the AMNT task there was only a benefit for follow instructions,
not for follow choices (interaction between Bias and trial types:
AMNT: t-statistic = −1.21, p < 10−9; PROB: t-statistic = 7.02,
p > 0.05). This means, while predictability affected later choice
behavior in the same way as instructed behavior, in contrast,
preferability showed clear effects in instructed behavior but did
not generalize to the choice behavior.

No Effect of Doubling the Reward in the
AMNT Task
The observed limited effects of preferability as compared to
predictability might be due to lack of EV contrast. EVs cannot
be linearly translated into subjective expected utility which is
more directly linked to choice (Von Neumann and Morgenstern,
1944; Savage, 1954). To rule out this possibility, we conducted a
control experiment in which we doubled the reward amount ratio
between high- and low-value options.

FIGURE 3 | Biasing effects on free-choice responses. (A) Average choice probability (CP): fractions of choice toward the biased direction (at the zero-bias level,

as there is no biased direction, fractions of clockwise choice are presented), and (B) average reaction time (RT) difference (zero line indicates average RTs in instructed

trials of the zero-bias condition of each task) in all bias levels in AMNT (left) and PROB (right) tasks. Dark and light colors represent follow and against responses,

respectively. The error bars represent standard errors. (* p < αcorr at 5%, ** p < αcorr at 1%, *** p < αcorr at 0.1%, paired t-test with Bonferroni correction).
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Error Rates (ER)
Error rates (ER) depended on the instruction to follow or go
against the bias in the AMNT-double task. A GLMM showed
higher ERs when subjects were instructed to reach against the bias
than follow the bias (interaction between Bias and Congruency:
t-statistic = 3.86, p = 0.0001; N = 16). ER decrease in
response to follow instructions was significantly steeper than the
insignificant increase in response to against instructions. (against:
CI = [−0.40, 1.29]; follow: CI = [−5.00, −1.14]). Similarly to
the standard AMNT task, ERs decreased when subjects were
instructed to follow the bias (Figure 4A).

FIGURE 4 | Results of AMNT task with double reward size

(AMNT-double). (A) Average error rates, (B) average instructed RT difference,

(C) Choice probabilities, (D) average choice RT difference (zero line indicates

average RTs in instructed trials of zero-bias condition of each task) in all bias

levels. Dark and light colors represent follow and against responses,

respectively. Error bars represent standard errors. (* p < αcorr at 5%, ** p <

αcorr at 1%, *** p < αcorr at 0.1%).

Reaction Times (RT)
Reaction times (RT) depended on the bias degree in the AMNT-
double task similarly to the standard AMNT task. GLMMshowed
an overall differential effect of biasing degree on RT between
follow and against instructed reaches in both tasks (interaction
between Bias and Congruency: t-statistic= 7.10, p < 10−9). As in
the standard AMNT task, asymmetry was weak or absent in the
AMNT-double task, since the absolute values of the confidence
limits partly overlapped (against: CI= [14.43, 39.95]; follow: CI=
[−60.03, −30.71]). RT decrease in follow trials and increase in
against trials showed similar pattern as in the standard AMNT
task (Figure 4B).

Choice Probabilities (CP)
Choice probabilities (CP) showed insignificant increase with bias
degrees in the AMNT-double task (t-statistic = 1.62, p > 0.05),
and no CP difference was detected between the standard AMNT
and the AMNT-double tasks (interaction between Bias and Tasks
(AMNT vs. AMNT-double): t-statistic= 0.1114, p > 0.05).

Choice RTs
Choice RTs were not affected by bias degree in the AMNT-double
task. GLMM showed no differential effect between follow-against
reaches in the AMNT-double task (interaction between Bias and
Congruency: t-statistic= −1.91, p > 0.05).

CPs and choice RTs showed no difference between
neighboring bias degrees (Figures 4C,D).

In summary, doubling of the reward amount contrast between
high- and low-value options did not change the strength of
biasing effects in the AMNT task.

Subject Sub-grouping Based on Choice
Bias
CPs showed a weaker bias in the AMNT task than in the PROB
task on average across all subjects. We asked if this was because
some subjects showed no bias in the AMNT task, while others
might show a bias of the same magnitude as in the PROB task.
If so, would the pattern of RT results for subjects with a strong
CP bias in the AMNT task look similar to the pattern of RT
results in the PROB task? CPs across subjects varied, especially
in the AMNT task. We subdivided subjects depending on their
bias in the choice probabilities to test, first, if individual subjects
showed a choice pattern contrary to the average pattern described
above; and second, whether subjects’ choice behavior in choice
trials would predict the RT patterns in instructed and in choice
trials. Using a GLMM on each subject’s CP, we distinguished
three classes of subjects: CP-biased (significant positive slope),
CP-unbiased (slope not significantly different from zero), or
CP-counter-biased (significant negative slope).

Most subjects in PROB task were CP-biased (33 biased, 8
unbiased, and no counter-biased). In contrast, the majority of
subjects in the AMNT task were CP-unbiased (10 biased, 20
unbiased, and 3 counter-biased). Out of the 31 subjects who
participated in both experiments, 27 were biased and 4 were
unbiased in the PROB task. Out of these 27 biased subjects in
the PROB task, 9 were biased, 17 were unbiased, and one was
counter-biased in the AMNT task. And out of four unbiased
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subjects in the PROB task, two were also unbiased and two
were counter-biased in AMNT task. No subject showed CP-bias
in the AMNT task and was unbiased or counter-biased in the
PROB task. In summary, no individual subject showed a reversed
pattern of CPs in the AMNT task to the average pattern of CPs.

In the PROB task, RT benefits of instructed follow reaches
matched RT benefits when choosing follow reaches in choice
trials in both biased and unbiased subjects. GLMM showed no
interaction between Bias and trial types (instructed vs. choice)
in either subgroup [PROB (biased): t-statistic = 0.82, p > 0.05;
PROB (unbiased): t-statistic= 1.49, p > 0.05]. The biasing effect
differed between subject subgroups on instructed RTs but not in
choice RTs [interaction between Bias and subgroup: PROB (inst):
t-statistic= 2.83, p < 0.01; PROB (choice): t-statistic= 1.06, p >

0.05]. Notably, shorter RTs when choosing against bias seemed
to come from unbiased subjects while biased subjects showed
flat RTs in against trials of both tasks [AMNT-against (biased):
t-statistic = −1.96, p > 0.05; AMNT-against (unbiased): t-
statistic = −2.78, p < 0.01; PROB-against (biased): t-statistic =
−1.07, p > 0.05; PROB-against (unbiased): t-statistic = −2.86,
p < 0.01].

In summary, dividing subjects into CP-biased and CP-
unbiased subgroups showed that even the minority of subjects
who were biased in their choice behavior in the AMNT task lack
a biasing effect on choice RTs (Figure 5). This also means they
showed significantly different RT behavior between the AMNT
and PROB tasks and further supports the idea that the underlying
decision processes are different in both tasks.

FIGURE 5 | Responses of CP-biased subjects in AMNT task. (A) Choice

probabilities, and (B) average choice RT difference (zero line indicates average

RTs in instructed trials of zero-bias condition) in all bias levels. Dark and light

colors represent follow and against responses, respectively. The error bars depict

standard errors. (* p< αcorr at 5%, ** p< αcorr at 1%, *** p< αcorr at 0.1%).

Movement Times
Studies on motor planning had previously shown that invalid
pre-cueing can affect not only RT but also MT (e.g., Leis et al.,
2005).While classical DDMs to not considerMT, in the context of
affordance or motor-oriented models of decision-making, motor
kinematics can reveal additional insights (Gallivan et al., 2015).
The prediction would be that having to go against planned
movement should require any preliminary motor plan to be
suppressed and lead to slowermovement execution (Cisek, 2012).

Movement Time (MT) Analysis
GLMM showed a differential effect on MT between follow and
against reaches in both tasks, yet the effect in the AMNT task was
minimal (interaction between Bias and Congruency: AMNT: t-
statistic = 2.01, p < 0.05; PROB: t-statistic = 5.76, p < 10−8).
Correspondingly, the MT full model confirmed significantly
different patterns of MTs between tasks (interaction between
Bias, Congruency, and Tasks: t-statistic = −5.03, p < 10−6), and
a substantially higher MT of against reaches in the PROB task as
compared to the AMNT task (interaction between Bias andTasks:
t-statistic= 5.70, p < 10−7).

In the AMNT task, follow and against slopes did not
significantly deviate from zero (AMNT-against: CI = [−3.14,
11.55]; AMNT-follow: CI = [−12.82, 0.93]) whereas costs and
benefits of MTs in the PROB task showed clear asymmetry
(PROB-against: CI = [55.92, 107.2]; PROB-follow: CI =

[−17.82,−1.03]).
Notably, only MT cost in against trials of the PROB task

showed gradual biasing effect whereas MTs remained unchanged
in follow instructed trials in the PROB task (Figure 6), choice
trials in the PROB task, and all types of trials in the AMNT task
(not shown).

As previous studies showed that motor planning reduces
motor variability ( e.g., Harris andWolpert, 1998; Todorov, 2004;
Churchland et al., 2006), we tested as an additional confirmation
of the MT result, if there was a biasing effect on endpoint
variability (EPV), defined as the average distance of reach
endpoints to the mean reach endpoint for each target location. In

FIGURE 6 | Biasing effects on movement times (MT) instructed against

trials of the PROB task. Zero line indicates average MTs in instructed trials of

zero-bias condition. Dark and light colors represent follow and against

responses, respectively. Error bars depict standard errors. (* p < αcorr at 5%,

** p< αcorr at 1%, *** p< αcorr at 0.1%, paired t-test withBonferroni correction).
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congruence with MT results, GLMM showed significantly higher
EPVs of against reaches in the PROB task as compared to the
AMNT task (interaction between Bias and Tasks: t-statistic =

2.42, p = 0.01).
Also consistent with the MT results, EPV only in against

but not follow trials of the PROB task showed significant
deviation from zero (PROB-against: t-statistic = 2.69, p <

0.01; PROB-follow: t-statistic = 1.87, p > 0.05) while only
follow slope marginally deviated from zero in the AMNT task
(AMNT-against: t-statistic = −0.15, p > 0.05; AMNT-follow:
t-statistic=−2.29, p < 0.05).

In summary, only when being instructed against a bias in the
PROB task, subjects showed effects on motor execution, visible
by elevated MTs and EPVs with increasing bias degree. Neither
instructions to go against a bias in the AMNT task nor choosing
freely in any task had an effect on MTs and EPVs.

DISCUSSION

In our rule-based selection task with sequential cueing, we
informed participants about the probability (PROB task) or
reward amount (AMNT task) of a subsequent instruction. Using
interspersed, equal-valued, and risk-free choice trials, we probed
to what extent the a priori predictability or preferability of
the upcoming rule induced a behavioral bias in subjects. Our
results showed multiple biasing effects of movement planning
due to predictability when compared to conditions that dealt with
preferability of a goal but without planning being encouraged.
(1) Subjects’ responses were faster and less prone to errors in
instructed trials when the final instruction matched the more
likely or higher-valued rule (follow trials). (2) Responses were
slower and more error-prone when the instruction matched the
less likely or lower-valued rule (against trials). The strength
of follow and against effects was in general not symmetric.
(3) In the absence of an instruction, without any objective
advantage, subjects more frequently chose the originally more
likely rule, while this was true to a much lesser degree for the
originally higher-valued rule. Subjects gained a reaction time
advantage only in case of choosing the originally more likely
rule, not the originally higher-valued rule. (4) Having to go
against the more likely rule (but not against the higher-valued
rule) slowed movement times and raised endpoint variability,
while freely chosen movement execution was unaffected by prior
expectations. Our results indicate a structural difference between
decision biases resulting from predictability or preferability.
These results are not consistent with the idea that the value-based
decision process is a graded version of the probability-based
decision process, as suggested earlier. Instead our results suggest
that preliminary action planning is the major driving force for
pending choice behavior and acts via different mechanisms than
preference.

Probing Bias with Neutral Choice Trials
Inducing bias with instructed trials and probing bias with
choice trials was an important feature of our task design that
revealed differences between the consequences of predictability
and preferability. Previous studies have compared the effect of

prior probability with the effect of reward amount (“potential
pay-off”) on choice using partly ambiguous sensory evidence
(Maddox and Bohil, 1998; Simen et al., 2009; Leite and Ratcliff,
2011; Mulder et al., 2012). In one study, subjects had to decide
between two alternatives of a random dot motion stimulus, the
probability or the reward amount of which was announced at
the beginning of each trial and—different to here—guaranteed
until the end of the trial (Mulder et al., 2012). Choices were
risky due to the uncertainty about the evidence provided by
the partly ambiguous stimulus. Results showed a weaker effect
of potential payoff compared to prior probability. However, the
fact that the difference in value between options was known
from the start of each trial might have encouraged subjects
to preliminarily plan the corresponding action, since in risky
choices this would on average be advantageous. The fact that
both types of prior expectations led to RT differences was taken
as an indication for a shift of the DDM baseline in both cases.
The reduced strength of effect for prior value expectations
compared to probability expectations was accounted for by
assuming an intermediate baseline shift but otherwise equivalent
underlying mechanisms (Maddox and Bohil, 1998; Bogacz,
2007; Mulder et al., 2012). The competition-between-reward-
and-accuracy-maximization (COBRA) hypothesis (Maddox and
Bohil, 1998; Maddox, 2002) was proposed to explain the
intermediate baseline shift in these perceptual decision-making
experiments. In COBRA the reduced biasing effect of payoff
manipulation is due to a conflict between (biased) reward
and (unbiased) accuracy maximizing criteria, while both
criteria show (biased) synergistic effects in case of probabilistic
manipulation (Ashby et al., 1998; Maddox, 2002; Bogacz et al.,
2006; Mulder et al., 2012). While the intermediate-baseline-
shift model could account for the behavior observed in our
instructed trials it does not predict the observed patter of
CP and RT in the choice trials, as discussed in the following
paragraphs.

Two features of our experimental design helped to decide
whether biases induced by predictability and preferability can
be accounted for by the same mechanism. First, two sequential
cues provided subjects with the necessary information, with the
second cue either instructing a specific rule (100% evidence)
or allowing subjects to choose freely between both rules (rule-
neutral evidence). In the DDM concept, the onset of the second
cue (rule-cue), which also signals the subjects to immediately
make a reach, marks the initiation of the drift process. Obeying
causality, this implies that the rule-cue can only have an influence
on the drift period whereas the baseline could only be set by
the prior knowledge provided by the pre-cue. Importantly, as
the free-choice cue provides no additional evidence supporting
either rule, an effect of the prior information—either probability
or reward amount—on the baseline should persist in the choice
trials. In contrast, any effect of expectation that does not affect
instructed and choice trials in the same way cannot be mediated
by baseline changes but must indicate changes during the
drift process following the instructive rule-cue. As a second
important feature, we varied prior expectations gradually. If prior
expectations on value are based on the same mechanism as prior
expectations on probability (except for a scaling factor) then

Frontiers in Behavioral Neuroscience | www.frontiersin.org 13 November 2015 | Volume 9 | Article 315

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Suriya-Arunroj and Gail Interdependence of Planning and Choice

graded effects in one case should also result in graded effects in
the other case.

By introducing reward-neutral interspersed choice trials we
also avoided confounds between planning and motivation. If
a priori expected values and later actual values are always
identical, then motivational effects of the actually different
rewards (Franchina and Brown, 1971; Hollerman et al., 1998;
Hassani et al., 2001; Dayan and Balleine, 2002; Mir et al., 2011)
cannot be disentangled from the effect of a priori expectations on
the reward. This makes it difficult to account for potential effects
of action planning and motivation when assessing the effect of a
priori expected value compared to prior probabilities. Here we
compare a priori preferability and predictability in their effect
on equal-valued choice trials, thereby avoiding motivational
confounds.

Predictability Leads to Reduced Migration
Distance
Our results from the PROB task support the view that prior
probability affects migration distance in DDM. Equivalent effects
of probability bias were observed in instructed and choice trials,
allowing for a mechanism that starts prior to the rule-cue, i.e.,
during the DDM baseline period. In choice trials, in particular,
as subjects always received the same reward for each possible
choice, the reason that both options were not chosen equally
often cannot be due to a reward difference but must result from
the biasing effect of the prior probability. A reduction of the
migration distance to the boundary associated with the more
likely rule can well explain the ER and RT benefits observed for

following the biased rule by instruction and by choice, as well as
the CP shift in choice.

Further support for a reduced migration distance toward the
threshold of the predicted target (biased threshold) is provided by
a higher frequency of errors with fast RTs in case of instruction
to go against the bias. A short migration distance implies that
the threshold can be reached with small fluctuations toward the
biased threshold, which comes at the cost of wrongly choosing the
option associated with the closer boundary (Bogacz et al., 2010;
Heitz, 2014) thus occur at shorter RTs than correctly instructed
responses (Smith and Ratcliff, 2004; Brown and Heathcote,
2008).

However, the reduced migration difference toward the biased
threshold cannot have been achieved by a pure baseline shift.
With a pure baseline shift, one would expect symmetric costs
and benefits, since the migration distance toward one boundary
is reduced by the same amount as it is increased for the other
boundary (Figure 7A). Instead, we found that the ER and RT
benefits for following the bias were larger than the costs for going
against the bias.

Because of the direction of the asymmetry in our data, we
rule out that the biasing effects in the PROB task are explained
by a bias-proportional anti-symmetric change in drift rates. By
this, we mean an increased drift rate toward the biased option
and decreased drift rate toward the counter-biased option, each
proportional to the bias degree. In this case one would expect
a cost-benefit asymmetry opposite to the asymmetry observed,
i.e., larger RT costs than RT benefits (Figure 7B). This is because
in the DDM the RTs are reciprocally proportional to the drift
rate. Increasing drift rate hence leads to an RT benefit that is

FIGURE 7 | Predicted symmetric effect of baseline shift and asymmetric effect of drift rate change. (A) Baseline shift of the same magnitude should result in

symmetric RT cost-benefit whereas (B) RT shortening toward biased reach goal due to drift rate increase (vb+) (from the neutral drift rate: vi ) should be smaller than

RT cost toward counter-biased reach goal due to drift rate decrease (vb−) of the same magnitude (1). Partial boundary lowering (C) and drift rate increase (D)

explanations for asymmetric cost-benefit RTs in instructed reaches. 0, a, v, Z represent counter-biased boundary, biased boundary, drift rate, and baseline,

respectively. The subscript i indicates initial parameters in absence of any bias (non-biased trials) whereas subscript b represents parameters in case of bias with

higher number depicting higher degree of bias and + vs. − depicting parameters toward biased vs. counter-biased boundaries, respectively.
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smaller in absolute value than the RT costs associated with a
same-amount decrease in drift rate. This is the same logic that
explains how a drift-rate which symmetrically varies around
an average drift rate creates the typically observed left-skewed
RT distributions. While a pure baseline shift is not sufficient
to explain the behavioral results, the ER and RT data in the
PROB task also cannot be explained by a pure or an additional
bias-proportional anti-symmetric change in drift rate.

Rather, the asymmetry in gradual costs and benefits can be
explained withmodels that, in addition to the baseline shift, allow
(1) a bias-proportional gradually reduced migration distance by
a lowered boundary for the biased option or the counter-biased
option or both (Figure 7C) or (2) a bias-proportional symmetric
increase in drift rate toward both options (Figure 7D).

While the behavioral consequences of predictability were
largely equivalent between instructed and choice trials, there
were also two differences. First, RTs were overall 20–30ms slower
in choice trials, and, second, no RT costs were imposed when
subjects chose freely against the biased rule. Neither difference
contradicts the idea of a reducedmigration distance for the biased
option.

The average RT offset of 20–30ms is not surprising
since instructed trials always provided instantaneous and
unambiguous evidence whereas choice trials provided rule-
neutral evidence. Higher RTs for choice compared to instruction
could be due to: (1) a slower drift rate due to absence of
clear evidence in the choice case (Roitman and Shadlen, 2002;
Hanks et al., 2015); (2) higher decision thresholds in the case
of symmetric reward choice (Cavanaugh et al., 2006; Cavanagh
et al., 2011; Summerfield and Tsetsos, 2012); (3) an increased
duration of non-decision time, which delays migration initiation,
due to unclear stimuli (Mulder and van Maanen, 2013; Coallier
and Kalaska, 2014); or some combination of these possibilities.
Only processes that occur with or after the rule-cue can account
for differences between instructed and choice trials since subjects
were unaware of the trial type prior to the rule-cue. Unless
thresholds became adapted with presentation of the rule-cue,
this would argue in favor of different drift rates for instructed
and choice trials. As subjects had to respond within a fixed time
limit and waiting longer would not have provided additional
evidence, the exact amount of RT offset in choice trials is probably
determined by an internal urgency signal (Cisek et al., 2009).

The fact that we did not find an increasing RT cost for choices
against increasing bias is also consistent with the idea of a reduced
migration distance and can be explained by the stochastic nature
of the diffusion process in DDM (Brown and Heathcote, 2008;
Heathcote and Love, 2012). With neutral evidence provided by
the rule-cue, subjects will chose against the bias only when the
decision variable due to random fluctuations is coincidentally
around the level of the original baseline for counter-biased trials,
or even closer to the counter-biased boundary at the time of the
commitment to a choice. With an increasing shift in the baseline
away from the initial baseline level (toward the biased boundary),
against choices become less and less likely (explaining the CPs),
but against choice RTs are still independent of the degree of
choice bias since they always start with the same distance from
the counter-biased boundary (Figure 8).

In summary, our results from the PROB task confirm the
hypothesis of a reduced migration distance due to predictability.
This reduction is well-explained by the combination of a
bias-proportional baseline shift and either a bias-proportional
reduction in threshold separation or a symmetric drift-rate
increase.

Preferability has a Different Effect on
Choice than Predictability
A main question of our study was whether planning of an
optional action per se is responsible for later choice biases. We
therefore tested for differences in bias between conditions in
which an action is more likely to be requested later, compared
to when the same action leads to a higher potential reward in
the unpredictable case that it will be requested. Our results from
the instructed trials of the AMNT task fit the predictions of the
intermediate-baseline-shift hypothesis discussed above, while the
results from the choice trials do not.

Predictability and preferability cause structurally, not just
gradually, different behavioral bias. Consistent with earlier
findings (Maddox and Bohil, 1998; Simen et al., 2009; Leite and
Ratcliff, 2011; Mulder et al., 2012) and the intermediate-baseline-
shift hypothesis (Bogacz et al., 2006), we observed a stronger
biasing effect on ER and RTs in instructed PROB trials than
in instructed AMNT trials. Note that the bias degrees in our
experiment were carefully matched in terms of a priori expected
value between both tasks (seeMaterials andMethods). One could
still expect different subjective utilities between corresponding
bias degrees of both tasks, depending on the subject’s level of
risk aversion, e.g., devaluing the higher rewards of the AMNT
task which have only a 50% chance of becoming available in the
end. Yet, we do not think that differences in expected utility
explain the quantitative difference in the strength of biasing
effects between both task types for two reasons. First, doubling of
the contrast between high and low reward {3:3, 1:5, 0.5:8.5, 0:12}
in our control experiment did not alter the behavioral findings.
Second, our maximal RT benefit of approximately 20ms in the
AMNT task matched the magnitude observed in a previous study
with an even higher reward contrast of 20:1 (Staudinger et al.,
2011). Rather, the results suggest that however high the reward
ratio is, the RT costs and benefits driven by reward amount
manipulation do not reach the level of RT costs and benefits
observed with probability manipulation.

Our results suggest that preferability leads to drift rate
changes, not to baseline changes. First, we should have observed
similar patterns of biasing effects in the choice trials and the
instructed trials of the AMNT task if biasing effects in the
AMNT task were mediated by baseline shifts. Yet CPs were much
weaker and RT differences were absent in choice trials of the
AMNT task, suggesting an effect that occurs at the earliest at
the appearance of the rule-cue, i.e., an effect that is independent
of baseline shifts. Our results are therefore more compatible
with the idea that in the AMNT task the bias-dependent RT
costs and benefits are explained by drift rate adaptations that
reflect the final expected reward after integration of the rule-cue.
Therefore, in reward-balanced choice trials the subject’s initial
expectations are neutralized, leading to a lack of bias-dependent
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FIGURE 8 | Explanation of counter-biased choice. Z depicts the range in

which the stochastic baseline shift operates. Counter-biased choice is

possible only when the baseline shift in a given trial is still close to the initial

baseline (lightest gray horizontal dotted line in the middle). This explains the

pattern of choice RTs against the bias that are similar to choice RTs in the

zero-bias condition.

costs or benefits. The additional bias-independent fixed offset
of RT between choice trials and instructed trials is of the same
amount (20–30ms) as in the PROB task, hence is likely to have
the same mechanistic explanation.

Second, in the PROB task we found that RT benefits in
instructed and choice trials and CPs in choice trials gradually
increased with increasing levels of predictability. None of the
three gradual effects was observed with increasing preference
in the AMNT task. RT benefits in instructed trials and CPs in
choice trials increased more or less in a single step as soon as
the preferability was unbalanced, without a further increase with
increasing bias degree. These observations contradict the idea
that the effect of preferability is just an attenuated form of the
effect of predictability.

Taken together, biasing effects due to pure motor-goal
preferability are limited compared to predictability and likely
restricted to processes following the final rule instruction. Once
the final reward value is known after the rule instruction,
adaptation of drift rate could reflect motivational effects for
the immediately pending action, including shallow drift rates
corresponding to demotivation when subjects were instructed to
reach low- or non-rewarded targets.

Predictability and Movement Planning
As we illustrated with the real-world example in the introduction,
it is plausible to believe that an above-chance likelihood of later
being instructed to aim for a specific goal encourages movement
planning to achieve that goal. This should be the case in the biased
trials of our PROB task. In contrast, chance likelihood of either
goal renders preliminary movement planning toward one of the

two remaining options pointless, even with varying preference
for the two alternatives as in our AMNT task. This assumption
was supported by our observed movement kinematics. In
contrast to experiments requesting button presses (e.g., Maddox
and Bohil, 1998; Mulder et al., 2012), our subjects performed
extended reaches, allowing for such analysis. It was only in the
PROB task, and not the AMNT task, that we found significant
increase of MTs and EPVs when subjects had to go against an
increasing bias. This suggests countermanding of a preliminary
movement plan only in the PROB task. Based on neuronal
evidence from motor planning areas, it has been proposed that
whenmonkeys face multiple movement alternatives, the multiple
candidate actions are simultaneously reflected in the movement
planning activity of sensorimotor cortex preceding choice (Cisek,
2007; Scherberger and Andersen, 2007; Lindner et al., 2010; Klaes
et al., 2011); In particular, a non-preferred or unselected action
might not be completely suppressed before the chosen action is
initiated (Cisek, 2012). OurMT and EPV results showed an effect
on motor execution consistent with the idea of subjects having
to disengage from a predominating motor plan in favor of a less
predominating alternative plan in the PROB task only.

In summary, by dissociating preference-independent action
planning (biased PROB trials) from action-independent
preference (biased AMNT trials), we were able to link the
processes underlying predictability with action planning within
the DDM framework. According to this view, our results provide
evidence that action planning modulates the migration distance
in DDM, while preference modulates drift rate.

CONCLUSION

Our results suggest different mechanisms underlying biasing
effects of prior predictability and preferability in decision-
making. This finding supports the affordance competition
hypothesis (Cisek, 2007); preliminary competitive movement
planning in favor of one of two potential equal-valued movement
options can induce a graded choice bias and reaction time
advantage, while value-based preferences alone do not.
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