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Recent findings suggest the formation of myelin in the central nervous system by
oligodendrocytes is a continuous process that can be modified with experience. For
example, a recent study showed that immobilization stress increased oligodendrogensis
in the dentate gyrus of adult rat hippocampus. Because changes in myelination
represents an adaptive form of brain plasticity that has a greater reach in the adult brain
than other forms of plasticity (e.g., neurogenesis), the objective of this “proof of concept”
study was to examine whether there are differences in myelination in the hippocampi
of humans with and without post-traumatic stress disorder (PTSD). We used the ratio
of T1-weighted/T2-weighted magnetic resonance image (MRI) intensity to estimate the
degree of hippocampal myelination in 19 male veterans with PTSD and 19 matched
trauma-exposed male veterans without PTSD (mean age: 43 ± 12 years). We found that
veterans with PTSD had significantly more hippocampal myelin than trauma-exposed
controls. There was also found a positive correlation between estimates of hippocampal
myelination and PTSD and depressive symptom severity. To our knowledge, this is the
first study to examine hippocampal myelination in humans with PTSD. These results
provide preliminary evidence for stress-induced hippocampal myelin formation as a
potential mechanism underlying the brain abnormalities associated with vulnerability to
stress.
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INTRODUCTION

It is well known that our brains are constantly remodeling neuronal pathways as we learn
and experience the world around us. Exciting recent findings suggest that this remodeling
process is not just a property of neurons, but that oligodendrocytes, the main myelin forming
cells in the central nervous system, and their precursors are also adapting and changing
with experience (Young et al., 2013; Gibson et al., 2014; Long and Corfas, 2014). Furthermore,
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there is evidence that the formation of myelin is a continuous and
modifiable process that contributes to psychiatric disorders and
other diseases that affect cognition (Fields, 2008). For example, a
study that examined genes in prefrontal cortex of schizophrenic
brains found 35 of 89 abnormally regulated genes were involved
in myelination (Hakak et al., 2001).

Alterations in white matter tracts and myelin formation
have been noted in numerous mental disorders, including
posttraumatic stress disorder (PTSD; e.g., Daniels et al.,
2013). There are also hints that stress may affect white
matter through the regulation of oligodendrogenesis. For
example, glucocorticoid stress hormones are potent inducers
of pro-oligodendrogenic transcription factors and increase
oligodendrogenesis (Almazan et al., 1986; Barres et al., 1994;
Mann et al., 2008) andmyelination (Kumar et al., 1989; Tsuneishi
et al., 1991; Masters et al., 1994; Zhu et al., 1994; Cheng and de
Vellis, 2000; Desarnaud et al., 2000) in oligodendrocyte precursor
cell culture. Glucocorticoids have also been shown to dysregulate
myelination in utero (Antonow-Schlorke et al., 2009). Recently,
Chetty et al. (2014) reported that immobilization stress increased
oligodendrogensis in the dentate gyrus of adult rat hippocampus.
Because changes in myelination represents a form of adaptive
brain plasticity that has a far greater reach in the adult brain
(Young et al., 2013; Gibson et al., 2014; Long and Corfas, 2014)
than other forms of plasticity (e.g., adult neurogenesis), the
present study sought to examine whether vulnerability to post-
traumatic stress is similarly associated with myelin dysregulation
in humans.

Although myelinated axons are located predominately in
white matter, they also exist in gray matter (Hildebrand
et al., 1993; Nieuwenhuys, 2013). Because myelin co-varies with
T1-weighted (T1w) and T2-weighted (T2w) image intensity
from magnetic resonance images (MRI) in opposite directions
(Yoshiura et al., 2000), this makes it possible to estimate
the degree of myelination in the human brain in vivo
using ratio of T1w/T2w image intensity Glasser and Van
Essen (2011). In a validation of this method, Bock et al.
(2009, 2011) compared T1 and T1w/T2w image intensity
maps to myelin stains in the marmoset monkey. They
found that the myelin features of various cortical areas
(e.g., the primary visual, auditory, somatosensory, and motor
cortices) identified non-invasively with T1w/T2w image intensity
corresponded well with myelin stained sections in the same
animals. Another validation study showed that a post-mortem
T1w/T2w map of human somatosensory cortex had an intensity
border closely aligned with the myeloarchitectonically and
cytoarchitectonically defined border between areas 4 and 3a as
seen in histological stains of the same piece of tissue (Geyer et al.,
2011).

The objective of this ‘‘proof of concept’’ study was to use
the ratio of T1w/T2w image intensity to examine whether there
are differences in the degree of hippocampal myelination in
individuals with and without PTSD. Based on the findings of
Chetty et al. (2014), who focused on the hippocampus because of
its role in regulating memory and emotion and because it is the
site of some of themost significant neurological impact of trauma
(Sherin and Nemeroff, 2011), we hypothesized that veterans

with PTSD would have greater hippocampal myelination than
veterans without PTSD.

MATERIALS AND METHODS

Participants
Magnetic resonance imaging data from 38 males veterans (mean
age: 43 ± 12 years) were examined for this study. All participants
provided written informed consent approved by the University
of California at San Francisco and the Veterans Administrations
Committees on Human Research.

Twenty veterans included in the current analysis (8
PTSD+, 12 PTSD−) were recruited as part of a larger study
investigating the effects of service in the Persian Gulf War
on brain structure and brain function. Eighteen other veterans
(11 PTSD+, 7 PTSD−) were recruited from the outpatient
mental health clinic of the San Francisco Veterans Affairs
Medical Center and by advertising in the community. All
veterans participating in the study were evaluated by a Ph.D.
level clinical interviewer using the Structured Clinical Interview
for DSM-IV Diagnosis (SCID, First et al., 1995) the Clinician
Administered PTSD Scale (CAPS, Blake et al., 1995) and
an interview version of the Life Stressor Checklist-Revised
(Wolfe et al., 1996) to determine exposure to traumatic
events. The Life Stressor Checklist-Revised assesses 21 stressful
life events (e.g., experiencing or witnessing serious accidents,
illnesses, sudden death, and physical and sexual assault).
The SCID was used to diagnose current major depressive
disorder (MDD) and to rule out individuals with a lifetime
history of psychotic or bipolar disorders and alcohol abuse
or dependance within the previous 12 months and drug
abuse or dependance within the previous six months. Other
exclusion criteria were neurological illness, head trauma
with loss of consciousness greater than 10 min, medical
disorders affecting brain function, and conditions ineligible
for MRI.

All subjects with PTSD had traumatic exposure related to
combat. The trauma histories of the subjects without PTSD
included 16 individuals who served in combat, two who
experienced traumatic accidents, and one who experienced a
traumatic physical assault. The groups included amixture of Gulf
War (82%), Iraq (32%), Afghanistan (4%), Beirut (4%), Vietnam
(4%), and multiple (7%) theater exposure. Three subjects with
PTSD were taking antidepressant medications, two subjects
(1 PTSD+, 1 PTSD−) were on antiepileptic medication for
neuropathic pain, while four subjects (2 PTSD+, 2PTSD−)
had been prescribed atypical antipsychotic medication (i.e.,
Ziprasidone) for anxiety and depression. Eleven subjects
(9 PTSD+, 2 PTSD−) had a diagnosis of currentmajor depressive
disorder. Twelve subjects (7 PTSD+, 5 PTSD−) reported a
history of alcohol abuse or dependance. Five subjects (2 PTSD+,
3 PTSD−) reported a history of drug abuse or dependance.
On average, the episodes of alcohol/drug abuse/dependance
occurred 17.6 years (range, 1–42 years) before the study.
None of the episodes occurred within a year of the study.
Eighteen subjects (8 PTSD+, 10 PTSD−) had Gulf War Illness
(GWI) according to the Centers for Disease Control and
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Prevention (CDC) case definition (Fukuda et al., 1998). Six
subjects (3 PTSD+, 3 PTSD−) had suspected exposure to low-
levels of sarin as determined by information obtained from
the Directorate for Deployment Health Support of the Special
Assistant to the Under Secretary of Defense (Personnel and
Readiness) for Gulf War Illness Medical Readiness and Military
Deployments. US demolition operations at the Khamisiyah
ammunition point (case narrative) (2002). The demographics
and clinical characteristics of the participants are summarized in
Table 1.

Measures
We used the total CAPS score to assess current PTSD
symptom severity, the Hamilton Depression rating scale
(HAM-D; Hamilton, 1967) to assess depressive symptomology.

MRI Acquisition and Data Processing
Magnetic resonance imaging scans were acquired at the Center
for Imaging of Neurodegenerative Diseases at the San Francisco
Veterans Affairs Medical Center using a Bruker/Siemens Med-
Spec 4T MRI system (Bruker BioSpin, Ettlingen, Germany)
equipped with an 8-channel array receiver coil. The MRI scan
protocol consisted of a volumetric T1-weighted magnetization
prepared gradient echo sequence (repetition time, 2300 ms;
time following inversion pulse, 950 ms; echo time, 4 ms; 7◦

excitation pulses; 1 mm isotropic resolution) and a volumetric
T2-weighted turbospin echo sequence (repetition time, 3400
ms; echo time, 403 ms; 109 echoes per k-space segment with
variable flip angles; Slice Turbo factor = 2, FOV = 256 mm
× 224 mm × 176 mm, 1 mm isotropic resolution, and 176
continuous sagittal slices), acquired during the same scanning
session.

TABLE 1 | Sample characteristics.

PTSD− PTSD+

N 19 19
Age (in years) 43.0 (13.8) 42.7 (10.7)
No. (%) Caucasian 10 (53%) 12 (63%)
Education (in years) 14.8 (1.8) 13.7 (1.7)
CAPS 10.3 (9.5) 59.4 (15.8)∗∗

HAM-D 5.0 (6.1) 12.3 (5.5)∗∗

No. (%) with current MDD 2 (11%) 9 (47%)∗

No. (%) on psychotropic medication 3 (16%) 6 (32%)
No. (%) with history of alcohol abuse/dependance 5 (26%) 7 (37%)
No. (%) with history of drug abuse/dependance 3 (16%) 2 (11%)
No. (%) Gulf War veterans 13 (68%) 11 (58%)
No. (%) with Gulf War Illnessa 10 (53%) 8 (42%)
No. (%) with suspected sarin exposureb 3 (16%) 3 (16%)

Means (SD) or number (%) reported. Abbreviations: PTSD, post-traumatic stress

disorder, CAPS, Clinician Administered PTSD Scale, MDD, major depressive

disorder, HAM-D, Hamilton Depression Scale. Significantly different from PTSD−

at ∗p < 0.05, ∗∗p < 0.001. aaccording to Centers for Disease Control and

Prevention case definition (Fukuda et al., 1998). baccording to the Directorate for

Deployment Health Support of the Special Assistant to the Under Secretary of

Defense (Personnel and Readiness) for Gulf War Illness Medical Readiness and

Military Deployments. US demolition operations at the Khamisiyah ammunition

point (case narrative) (2002).

The T2w images were registered to the T1w images using
FSL’s FLIRT (Jenkinson et al., 2002) with six parameters (rigid
body) and the mutual information cost function. Next, the T2w
images were resampled using the trilinear interpolation onto
T1 imaging space. Finally, the T1w images were divided by the
aligned T2w images to estimate myelin content. As proposed by
Glasser and Van Essen (2011), T1w and T2w images were not
preprocessed for the signal intensity bias related to the sensitivity
profile of the radio frequency receiver coils before generating
the ratio image. Assuming that the signal intensity bias was the
same in both images, the signal intensity bias was mathematically
canceled by the ratio operator.

Because we were interested in estimating the degree of
myelination in the hippocampus, we did not perform surface-
based analyses of the T1w /T2w data as Glasser and Van
Essen (2011) had done. Instead, we conducted a region of
interest (ROI) analysis using the Freesurfer version 4.5 tissue
boundary delineation of the hippocampus (Fischl et al., 2004).
Specifically, we extracted T1w/T2w values from the T1w/T2w
images, whichwere in T1 space, from the Freesurfer hippocampal
ROI (see Figure 1). Because we did not have a priori hypotheses
about laterality differences and because Chetty et al. (2014) did
not report laterality differences, we averaged the estimates of
left and right hippocampal myelin to reduce the number of
measurements.

Analyses
Statistical analyses of the demographic, clinical, and T1w/T2w
values were performed using IBM SPSS Statistics, version
23. Demographic, descriptive, and clinical characteristics
were compared across the groups with student’s t-test for
continuous variables and Fisher’s exact of independance
for categorical variables. Because the Shaprio–Wilks test
indicated that the variables of interest (hippocampal T1w/T2w
ratio and CAPS) were not normally distributed, we used the
nonparametric Mann-Whitney test to examine group differences
in hippocampal myelin content and Spearman’s Rank-Order
correlation to examine the relationship between hippocampal
myelin content and current PTSD symptoms severity (i.e.,
CAPS).

RESULTS

Table 1 summarizes the demographic and clinical characteristics
of the 19 PTSD+ and the 19 PTSD− subjects. As expected, there
were no significant group differences in age, years of education,
race, history of alcohol and/or drug abuse/dependance, number
of GW veterans, number of veterans with Gulf War Illness,
or number of veterans with suspected sarin exposure. The
PTSD+ group had higher CAPS (t = 11.62, df = 36, p < 0.001)
and HAM-D (t = 0.83, df = 36, p < 0.001) scores and a higher
incidence of current MDD (p = 0.03, Fisher’s exact test).

There was a significant group difference in the estimate of
hippocampal myelination (p = 0.006, Mann-Whitney U-test;
see Figure 2). Bivariate correlations revealed significant positive
correlations between estimates of hippocampal myelination,
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FIGURE 1 | Graphical representation of the Freesurfer hippocampal region of interest (ROI) overlaid on a T1w/T2w intensity map.

CAPS (Spearman’s ρ = 0.38, p = 0.019), and HAM-D
(Spearman’s ρ = 0.46, p = 0.004) scores.

DISCUSSION

To our knowledge, this is the first study to examine the degree
of hippocampal myelination in humans with PTSD. We found
that veterans with PTSD had a significantly greater degree
of hippocampal myelination compared to matched, trauma-
exposed veterans without PTSD. The degree of hippocampal
myelination was also significantly and positively correlated with
current PTSD symptom severity. These findings, consistent
with the recent report in rats by Chetty et al. (2014), suggest
that vulnerability to traumatic stress may similarly dysregulate
myelination in the human hippocampus.

Chetty et al. (2014) showed that stress stimulated the
production of adult oligodendrocytes from neural stem cells
in the rat dentate gyrus. It is unclear if a similar mechanism
or if other mechanisms are responsible for the increased
hippocampal myelin content that we observed in veterans with

FIGURE 2 | Box and whisker plots of estimated hippocampal myelin
content in PTSD+ (dark gray) and PTSD− (light gray) veterans. ∗∗Group
difference significant at p < 0.01.

PTSD in the current study. For example, stress may promote
myelin synthesis in pre-existing adult oligodendrocytes (Young
et al., 2013). Alternatively, stress may stimulate the activity
of oligodendrocyte precursor cells in the parenchyma and the
subventricular zone. Whatever the mechanism, it is significant
that we found hints of maladaptive myelin development in
humans with vulnerability to stress because: (i) maladaptive
myelin formation has been implicated in other psychiatric
disorders (Fields, 2008); (ii) Changes in myelination represents
a form of plasticity that has a greater reach in the brain regions
implicated in PTSD (i.e., amygdala, anterior cingulate, insula,
and orbitofrontal region (Rauch et al., 2006; Shin et al., 2006)
than adult neurogenesis, which is limited to a small population
of neuronal stem cells (Schoenfeld and Gould, 2012); and (iii)
PTSD has been associated with white matter alterations (Daniels
et al., 2013).

Although our results concern myelination in the
hippocampus, a gray matter structure, as noted in the
introduction, myelinated axons are located predominately
in white matter. There are several white matter tracts associated
with the hippocampus and medial temporal lobe (MTL): the
performant path emerges from the entorhinal cortex and ends
in the dentate gyrus in the hippocampus (Knowles, 1992). The
fornix contains hippocampal projections to the mammillary
bodies and anterior nuclei of the thalamus (Nowrangi and
Rosenberg, 2015). The ventral cingulum bundle connects
parahippocampal gyrus to the posterior cingulate cortex (Jones
et al., 2013). Although it does not extend into the hippocampus,
the uncinate fasciculus connects the anterior temporal lobe to
lateral orbitofrontal cortex through a direct, monosynaptic,
bidirectional pathway (Von Der Heide et al., 2013).

Diffusion tensor imaging (DTI) is an imaging technique
that allows for the interrogation of the microstructural integrity
of white matter (Le Bihan, 2003). A few DTI studies have
attempted to investigate the performant pathway in vivo in
patients with mild cognitive impairment (MCI), an intermediate
stage between normal aging and Alzheimer’s disease (AD;Morris
et al., 2001), and AD. However, these studies were limited by low
resolution and the inability to specifically identify performant
pathway fibers (Kalus et al., 2006; Rogalski et al., 2009). Recently,
Yassa et al. (2010) used ultrahigh-resolution microstructural DTI
with submillimeter resolution to identify diffusion signals unique
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to the performant path. However, this technique has yet to be
applied to populations with PTSD.

In a meta-analysis of seven whole-brain DTI studies of
trauma-exposed adults, Daniels et al. (2013) identified significant
decreases and increases in fractional anisotropy (FA), a DTI
metric commonly used as a proxy measure for white matter
integrity (Alexander et al., 2007), in the dorsal cingulum. The
largest cluster in the right dorsal cingulum pertained to FA
decreases; however, Daniels et al. (2013) also identified clusters
of FA increases and FA decreases bilaterally in other sections
of the dorsal cingulum. In a longitudinal study of treatment-
related DTI differences in remitted and persistent PTSD patients
and combat controls, Kennis et al. (2015) suggested that higher
FA in the dorsal cingulum bundle may be an acquired feature
of persistent PTSD that develops over time. Kennis et al.
(2015) also found significant group by time interactions in the
hippocampal (ventral) cingulum, fornix, and stria terminalis,
which they suggested might reflect the differential effects that
PTSD treatment may have on FA in these white matter tracts in
remitted vs. persistent PTSD patients.

It is noteworthy that the Kennis et al. (2015) did not find
significant overall effects of group or time in hippocampal/MTL
white matter tracts. In fact, no DTI studies of populations
affected by PTSD to date have reported significant DTI changes
in hippocampal or MTL white matter tracts. In contrast,
numerous DTI studies of patients at risk for AD (Mielke et al.,
2012; Douaud et al., 2013) and MCI (Fellgiebel and Yakushev,
2011; Liu et al., 2011; Zhuang et al., 2012, 2013; Ito et al.,
2015) have reported significant DTI changes in the fornix and
hippocampal cingulum. It is well documented that the hallmarks
of AD pathology begin in the transentorhinal region of the brain
(Braak and Braak, 1991). Therefore, it may be there are greater
structural white matter alterations in the hippocampus and MTL
of patients with MCI and pre-clinical AD than patients with
PTSD. Alternatively, the lack of PTSD−related DTI findings
in the hippocampus and MTL may be attributable, as least in
part, to the fact that most DTI studies of PTSD have only
examined FA.

It has been suggested that other DTI parameters (i.e., axial
and radial diffusivity) may be more sensitive to changes in axonal
morphology and myelination than FA (Tyszka et al., 2006). For
example, there is suggestive evidence that radial diffusivity is
particularly sensitive to changes in myelination (Song et al., 2002,
2003, 2005). Because few DTI studies of PTSD have considered
radial diffusivity, this may, at least in part, account for why past
DTI studies of PTSD have not reported significant findings in
the hippocampus or MTL. As a case in point, in a previous DTI
study of veterans with and without PTSD, 18 of whom are part of
the present report, our group did not find any significant medial
temporal FA differences (Schuff et al., 2011). However, this study
did not examine radial diffusivity. Thus, future studies will need
to determine if vulnerability to trauma-related stress and PTSD
has a similar effect on myelination in hippocampal white matter
tracts as it appears to have in hippocampal gray matter.

In the central nervous system, myelin insulates and
protects axons and facilitates the conduction of nerve impulses
(Barkovich, 2000). Therefore, the loss of myelin can result in

reduced nerve conduction velocity, reduced millisecond axonal
precision, and reduced range of cortical synchrony. These,
in turn, could impact the overall speed of mental processes,
spike-timing dependent plasticity, and/or functional connectivity
(Nave and Ehrenreich, 2014). However, having an excess of
myelin, particularly in gray matter structures, may also have
negative consequences. For example, there is evidence that
myelin inhibits synapse formation and reduces plasticity in
the central nervous system (Chen et al., 2000; McGee and
Strittmatter, 2003; McGee et al., 2005), that oligodendrocytes
inhibit axon growth cones (Fawcett et al., 1989; Bandtlow et al.,
1990; Morganti et al., 1990), and that oligodendrocytes precursor
cells are repulsive for growing axons (Chen et al., 2002a,b).
Because the formation and elimination of axons and synapses
are critical for learning and memory (Kleim et al., 2002, 2004;
Holtmaat and Svoboda, 2009; Xu et al., 2009; Yang et al.,
2009; Boele et al., 2013), one consequence of excessive myelin,
particularly in the hippocampus, may be a reduced ability to
learn and remember (Squire and Alvarez, 1995). In this context,
it is noteworthy that memory disturbances are predominant
in the presentation of PTSD (Samuelson, 2011) and are part
of the diagnostic criteria (American Psychology Association,
2013).

The present findings should to be considered within the
context of a number of limitations: First, the sample was
small and these preliminary findings of increased hippocampal
myelination in individuals with PTSD will need to be replicated
in a larger sample. Second, the inclusion of only male
veterans may limit generalizability of the findings. Third, the
Glasser and Van Essen model, which depends on a relatively
simplistic model of bound and unbound water, may not
be unambiguously specific for myelin. Fourth, we did not
perform a surface-based analyses of the T1w/T2w ratio data
as described by Glasser and Van Essen (2011) because we
were primarily interested in examining myelination in the
hippocampus. Thus, future research will need to investigate
whether vulnerability to stress promotes myelin changes in
other brain regions that have been implicated in PTSD (i.e.,
amygdala, anterior cingulate, insula, and orbitofrontal cortex;
Rauch et al., 2006; Shin et al., 2006). Also, because PTSD has
been associated with white matter alterations (Daniels et al.,
2013), future investigations should examine/compare myelin
changes in gray and white matter using T1w/T2w ratio and
radial diffusivity, which has been proposed be sensitive to
alterations in myelination (Song et al., 2002, 2003, 2005).
Fifth, we cannot be certain of the specificity the present
findings to PTSD because many of the PTSD subjects had
comorbid depression. However, assembling a PTSD group
that is free of depressive symptoms is unlikely to generalize.
Furthermore, there has been evidence that calls into question
whether PTSD and depression are distinct entities among
individuals exposed to trauma given the common criterion
symptoms (Elhai et al., 2011). Other limitations include potential
partial volume effects and the cross-sectional nature of the
study, which limits our ability to determine causality and the
subjective nature of patient history and clinical scores, which
may be biased by under- or over-reporting. These limitations

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 December 2015 | Volume 9 | Article 333

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Chao et al. Increased Hippocampal Myelin in PTSD

notwithstanding, the current findings, if replicated, suggest that
stress-induced myelin formation in the hippocampus may be a
potential mechanism underlying the structural and functional
brain abnormalities associated with vulnerability to stress.

Longitudinal research will be needed to better understand how
myelin changes in gray and white matter brain structures
throughout the course of PTSD and in response to treatment for
PTSD.
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