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Here, we propose a new approach to defining nerve “cell types” in reaction to recent
advances in single cell analysis. Among cells previously thought to be equivalent,
considerable differences in global gene expression and biased tendencies among
differing developmental fates have been demonstrated within multiple lineages. The
model of classifying cells into distinct types thus has to be revised to account for this
intrinsic variability. A “cell type” could be a group of cells that possess similar, but not
necessarily identical properties, variable within a spectrum of epigenetic adjustments
that permit its developmental path toward a specific function to be achieved. Thus,
the definition of a cell type is becoming more similar to the definition of a species:
sharing essential properties with other members of its group, but permitting a certain
amount of deviation in aspects that do not seriously impact function. This approach
accommodates, even embraces the spectrum of natural variation found in various cell
populations and consequently avoids the fallacy of false equivalence. For example,
developing neurons will react to their microenvironments with epigenetic changes
resulting in slight changes in gene expression and morphology. Addressing the new
questions implied here will have significant implications for developmental neurobiology.
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DETERMINATION OF CELL TYPES

Fundamental to modern cell biology is the idea of a cell type: a group of cells that shares
similar properties and performs certain biological functions. During the past several decades,
this basic idea has had to be adapted to multiple technological advances that challenged the
way we identify and classify cells. We have now observed both variability in gene expression
and functional differences in cells that could be considered the same cell type (Sheng and
Greenberg, 1990; Rossi et al., 2005; Beerman et al., 2010; Blanpain and Fuchs, 2014; Marder
et al., 2015). Understanding cell type classification in the context of these new technologies is
a particular challenge for fields that study complex organs with many different cell types, such
as neuroscience and immunology. Both disciplines face the daunting task of having to classify
cells that may be similar in appearance and that alter gene expression patterns in the course of
their normal function. Here, we address the evolution of the concept of cell type throughout
history, the impact of new technologies, and how this concept might have to evolve in the future.
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The concert of cell type continues to evolve, and in the
nervous system, initial investigations of cell types, such as the
pioneering work of Santiago Ramon y Cajal, relied both on
morphology and location within the body (the brain and the
gut). Due to the large variability of morphology found in distinct
neuronal subtypes, it was possible to define many neurons such
as pyramidal cells within the cortex and the interstitial cells of
Cajal, the pace makers of the gut (Ramon y Cajal, 1909). Thus,
initially, if a cell was located in a particular region of the brain and
it possessed a certain appearance, it was classified as a particular
type of neuron.

However, using morphology as the main designator of a
neural cell type can cause a problem; not all neurons have a
distinctivemorphology. For example, simple, bipolar neurons are
found in many regions of the central nervous system (CNS), but
there has been no way to tell, from morphology alone, whether
their biological functions are similar to, or significantly different
from each other. The question then becomes; how do you really
know whether two cells are the same ‘‘type’’? If appearance is not
the answer, what is?

MARKERS TO THE RESCUE?

Because the function of any cell is so dependent on its
biochemistry, molecular characterization of cell types appears
to be the next logical step. With the advent of revolutions in
molecular biological methodology, it has become possible to
characterize cell types further based on expression of ‘‘marker’’
genes, generally connected with their function. This idea has
been enormously useful in neuroscience, particularly when
discussing the signalingmolecules that endow neuronal cells with
their unique properties. For instance, a dopaminergic neuron
must, by definition produce the enzymes necessary for making
dopamine, and orexin neurons must produce orexin. By using
marker genes, visualization of the cell gives clues to its function.
Such a feat is impossible using even the most beautiful Golgi
stain. Thus, the signature molecules of a particular neuronal
cell type provide a more sophisticated route to cell type
classification.

However, a cell type generally has multiple genes that are
crucially necessary for function, and thus, the use of markers also
presents a complicated problem with regard to the interpretation
of cell type. For instance, orexin knockout mice (Chemelli et al.,
1999) possess lacZ and neomycin resistance cassettes inactivating
the orexin gene. Thus, instead of producing orexin, they produce
β-galactosidase, an enzyme of bacterial origin that is capable
of hydrolyzing sugars and turning certain colorless substrates a
bright blue color. Despite the fact that the neurons in this mouse
produce β-galactosidase and not orexin, they are still classified
as ‘‘orexin’’ neurons, not β-galactosidase producing neurons.
While on the surface, this point may seem obvious, it reveals
that we actually define cell type by function, developmental
history, and location, not gene expression by itself—even when
the expression of a particular gene is required for a cell to
perform its function. The fact that these neurons transcribe the
genetic locus that used to encode orexin is their defining feature,
regardless of the fact that in the mutated cells, this locus now

encodes a completely different protein. Thus, the expression
of a particular marker cannot by itself define a cell type, as
in certain circumstances (e.g., mutations) a cell can still be a
particular ‘‘type’’ without expressing the molecule that is crucial
for function.

EPIGENETIC MODIFICATIONS—CRUCIAL
DETERMINANTS OF GENE EXPRESSION

Since both morphology and marker expression by themselves are
insufficient to define a cell type, how can such a determination
be made? A strong argument could be made for epigenetic
modifications, as they are determined by developmental history
and cell origins, and clearly are necessary to regulate gene
expression (Bird, 2007). Several types of epigenetic modifications
exist, and major efforts are now being undertaken to understand
the implications for gene regulation (Benveniste et al., 2014;
Maze et al., 2014a,b).

For instance, DNA methylation has been thought until
recently to be indelible due to the complexity of the chemical
bond, until evidence for active DNA demethylation (Oswald
et al., 2000; Hajkova et al., 2002), and subsequently, active
DNA demethylases was discovered (Hackett et al., 2013; Moen
et al., 2015). Analysis of DNA methylation in individual cells
(bisulfite sequencing) shows considerable variability within cell
populations, even in genetically identical individuals (Fraga et al.,
2005; Martino et al., 2013). Based on current data, this variability
is unlikely to decrease as technological progress is makes the
techniquemore precise, as it appears to reflect intrinsic biological
variability (Mo et al., 2015). Even in more recent large-scale
methylation analyses of multiple loci conducted on individual
pluripotent cells with single-molecule resolution that are able
to retrospectively group cells according to methylation patterns,
there is considerable variability in the amount of methylation
molecule-to-molecule (and certainly CpG to CpG), necessitating
hierarchical clustering and other statistical approaches to derive
patterns from the data (Wernig et al., 2007; Meissner et al., 2008;
Chavez et al., 2010). Thus, while a ‘‘signature’’ DNA methylation
profile for a cell type may be derived, it may not always be
applicable to individual cells, due to what currently appears to
be intrinsic variability.

The above observations may of course change, because—as
all biologists recognize—distinguishing ‘‘genuine’’ biological
variability, which reflects real differences in gene expression
or modification, from technical variability, which is a result
of sampling error while running an experiment, presents a
considerable problem. This is especially true in techniques where
cells must be destroyed to make the analysis, precluding
post hoc functional correlation. The DNA for bisulfite
sequencing is usually isolated from populations and cells
are destroyed during the analysis. Thus, reconstruction of
their functional history is a challenge, though single cell
approaches are currently in development (Farlik et al., 2015).
A further technical complication is the inability of bisulfite
sequencing and enzymatic approaches to distinguish between
5-methylcytocine (5-mC), and 5-hydroxymethylcytosine
(5-hmC), the intermediate DNA modification found during
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active demethylation, and has been implicated in several
biologically important processes (Nestor et al., 2010;
Freudenberg et al., 2012; Teif et al., 2014). Due to the
distinctive biological functions of 5-mC and 5-hmC, the
interpretations of the results of bisulfite sequencing are
therefore complicated, as without knowing the exact nature
of the chemical DNA modification, functional consequences
are not necessarily predictable from the data. Even more
vexingly, even if gene expression can be tied directly to the
prevalence of signal from bisulfite sequencing, it would be
unclear whether 5-mC or 5-hmC is responsible for causing that
change.

DNA methylation is not the only epigenetic modification
the implications of which for gene expression and function
are not fully understood. While certain types of histone
modifications are thought to serve as hallmarks of a particular
developmental state and/or type—for instance, the so-
called ‘‘bi-valent’’ modification are a sign of a progenitor or
pluripotent cell (Bernstein et al., 2006)—but the relationship
between histone modification and gene expression is not
straightforward. Additionally, most analyses of histone
modifications address aggregate cell populations, rather
than individual cells. For genome-wide analysis of histone
modifications, the current state of the art is 103 cells, and
Western blots require large numbers of cells (Brind’Amour
et al., 2015). Thus, while analysis of histone modifications can
be used to bolster an argument that a particular cell population
exhibits a histone signature of a particular ‘‘type’’, making
such a determination on the basis of histone modifications
alone is currently impractical. Like DNA methylation, it
is possible to classify cell populations based on chromatin
states (Ernst et al., 2011), but due to the current impossibility
of single-cell analysis, the reverse (classifying individual
cells into types based on chromatin state) is technologically
not feasible. Thus, it may be a little while before histone
modifications are used as part of the definition of cell
type.

USING RNAseq TO DETERMINE CELL
TYPE

Using gene expression as part of cell type classification is logical
both because it at least partially reflects the proteins found
in—and thus the biochemistry—of a cell, and also as it is
the presumed direct output of epigenetic modification. Current
technology focuses primarily on RNA expression, allowing
relative quantification of RNA on a single-cell level (Tang et al.,
2010a; Islam et al., 2014; Jaitin et al., 2014; Pollen et al., 2014;
Saliba et al., 2014; Treutlein et al., 2014; Wu et al., 2014; Zeisel
et al., 2015). The power of single-cell RNAseq relies at least in part
on statistical methods of clustering individual cells according to
their gene expression patterns (Tsafrir et al., 2005; Hebenstreit,
2012; Jaitin et al., 2014; Saliba et al., 2014; Treutlein et al.,
2014; Wu et al., 2014; Satija et al., 2015). Hierarchical clustering
approaches allow the classification of single cells within a tissue
into distinct cell types, without a-priori assumptions about
expression of markers, etc (Tsafrir et al., 2005; Jaitin et al., 2014;

Pollen et al., 2014; Treutlein et al., 2014). Such an approach would
likely help identify the ‘‘natural’’ cell types within populations,
and may reveal differences between cell type classification and
identifying markers.

For neuronal populations, in particular single cell RNAseq
appears to reveal an unexpected molecular complexity (Lodato
et al., 2011; Molyneaux et al., 2014; Lodato et al., 2015;
Macosko et al., 2015). How this apparent inconsistency in
gene expression within a cell type contributes to the protein
content or function of cells remains to be seen. Because cells
are destroyed for RNAseq, it is impossible to follow them
over time. It is possible that the variation of gene expression
is due to environmental factors, or alternately, that it is
‘‘permissible’’ within a given cell because post-transcriptional
regulation ensures a standard complement of proteins and
therefore, standardized function. Alternately, it is also possible
that such variability is an intrinsic feature of cells, with multiple
cell types existing on a continuous spectrum that overlaps.
More sophisticated technologies are needed to address this
question.

In addition to uncertainty with regard to post-transcriptional
regulation, it is currently impossible to combine RNAseq with
techniques to detect differences in rates of translation, rates
of protein degradation, and post-translational modifications in
cell types. While gene expression may indicate that a protein is
likely present, most protein are active only if they are within an
appropriate compartment in a cell, and it is not currently possible
to elucidate protein localization in cells used for RNAseq, though
high throughput techniques to determine protein localization are
currently being developed (Briley et al., 2015). Other techniques,
such as retrograde tracing with viruses also need to be combined
with RNAseq in order to narrow the search for gene expression
to neurons projecting to specific brain regions (Ekstrand et al.,
2014).

An even more daunting challenge for researchers using
single-cell RNAseq for cell type identification is the question
of how gene expression correlates with function, especially
given the need to define cell types increasingly by function
(Kepecs and Fishell, 2014). Especially in the context of studies
indicating that cell molecular diversity is greater than the current
known functional diversity, this is a considerable challenge.
RNAseq produces huge quantities of data, and the effect of
every gene expression change on functionality, especially in
the context of the nervous system, cannot reasonably be tested
with current technology. Additional problems arise when a
researcher is using RNAseq to prove that a cell type in vitro is
sufficiently similar to an in vivo cell type to perform functional
tests, and even more so when the in vivo cell type is not
readily available, such as in the case of human neuronal
cell types derived from human pluripotent stem cells. Thus,
RNAseq, and especially single-cell RNAseq are excellent tools
for exploring the limits of what it means to be a cell type,
due to their capacity to detect large numbers of molecular
variations within a cell. However, data from these analyses must
be interpreted with caution, especially in light of a paucity
of information on post-transcriptional and post-translational
regulation.
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MULTIMODAL GENE EXPRESSION IN
CELL TYPES OUTSIDE THE NERVOUS
SYSTEM

While the primary focus of this discussion is on the nervous
system, it is important to note that multiple cell types that
interface with the nervous system show similar multimodal
gene expression and functional variability. Especially crucial
for a system that interfaces intensively with the CNS, different
immune cells can have differential expression of protein levels,
phenotypic output and gene expression resulting in functional
variation (Bengtsson et al., 2005; Raj and van Oudenaarden,
2009; Feinerman et al., 2010; Kalisky et al., 2011; Shalek et al.,
2013). For example, dendritic cells (DCs) the primary antigen
presenting cells and immune modulators—may not all be the
same simply because they express the same cellular markers.
When subpopulations of immune cells are sorted based on
surface antigens, we assume that the surface antigens are
reflections of the biological function of the cell. For instance,
if we want to obtain B cells we will sort for B lymphocyte
antigens positive (CD20 or CD19) cells. Notably, CD19 is
also expressed on follicular DCs. Even beyond the caveat
of non-specificity, these so-called ‘‘marker genes’’ are not all
equally crucial for the function of the cell type that they
define.

In some cases, knocking out the marker of an immune
cell population does very little to alter the functionality of
this population, while in others, all functionality is lost. For
instance, CD11b (Mac-1) knockout mice, while they have slight
aberrations in the function of monocytes (CD11bhi), still possess
that cell type which is mostly able to fulfill their function (Lu
et al., 1997). Despite the relative normalcy of monocytes in
these knockouts, CD11b appears to be crucial for the function
of neutrophils, as this cell population exhibits major defects
in knockout mice. In a more extreme case, when CD4 T cell
receptor is knocked out in mice, these animals lose almost the
entire population CD4+ T cells (Rahemtulla et al., 1991). With
the advent of single cell RNA sequencing, it is likely that both
the molecular signatures and the molecular diversity of various
immune cells will be identified. This will present additional
challenges with regard to classifying populations of immune
cells and their functions, and will have significant implications
for the study and treatment of neurodegenerative diseases and
infections.

Because immune cells have both active and inactive states,
and also multiple states of maturation, there is additional
complexity in interpreting gene expression data from these cells.
For instance, in order to investigate the heterogeneity of immune
cells, DCs were derived from bone marrow and stimulated with
lipopolysaccharide (Shalek et al., 2013). The researchers found
differences in RNA splicing patterns and levels, which were used
to show cell heterogeneity (Shalek et al., 2013). Additionally,
immune cell that had similar bimodal expression of genes may
be closely related, reflecting different cell maturity states. Thus,
cells that are technically the same ‘‘cell type’’ can have very
different gene expression patterns, depending on their functional
state.

This property of multiple gene expression signatures within
the same cell type appears to be wide spread. For instance,
in stem cell compartments in epithelial tissue, gene expression
and functionality can be bimodal: the cells can display altered
properties depending on whether they are activated or quiescent.
Despite these differences, epithelial stem cells share the property
of ‘‘stemness’’, and their behavior is determined by their niche
(Blanpain and Fuchs, 2014). Even in the earliest cells resulting
from the first cell division of the zygote, functional differences
in their properties may be observed (Tabansky et al., 2013).
Thus, while a group of cells with very similar functional
properties (i.e., different types of neurons) may be considered
different cell types, cells with very distinct molecular profiles
(i.e., epithelial stem cells) may be considered to be the same cell
type.

The functional and molecular properties of cells can
also shift with age, as found in the hematopoetic system.
With age the population of hematopoetic progenitors shifts
produces increased numbers of myeloid cells, at the expense of
lymphoid cells (Rossi et al., 2005; Beerman et al., 2010). While
hematopoetic cells remain hematopeotic cells, their function and
gene expression patterns shift considerably, potentially resulting
in a decrease in immune function and increased rates of leukemia
(Rossi et al., 2005; Beerman et al., 2010). Thus, a cell type
can show a large amount of variation in gene expression and
function, while remaining the same cell type.

In all the examples described above, the cell types have
a function whose outcome is readily measurable. This may
be because a precise functional definition makes cell type
classification more clear, making it easier to determine
whether the molecular variability necessitates classifying
certain cells as multiple cell types. In contrast, the nervous
system comprises a large number of closely interrelated
cell types that all function together, making functional
definition of cell types a daunting challenge. Adding to
the complexity is the fact that the final output of the
system (behavior and physiological functions) requires so
many different components that it is nearly impossible to
deconvolute what, exactly, each cell type contributes to the
system without extensive work. However, if we take a lesson
from other cell types, it is likely that individual neuronal
cell types are not standardized in their functional output or
gene expression. In fact, there are many potential sources
that must be considered when analyzing variation of gene
expression in neurons, including circadian cycles (Ko et al.,
2001).

Eve Marder (Grashow et al., 2010; Tang et al., 2010b) has
already faced the questions of neurophysiological similarity
in neurons performing different functional roles level. In
the context of system performance by a complex neural
circuit, obsession with fixed averages, highly tuned, often
would not be appropriate: by avoiding a focus on each
individual component of a system, and being sensitive to
relations between components, ‘‘permitted’’ variability might
be understood. In particular, compensation in the value of
one parameter to variations in another will be important to
study. For example, using four neurons or types recorded
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from the crab stomatogastric ganglion, each of which showed
marked variability for each intrinsic property considered,
(Grashow et al., 2010) were able to report that under
some conditions similar circuit performance was achieved
despite marked variability within ‘‘neuronal types’’. Notably,
the stomatogastric ganglion functions well in the presence
of a variety of rhythmic activities (Bucher et al., 2006)
perhaps, precisely, because these temporal patterns show
‘‘bidirectional interactions and coordination’’ (Marder et al.,
2015).

This approach to variability within neuronal activities
is rare because more complex neuronal systems have not
had individual neuronal ‘‘types’’ so well characterized.
However, due to their unique shape and distribution of
functions, pyramidal neurons in the primate cerebral cortex are
similarly amenable to analysis of variation in electrophysiology,
numbers of dendritic spines and architecture of dendritic
trees. Importantly for researchers working on common model
organisms, the structure of pyramidal neurons in the cortex
is different in different species of animals, perhaps reflecting
differences in function (Elston, 2007). In even more striking
results, individual neocortical neurons appear to change in
neurophysiological properties and dendritic arborization
throughout the lifetime of the animal (reviewed in, Jacobs
and Scheibel, 2002; Spruston, 2008; Elston and Fujita, 2014),
thereby undermining the concept that cortical ‘‘cell types’’
have are functionaly equivalent throughout the lifetime
of the animal or in different locations a particular brain
region.

On a molecular level, the gene expression patterns of
the neurons in the cerebral cortex are increasingly being
characterized on a single-cell level (Lodato et al., 2011, 2015;
Molyneaux et al., 2014). The results of these analyses indicate
that the molecular features of the neurons are integral to the
types of projections that these cells make, and also that the
molecular diversity of cell types far exceeds the diversity of
cell types observed by electrophysiology and morphology. Thus,
at least in the cerebral cortex, neurons that are anatomically
analogous (appear to have similar function, but perhaps different
developmental origins) may in fact be homologous in terms
of gene expression (do not perform the same function on
a molecular level, but appear similar). This is particularly
important as slight variations in the types of neurons present,
especially during development, could alter the local micro
circuitry, (Lodato et al., 2011, 2015; Molyneaux et al., 2014) with
potential consequences for behavior and mental health.

The variability of gene expression and physiological
properties based on functional state is an issue that needs
to be addressed when definitions of cell types—particularly
neural cell types—are considered.

ARGUING SIMILARITIES BETWEEN CELL
TYPE-LOGIC AND SPECIES-LOGIC

Given the biological complexities of classifying cells, a decision
must be made about what sorts of criteria can be reasonably
used to distinguish cell types. In many ways the idea of a cell

type is very similar to the idea of a species: it exists both as a
biological entity and a concept that allows convenient parsing of
individuals into simple groups. In evolutionary biology, multiple
definitions of species exist, even though the most commonly
used is the biological species concept (Futuyma, 1998). As a
result, species as defined in one concept will not necessarily be
species as defined by another. Notably, after molecular analysis
of the genetics of species became possible, new definitions of
species were proposed. One of these definitions, the genealogical
species concept, relies on the presence of consistently different
alleles at the same genetic loci in two different populations
of animals (a monophyletic gene tree; Futuyma, 1998). Thus,
populations are grouped by consistent genetic differences (with
some caveats), similar to hierarchical clustering used to group
populations of cells into cell types by RNA-seq (Futuyma, 1998).
Thus, both cell type classification and species classification can
vary dependent on the complexity of information used to make
the distinction; but using more complex information is not
always more accurate.

The genealogical species concept, which is based on a
variety of genetic information sometimes prevents appropriate
classification. Using the genealogical species concept sometimes
divides the biological unit constituting a group of interbreeding
individuals into multiple subgroups, and occasionally clusters
two distinct biological units together (Futuyma, 1998). In this
way, the challenges faced by the genealogical species concept
are no different from challenges faced by hierarchical clustering:
how do you determine whether the ‘‘cell type’’ identified by
RNAseq is a true biological unit? For instance, if one cell
expresses c-Fos and another does not, they are still likely to be the
same cell type displaying different functional states (Sheng and
Greenberg, 1990). In contrast, a dopaminergic neuron that does
not express appreciable levels of tyrosine hydroxylase (or at least
activated the tyrosine hydroxylase gene, if it is mutated) is not
a dopaminergic neuron, as this enzyme is crucial for dopamine
synthesis. Thus, the question of whether two individuals can
be classified into two groups based on any given difference is
determined by the impact of this difference on the function
of the individual, both in the cases of cells and in whole
organisms.

Despite the similarities of the species and cell type concepts,
there are clear differences between the two forms of classification.
While for a species, the lineage is generally presumed to be
defined by the ability of its members to share genes as a
community, somatic cells in an organism do not undergo sexual
reproduction. In contrast, the most important definition of a cell
is the ability to perform its biological function within the context
of an organism. Therefore, any definition of a ‘‘cell type’’ must be
functionally based.

Cell ‘‘phenotype’’ instead of cell type? If we were to take a brief
lesson from evolutionary biology, two cells should be classified
as the same ‘‘type’’ if and only if they do not have any gene
expression/epigenetic differences that interfere with their ability
to contribute in a similar manner to the function of the organ
in which they are found. Such an approach replaces the idea
of a cell ‘‘type’’ with a cell ‘‘phenotype’’, and incorporates the
natural functional variation already found in many kinds of cells,
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including neurons (Rahemtulla et al., 1991; Lu et al., 1997; Rossi
et al., 2005; Beerman et al., 2010; Blanpain and Fuchs, 2014;
Marder et al., 2015). In practice, hierarchical classification of
distinct cells by gene expression is a first attempt to identify
the natural cell type; but like the genealogical species concept,
functionality is the ultimate readout. However, the function of
each cell within a ‘‘phenotype’’ could be allowed to vary, to
some degree (Figure 1). In order to truly determine which cell
type a cell belongs to, it is therefore necessary to acquire a deep
understanding in the role that genetic variability plays in the
function of that cell type.

SHAPING CELL TYPE IDENTITY THROUGH
TIME

Unlike animals—who cannot change their genetic code or their
major morphological characteristics—cells are able to change
gene expression patterns and epigenetic modifications, moment-
to-moment. In fact, expression of genes necessary for function
is known to oscillate or alter in some cell types as a result of
aging, cell division, circadian rhythms or other factors (Figure 1;
Sheng and Greenberg, 1990; Rossi et al., 2005; Beerman et al.,
2010; Blanpain and Fuchs, 2014; Marder et al., 2015). Thus, any
definition of a cell type based on molecular data such as RNAseq
would have to account for that variability.

The distributions of variation of gene expression would be
expected to be variable depending on whether particular levels
of that gene are necessary, or whether it varies based on the

FIGURE 1 | Changes in functionality and gene expression of cells in
space and time. Starting at E0, cells follow trajectories from an
undifferentiated state to functionally mature states, trajectories through both
space and time, gradually accumulating steadily more divergent
developmental histories. The colored cones represent emergence into
functionally equivalent domains. Some cells may migrate slower than others,
but all must end up in the right area of the body to perform their normal
physiological function. The cells acquire the properties of the mature cell type
as they move up the idealized developmenta‘l trajectory. Once they reach the
“peak” of the trajectory, the cells are permitted to have slight differences, as
long as they maintain their function. In some cases, accumulated differences
may be enough for a cell to fall out of the functional domain (asterisk).

functional state of the cell. If a population has a variable
expression of a gene necessary for function, then a certain
distribution can be predicted for the expression of the gene;
the distribution of the levels of the gene in the cells would
form an extremely broad peak, potentially even making it look
as though the analysis was flawed (Figure 2). If, in contrast,
the differences are a result of two separate cell populations
being mistaken for one cell population, the curve could have
two peaks. This would provide a mathematical clue as to the
behavior of the gene in the population, but the expression
of the gene over time and in different functional contexts
would need to be examined in order to conclude that it does
not represent two distinct functional states. For genes whose
pattern of expression alters based on aging, it is necessary
to assess expression level at multiple time points (Figure 2).
Thus, not only the curves of patterns of gene expression,
but also functional implications of the observed distribution
in gene expression need to be carefully considered in these
analyses.

For certain transient cell populations that do not persist
into adulthood, such as radial glia, a cell type would have to
be considered not only in terms of gene expression, but also
in terms of time. If a cell with the complete gene expression
pattern and pattern of epigenetic modifications of radial glia
were located, for instance, in an adult liver, with no positional
cues to allow proper neuron formation, it could be argued
that this radial glial cell is merely a ‘‘radial glial-like’’ cell.
However, if there would be invented a technical means of
introducing such a cell into the embryonic CNS, where it is
able to fulfill its function, such a cell would become a radial
glial cell. To continue the analogy between cell type and species,
removing a cell type from its normal environment is much
like removing an animal from its ecological niche. Neither
the cell nor the animal would be able to function normally
outside the niche, and it would be difficult to predict whether
they would be able to survive and function in their normal
environment once they are no longer in that environment. Thus,
an integral part of any classification of cell type would require the
consideration of the location and normal developmental timing
of that cell.

We therefore call for shift of emphasis from static concepts
to dynamic concepts that allow for cell-to-cell variation, while
focusing on trajectories that lead cells to develop functional
adequacy within the brain (Figure 1).

METHODOLOGICAL CHALLENGE POSED
BY THIS LOGIC

Even taking into account the advances in sequencing techniques
and in epigenetic chemistry during the last two or three years, it
must be stated that we currently have only limited tools to test
the concepts presented here. Fundamentally, we have to be able
to assess the transcriptional activities and functionality of living
cells at more than one point in time. That is, we must follow
the flow of gene expression through time, to know ‘‘where the
cell has been’’ and where it is going. It may eventually be able
to use intracellular lasers for this purpose (Schubert et al., 2015;
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FIGURE 2 | Frequency distribution of cells according to the level of expression of an arbitrarily chosen gene “Z”. Here are four abstract examples of such
patterns. (A) All cells express gene Z at the same level, forming a coherent peak, as would usually be expected to occur in cells of the same cell type.
(B) A seemingly homogenous population has two peaks of expression for gene Z (some cells express it strongly, and some not at all). This could be taken to mean
that these are two distinct cell types, but first, two considerations must be addressed: whether gene Z is functionally relevant and whether gene Z has a transient,
oscillating expression pattern that reflects diverse functional states. Examples of the latter would be immediate early genes in neurons, or genes responsible for
mitosis. (C) A population has no distinct pattern of expression of gene Z. This could be because there are in fact numerous subpopulations present within this
population, or because gene Z expression oscillates very slowly between expression and degradation. (D) The expression of gene Z shifts with age, altering the
function of the cells; but due to the slow progression, the cell type could be argued to remain the same.

Humar and Yun, 2015). At the moment, the only way to do so is
through expression of reporter genes, fusion proteins, and site
specific recombinases systems. Minimally invasive methods of
characterizing expression of large numbers of genes through time
would be desirable for analyzing the relationship between gene
expression dynamics and cell function.

IMPLICATIONS FOR IN VITRO CULTURE
SYSTEMS

If cellular function depends in part on location, how do we
reconcile it with in vitro culture, particularly the burgeoning field
of stem cell modeling of diseases and development?

One of the strengths of the stem cell field from its inception,
has been an emphasis on functional outcomes (Nagy et al., 1990,
1993; Kang et al., 2009; Blanpain and Fuchs, 2014). No matter
how deeply the transcriptome and epigenome are studied, it is
philosophically and empirically impossible to argue that a cell

type existing in a dish is the same as the cell types found in the
body.

The in vitro environment by its nature requires that cells
adapt and alter their gene expression in order to survive. In vitro
oxygen concentrations are much higher (Brewer and Cotman,
1989; Morrison et al., 2000; Studer et al., 2000), pH is more
variable, and the extracellular matrix and supporting cells are
quite different (Eagle, 1971; Coutu and Schroeder, 2013). Much
effort has been expended to make culture of nervous system cells
as close to physiological as possible, while still allowing analysis.
These strategies include, but are not limited to, organotypic
culture, addition of supportive cell types, 3-dimensional gel
culture, and minimizing evaporation to reduce tonic stress
(Whatley et al., 1981; Gähwiler, 1981; Huettner and Baughman,
1986; Bolz et al., 1990; Stoppini et al., 1991; O’Connor et al.,
2001; Hayman et al., 2005; Gelain et al., 2006; Cullen et al., 2007;
Ylä-Outinen et al., 2014). Experimentally, all these methods are
extremely useful for construction of better models of diseases and
biological conditions. However, it remains true that the in vitro
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environment is quite different from the in vivo environment, and
deviations in cell function are to be expected.

Based on the theoretical definition of cell phenotype
advanced in the present discussion, in vitro cultured cells
can never be considered the same cell type as cells in vivo;
but they can still serve as functional models. This caveat
would remain even if gene expression is identical, as it would
still be impossible to confirm that all possible sources of
decreased functionality have been tested, and to eliminate the
hypothesis that there are biologically significant differences
between the two cells. Paradoxically, a refusal to qualify the
in vitro cell types as identical to ‘‘natural,’’ in vivo cell types
would make them more useful. Assuming that the in vitro
cells are able to functionally model at least some of the
properties of their biological counterparts, multiple systems
for in vitro modeling may be more useful than attempts to
come up with cells that perfectly models the ‘‘natural’’ cell
types.

Recognizing and accepting the limitations of in vitro models
as part of the process of exploration, as opposed to a flaw
is especially important considering how much time is spent
looking for superior models of diseases and biological processes,
especially in light of the differences between human andmouse in
cellular function (Cheng et al., 2014; Pope et al., 2014; Stergachis
et al., 2014; Yue et al., 2014). An additional incentive is the
failure of certain mouse genetic models to replicate human
disease, necessitating the development of human cell-based
models (Tiscornia et al., 2011). In the context of the natural
and artificial variability of cell populations, it is increasingly
important to imitate physiological conditions as closely as
possible (Gähwiler, 1981; Whatley et al., 1981; Huettner and
Baughman, 1986; Bolz et al., 1990; Stoppini et al., 1991; O’Connor
et al., 2001; Hayman et al., 2005; Gelain et al., 2006; Cullen
et al., 2007; Beerman et al., 2010; Ylä-Outinen et al., 2014).
However, creating a diversity of models of various cell types
is in itself a laudable experimental goal. This is especially true
given the natural variability of in vivo cell populations (Sheng
and Greenberg, 1990; Rossi et al., 2005; Beerman et al., 2010;
Blanpain and Fuchs, 2014; Marder et al., 2015), and it is likely
to become an important consideration in drug development:
testing a drug on multiple cell-based models and observing
similar results would perhaps raise the bar on the number
of drugs admitted into clinical trials, but it may also reveal
mechanistic failures of the drugs before they enter clinical
trials. Thus, designing multiple in vitro models of disease,
each of which mimics at least some in vivo aspect may be a
more rigorous form of screening than aiming for one ideal
model.

Thus, the generation of a specific nerve cell type depends, at
least in part, on epigenetic chemistries, leading to temporally
modulated changes in gene expression, leading, in turn, to
the biologically appropriate neuronal function. Our concepts of
how these trajectories are regulated during development will
likely continue to evolve as whole-cell analyses of multiple cell
processes continue to advance technologically. In addition to
analyses of all the proteins found within a cell (proteomics),
analyses of active kinases or carbohydrate groups attached to

proteins will continue to provide more subtle gradation of
variation within cells, likely leading to an explosion of definitions
of cell state (Shi et al., 2012; Cheng et al., 2014; Pope et al., 2014;
Stergachis et al., 2014; Yue et al., 2014; Briley et al., 2015; Farlik
et al., 2015). It is important for us to remember that a cell type
is by itself an artificial distinction, created for the convenience of
biologists, much in the same way as the concept of a species is
created for us to distinguish between animals. As finer and finer
gradations of cellular state become available, it may be tempting
to classify each transient event as an indication of permanent,
fundamental difference between two cell populations. As ways
to measure minute differences between cells become more and
more sensitive, a continuous engagement with the concept of cell
type will become of paramount importance so that cells can be
appropriately classified and studied.

SUMMARY

We have re-examined the problem of defining nerve ‘‘cell types’’,
and suggested an approach to nerve cell equivalence classes
that goes beyond the conventional, imperfect definition. One
of the most fundamental concepts in cell and developmental
biology is that of the ‘‘cell type’’: the claim that a certain
group of cells shares identical structure and function. However,
this ‘‘cell type’’ concept has sometimes fallen prey to a fallacy
of false equivalence. That is, this conventional model of cell
equivalence has been recently undermined by advances in single-
cell gene expression, lineage tracing, and genome sequencing.
Among cells thought to be equivalent, biased tendencies among
differing developmental fates have been demonstrated within
multiple lineages in the body. Single-cell RNA sequencing,
within a seemingly homogenous cell population, now uncovers
considerable differences in global gene expression patterns.
These observations show that the current model of classifying
cells into distinct types must be revised to account for the
intrinsic variability that exists within apparently identical cells
in a population. We have suggested that a ‘‘cell type’’ could
now be defined as a group of cells that possess similar,
though not identical, functional properties, variable within a
spectrum of epigenetic adjustments that, most importantly,
permit its biologically adaptive developmental path, resulting in
a functionally equivalent class of cells, to be achieved.

Essential properties for a cell type designation would likely
include not only morphology, but also expression of certain
‘‘core’’ genes coupled with specific epigenetic modifications.
Crucially, the ultimate criterion for equivalence would depend
simply on whether this cell is able to fulfill its function within
the organism. Thus, ‘‘emergent functional equivalence’’. This
approach accommodates avoids the fallacy of false equivalence to
which some previous cell biological approaches have fallen prey.
It could lead to incisive investigations into which properties of
a nerve cell actually confer functionality. Overall, we call for a
shift of emphasis from static concepts—those claiming absolute
cell equivalence ab initio—to dynamic concepts that allow for
cell-to-cell variation, while focusing on trajectories that lead cells
to develop functional adequacy within the brain. For example,
developing neurons will react to their microenvironments with
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epigenetic changes resulting in slight changes in gene expression
and morphology, without affecting their intrinsic functional
capabilities.

Our thinking implies new methodological challenges even as
it offers definitional clarity for the cell biology of neurons during
development.
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