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The orbitofrontal cortex (OFC) is involved in emotional processing, and orbitofrontal
abnormalities have often been observed in various affective disorders. Thus, chronic
dysfunction of the OFC may cause symptoms of affective disorders, such as anxiety,
depression and impulsivity. Previous studies have investigated the effect of orbitofrontal
dysfunction on anxiety-like behavior and impulsive aggression in rodents, but the results
are inconsistent possibly reflecting different methods of OFC inactivation. These studies
used either a lesion of the OFC, which may affect other brain regions, or a transient
inactivation of the OFC, whose effect may be restored in time and not reflect effects
of chronic OFC dysfunction. In addition, there has been no study on the effect of
orbitofrontal inactivation on depression-like behavior in rodents. Therefore, the present
study examined whether chronic inactivation of the OFC by continuous infusion of a
GABAA receptor agonist, muscimol, causes behavioral abnormalities in rats. Muscimol
infusion inactivated the ventral and lateral part of the OFC. Following a week of OFC
inactivation, the animals showed an increase in anxiety-like behavior in the open field
test and light-dark test. Impulsive aggression was also augmented in the chronically
OFC-inactivated animals because they showed increased frequency of fighting behavior
induced by electric foot shock. On the other hand, chronic OFC inactivation reduced
depression-like behavior as evaluated by the forced swim test. Additionally, it did not
cause a significant change in corticosterone secretion in response to restraint stress.
These data suggest that orbitofrontal neural activity is involved in the regulation of
anxiety- and depression-like behaviors and impulsive aggression in rodents.

Keywords: orbitofrontal cortex, anxiety, depression, impulsive aggression, corticosterone, chronic inactivation,
muscimol

INTRODUCTION

The prefrontal cortex (PFC) is critical for cognitive function and affective response (Frith
and Dolan, 1996; Roy et al., 2012). Prefrontal abnormalities have been reported in various
psychiatric disorders, such as depression, anxiety disorder and personality disorder (Soloff
et al., 2003; Drevets, 2007; Milad and Rauch, 2007). The orbitofrontal cortex (OFC),
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a ventral subregion of the PFC (Brodmann area 10, 11, 12, 47;
Szczepanski and Knight, 2014) is involved in the integration
of sensory information, emotional processing, decision making
and behavioral flexibility (Rolls, 2004; Rempel-Clower, 2007;
Schoenbaum et al., 2010). Orbitofrontal abnormalities have been
implicated in many psychiatric symptoms, such as pathological
anxiety, depression and impulsive aggression, as well as in the
endocrine response to stress in human imaging studies (Soloff
et al., 2003; Drevets, 2007; Milad and Rauch, 2007; Dedovic et al.,
2009). Furthermore, orbitofrontal lesion leads to a heightened
anxiety state and aggressiveness in human case studies and
primate lesion studies (Grafman et al., 1986; Berlin et al.,
2004, 2005; Izquierdo et al., 2005; Hahn et al., 2011; Agustín-
Pavón et al., 2012; Shiba et al., 2015). Therefore, it is plausible
that those psychiatric symptoms are caused by dysfunction
of the OFC.

The relationship between psychiatric disorders and prefrontal
dysfunction has been investigated in rodents. Previous studies
have examined the possible causal relationship between OFC
function and anxiety-like behavior and aggression in rodents
using electrolytic or pharmacological lesion of the OFC (Kolb,
1974; Kolb and Nonneman, 1974; de Bruin et al., 1983; Lacroix
et al., 2000; Rudebeck et al., 2007; Orsini et al., 2015) or
pharmacological inactivation of OFC activity (Wall et al., 2004).
While an increase in aggression was observed following OFC
lesion (Kolb, 1974; Kolb and Nonneman, 1974; de Bruin
et al., 1983; Rudebeck et al., 2007), the lesion studies failed
to find an influence on anxiety-like behavior (Lacroix et al.,
2000; Rudebeck et al., 2007; Orsini et al., 2015). On the
other hand, acute pharmacological inactivation of the OFC
induced an augmentation of anxiety-like behavior (Wall et al.,
2004). This apparent discrepancy might have arisen from the
difference in experimental methods. The duration of OFC
dysfunction might have affected the results. Animal behavior
was examined within several minutes after starting inactivation
in the acute study (Wall et al., 2004), while the lesion studies
(Lacroix et al., 2000; Rudebeck et al., 2007; Orsini et al., 2015)
examined behavior following a period of 1 week or more
after making the OFC lesion. It is possible that the animals
had recovered from the effect of OFC inactivation within the
following several days, and thus, the behavioral abnormality
was not found in the lesion studies. In addition, in these
studies the brain region affected by lesion or inactivation might
not be confined to the OFC. Electric lesion, aspiration and
inactivation using lidocaine would cause unintended damage
to passing fibers in the OFC, and thus, the effect of lesion
and inactivation might have not been restricted to the OFC.
Although excitotoxic lesion spares passing fibers, cell loss in a
region elicits secondary cell loss or synaptic alterations in distant
regions connected anterogradely and retrogradely (Vanburen,
1963; Poduri et al., 1995). Therefore, those previous results
might contain an influence of dysfunction of unspecified brain
regions other than the OFC. Because psychiatric disorders
are often accompanied by chronic PFC dysfunction (Bolla
et al., 2003; Drevets, 2007), it is important to examine the
effect of chronic inactivation restricted to the OFC on animal
behavior.

In addition to these methodological problems, no previous
study has determined whether OFC inactivation affects
depression-like behavior and the endocrine response to
stress in rodents as far as we know. Therefore, in the present
study, we continuously infused a GABAA receptor agonist,
muscimol, into the OFC for local and chronic inactivation
of OFC neural activity (Majchrzak and Di Scala, 2000)
and examined the effects on the behavioral and endocrine
abnormalities such as anxiety- and depression-like behaviors,
impulsive aggression and plasma corticosterone levels in rats.
We found that a chronic inactivation of the ventral and lateral
part of the OFC increased anxiety-like behavior and impulsive
aggression. On the other hand, it reduced depression-like
behavior and did not influence the hormonal response
to restraint stress. These results suggest that orbitofrontal
neural activity is involved in the regulation of anxiety-
and depression-like behaviors and impulsive aggression in
rodents.

MATERIALS AND METHODS

Animals
Thirty-five adult male Sprague-Dawley (SD) rats (postnatal
day (P) 80–83 and P184–187 at surgery, Japan SLC Inc.,
Hamamatsu, Japan) were used. All animals were housed in
groups of three animals in plastic cages (22 (length) cm ×

40 (width) cm × 18.5 (height) cm) under controlled laboratory
conditions (temperature: 21–24◦C) with free access to food and
water under a 12 h light/dark cycle (light onset at 07:00 AM).
The nesting material in each cage was replaced once a week.
After surgery, all animals were housed individually in plastic
cages (22 cm × 32 cm × 13.5 cm). The experimental procedures
met the regulations of the animal care committee of Tottori
University (approval number: 16-Y-4).

Chronic Muscimol Infusion into the OFC
All surgical procedures were performed under anesthesia
with 2.0%–3.0% isoflurane (Forane, Abbott, IL, USA) in O2.
The eyes were protected against drying out with ointment
(Tarivid ophthalmic ointment, Santen, Osaka, Japan). The
animal was placed in a stereotaxic instrument (SR-6R-HT,
Narishige, Tokyo, Japan), and the head was fixed using ear
bars and a mouth bar. The scalp was cut, and lidocaine
(Xylocaine Pump Spray 8%, AstraZeneca, Osaka, Japan) was
applied to incisions. A small segment of skull above the
OFC in both hemispheres (2.8 mm anterior to bregma and
2.0 mm lateral to midline; Paxinos and Watson, 1998) was
removed. A 30 G stainless steel cannula connected to an
osmotic minipump (Alzet 2002, Palo Alto, CA, USA) was
implanted into the cortex in both hemispheres (4.0 mm deep
from the cortical surface; Figure 1A). The exposed cortex
was covered with a gelatin sponge (Spongel, Astellas Pharma
Inc., Tokyo, Japan) and dental cement (ADFA, Shofu Inc.,
Kyoto, Japan). The scalp was sutured closed, and a local
anesthetic containing antibiotics (PRONES-PASTA AROMA,
Nishika, Shimonoseki, Japan) was applied to the incision.
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FIGURE 1 | Animal treatment and behavioral assessment. (A) Male adult
Sprague-Dawley (SD) rats were implanted with an infusion cannula and an
osmotic pump for muscimol infusion to the orbitofrontal cortex (OFC) in both
hemispheres. (B) Representative photograph of a Nissl-stained section of
prefrontal cortex (PFC). ∗Cannula track. (C) Time schedule of the present
experiments. A battery of behavioral tests was performed 5–7 days after the
implantation. Muscimol infusion was continued until perfusion.

A solution containing a GABAA receptor agonist, muscimol
(1.0mM in Ringer’s solution, Tocris Bioscience, Bristol, UK), was
infused continuously (0.5 µl/h) to inhibit orbitofrontal cortical
activity for approximately 2 weeks (n = 18). Vehicle (Ringer’s
solution) was infused into control animals (n = 17). The animals
were given 5–7 days for recovery prior to behavioral testing
(Figure 1C).

Behavioral Tests
Behavioral tests were conducted during the light phase of the
illumination cycle. On the day of the test, rats were transported
to the testing room and left in their home cages for 1 h before
the test. The animals’ behavior during test trials was recorded
and monitored by a PC located in the adjacent room using a
universal serial bus camera and analyzed using ANY-mazeTM

Video Tracking System (Stoelting Co., Wood Dale, IL, USA).

Open Field Test
Apparatus
The open field apparatus consisted of a square arena
(70 cm × 70 cm) made of gray polyvinyl chloride plastic
boards with walls of 40 cm height (Muromachi Kikai Co., Tokyo,
Japan). The arena was lit by a light-emitting diode lighting
placed 145 cm above the arena. The light intensity was 75 lx at
the center of the arena. The test sessions were recorded by a
video camera placed 145 cm above the arena.

Experimental procedures
To start each session, a rat was placed at a particular corner
of the arena and allowed to explore for 5 min. During the
test session, the total distance traveled, time in the center area
(30 cm × 30 cm), and time in the thigmotaxis area (less than

10 cm away from the walls) were measured automatically using
the ANY-mazeTM Video Tracking System. The apparatus was
cleaned with 70% ethanol before the test of each animal.

Light-Dark Test
Apparatus
We performed a light-dark exploring test using a modified setup
of the open field apparatus. Half of the apparatus was covered
with a wooden board to divide the arena into two areas: a light
side (70 cm × 35 cm, 200 lx) and a dark side (70 cm × 35 cm,
10–20 lx) with walls of 40 cm height.

Experimental procedures
To start each test session, a rat was placed in the light area
and allowed to explore for 5 min. During the test session, the
frequency of entries into the light area and the time spent
in the light area were measured automatically. The apparatus
was cleaned with 70% ethanol before the test of each animal.
Because the light-dark test is based on the aversion of rodents
to bright areas and on their spontaneous exploratory behavior
in novel environments (Takao and Miyakawa, 2006), all animals
moved to the dark area immediately after starting the test
session, except for two animals which remained in the light
area throughout the test session. These animals were excluded
from the analysis to avoid the possibility that they were
not normal in anxious tendency (two animals in muscimol
group).

Forced Swim Test
Apparatus
The forced swim test apparatus was an acrylic cylinder
(60 (height) cm× 40 (diameter) cm,Muromachi Kikai Co.) filled
with water at 24± 1◦C (depth, 40 cm). In the water, the rats could
not support themselves by touching the bottom with their feet or
tails. The apparatus was lit indirectly, and the light intensity was
40 lx at the surface of water.

Experimental procedures
The forced swim test is composed of a 15 min pretest and 5 min
test performed on the next day. Following each swim session, the
rats were removed from the cylinder, dried with paper towels,
placed in a heated incubator for approximately 30 min, and then
returned to their home cages. During the test session, immobility
time was measured automatically. The duration of climbing
(making vigorous upward directed movements of forelimbs)
and swimming (swimming with movements of forelimbs) was
counted manually. Because automatic measurement by the
software judges climbing behavior as immobility, we corrected
the immobility time by subtracting the duration of climbing
behavior. Four animals were not included in the data analysis due
to failure of video tracking (one animal in vehicle group and two
animals in muscimol group).

Electric-Shock-Induced Fighting Test
Apparatus
The apparatus was constructed from an acrylic box
(21 (height) cm × 20 (width) cm × 15.5 (length) cm,
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ENV 010-MC, Med Associates Inc., St. Albans, VT, USA).
The floor of the box consisted of 0.2 cm diameter metal grids
with 0.9 cm separation. Electric shocks of specified duration and
intensity were delivered to the grids using equipment (SEN-7203,
NIHON KOHDEN, Tokyo, Japan; ENV 414, Med Associates
Inc.) located in the adjacent room.

Experimental procedures
The present procedure is similar to those described previously by
others (Tedeschi et al., 1959; Ulrich and Azrin, 1962; Matsuoka
et al., 2005). Electric-shock-induced fighting was examined by
placing two rats in the box and giving them electric foot
shocks (1/3 Hz, 500 ms, 1.0 mA) for 5 min. The total number
and duration of fighting episodes were measured. Fighting was
defined as follows according to the criteria by Ulrich and Azrin
(1962): both rats face each other in an upright position, their
heads thrust forward, they open their mouths, and they strike
vigorously at each other.

Restraint Stress and Blood Collection
Animals were taken from the home cage and placed into restraint
tubes (KN-325-C, C-4, Natsume Seisakusho Co., Ltd., Tokyo,
Japan) for 30 min. Restraint was performed between 10:00 and
16:00. Blood samples (500 µl) were obtained by making a small
incision on the tail end and collected into heparinized tubes
(Capiject, Terumo Medical Corp., Somerset County, NJ, USA).
After the blood sampling, the animals were placed back to the
home cage. Blood samples were stored at room temperature for
at least 1 h and then centrifuged at room temperature for 90 s
at 3500 g. Plasma was collected and stored at −80◦C until the
corticosterone assay.

Corticosterone Assay
Plasma corticosterone was measured with a commercial enzyme
immunoassay kit (YK240 Corticosterone EIA kit, Yanaihara
Institute Inc., Fujinomiya, Japan) following the manufacturer’s
protocol. The data were analyzed with Sunrise Rainbow RC
analysis software (X/Fluor 4, TECAN, Männedorf, Switzerland).
A standard curve was generated from the corticosterone standard
of known concentration put in the same plate with the
samples.

Recording of Cortical Cell Activity
To determine the extent of muscimol infusion, cortical activity
was recorded in the animals infused with muscimol or vehicle
for >48 h (two vehicle-infused hemispheres and four muscimol-
infused hemispheres). Both groups of animals were restrained
in a stereotaxic instrument under anesthesia with 1.5%–3.0%
isoflurane in O2 and sedation with chlorprothixene (0.5 mg/kg,
i.m., Sigma-Aldrich, St. Louis, MO, USA). The body temperature
was maintained at 37◦C by a temperature controller (NS-TC10,
NeuroScience, Tokyo, Japan). Skin was incised on the head.
All incisions were infiltrated with xylocaine. A square hole
(2 mm × 4 mm) was made on the skull above the OFC
(stereotaxic position, anterior 2.8 mm–4.8 mm to bregma and
lateral 0 mm–4.0 mm to midline). A tungsten electrode (1 MΩ,

UNIQUE MEDICAL, Tokyo, Japan) was inserted at various
distances and depths to the site of muscimol infusion. Neural
activity was filtered at 500–5000 Hz and amplified 1000-fold by
an amplifier (Model 1800, A-M systems Inc., Sequim,WA, USA).
When no spontaneous activity or injury discharge was observed,
we judged the site as inactivated. After recording, electrolytic
lesions were made to mark the position of recording sites at
two different depths by applying an electrode (−) current of
1 µA for 10 s.

Histology
After all behavioral tests and blood collection, the animals were
deeply anesthetized with isoflurane and perfused transcardially
with Ringer’s solution followed by 4% paraformaldehyde in 0.1M
phosphate buffer (PB). The brains were removed and postfixed in
4% paraformaldehyde and 20% sucrose in 0.1 M PB. The brains
were frozen, and coronal sections of 30 µm thickness were cut
using a freezingmicrotome. The sections were stained with cresyl
violet to determine the location of cannula tracks and electrolytic
lesions (Figure 1B).

Statistical Analysis
All statistical analyses were performed using a statistical software
PASW Statistic Ver. 18 (SPSS Inc., Chicago, IL, USA). All
data were analyzed using the Shapiro-Wilk test to examine the
sample distribution, and statistical comparisons between two
groups were carried out by unpaired t-test or Mann-Whitney
U-test. Homoscedastic and heteroscedastic data were analyzed
by Student’s t-test and Welch’s t-test, respectively. Statistical
significance was set at P < 0.05.

RESULTS

Electrophysiological Estimation of the
Orbitofrontal Region Inactivated by
Chronic Muscimol Infusion
To estimate the extent of the area inactivated by chronic
muscimol infusion, we performed multi-unit recording in
the animals infused with muscimol or vehicle under similar
condition of anesthesia and sedation. In a representative animal
treated with vehicle, spontaneous activity and injury discharge
were recorded in the PFC throughout electrode penetrations
(Figure 2A). On the other hand, in a representative animal
treated with muscimol, no activity was observed in regions
of the ventral (VO) and lateral area (LO) of the OFC.
The inactivated region extended approximately 1.0 mm in the
anterior and 1.0 mm in the medial and lateral directions from
the cannula tip located in the VO (Figure 2B). In the other three
muscimol-infused hemispheres, the inactivated regions extended
0.5–1.5 mm in the anterior direction and 0.5–1.0 mm laterally
from the cannula tip (Figure 2C). We identified the location
of cannula tips in all animals and most of them were found
in VO/LO region. The animals in which the cannula tip was
located within the VO/LO in both hemispheres were used for
data analysis (11 animals in the vehicle group, 14 animals in the
muscimol group, Figure 2D). In electric-shock-induced fighting
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FIGURE 2 | Electrophysiological and histological estimation of the orbitofrontal region inactivated by chronic muscimol infusion. (A) Representative
examples of prefrontal multi-unit recording sites in a vehicle- (top) or muscimol-infused (bottom) animal. Red dots indicate the recording site in which spontaneous
activity or injury discharge was observed. Blue dots indicate the recording site in which no activity was observed. Asterisks in the right panels indicate the location of
the cannula tip. (B) The extent of the inactivated region estimated by multi-unit recording in the representative muscimol-infused animal shown in (A). Blue circles
represent the inactivated region. The asterisk in the right panel indicates the location of the cannula tip. (C) The extent of the inactivated region estimated by
multi-unit recording in each animal. The different color circles represent the inactivated region in individual animals. (D) The location of the cannula tip in vehicle- (top)
or muscimol-infused (bottom) animals. The different color circles represent the location of the cannula tip in individual animals. Schematic drawings of coronal
sections were adapted from Paxinos and Watson (1998) with permission from Elsevier.

test, we included the pair in which both the cannula was located
within VO/LO in either of the animal (seven pairs in the vehicle
group, six pairs in the muscimol group).

Open Field Test and Light-Dark Test
To evaluate the effect of chronic VO/LO inactivation on
anxiety-like behavior, we performed the open field test and
light-dark test. In the open field test, muscimol treatment
significantly decreased the time spent in the center area and
total distance traveled and increased the time spent in the
thigmotaxis area compared to the animal treated with vehicle

(time in the center area:U(11,14) = 32.000, P = 0.013, total distance
traveled: U(11,14) = 32.000, P = 0.013, time in the thigmotaxis
area: U(11,14) = 27.000, P = 0.005, Mann-Whitney U-test,
Figures 3A–C). In the light-dark test, muscimol treatment
significantly decreased the time spent in the bright area and
the number of entries to the bright area compared to the
vehicle group (time spent in the bright area: U(11,12) = 20.000,
P = 0.004, number of entries to the bright area: U(11,12) = 15.000,
P = 0.001, Mann-Whitney U-test, Figures 3D,E). These results
indicate that the inactivation of the VO/LO increased anxiety-like
behaviors.
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FIGURE 3 | OFC inactivation increased anxiety-like behaviors. Time in
the center area (A), in the thigmotaxis area (B) and distance traveled (C) in the
open field test. Time in the bright area (D) and the number of entries into the
bright area (E) in the light-dark test. Data are presented as the mean ± S.E.
(#P < 0.05, ##P < 0.01, Mann-Whitney U-test). The number of animals in
each group is given above the error bar.

Forced Swim Test
We examined the effect of VO/LO inactivation on
depression-like behavior in the forced swim test. In the test
session, muscimol treatment significantly decreased the duration
of immobility and swimming, and increased the duration of
climbing compared to the vehicle group (duration of immobility:
F(1,20) = 23.013, p < 0.001, unpaired t-test, duration of climbing:
U(10,12) = 7.000, P < 0.001, Mann-Whitney U-test, duration
of swimming: U(10,12) = 9.000, P < 0.001, Figure 4). These
results indicate that the inactivation of the VO/LO attenuated
depression-like behavior.

FIGURE 4 | OFC inactivation attenuated depression-like behavior.
The duration of immobility (A), climbing (B) and swimming (C) in the forced
swim test. Data are presented as the mean ± S.E. (∗∗P < 0.01, unpaired
t-test, ##P < 0.01, Mann-Whitney U-test). The number of animals in each
group is given above the error bar.

Electric-Shock-Induced Fighting Test
The effect of VO/LO inactivation on impulsive fighting was
evaluated using the electric-shock-induced fighting test. In the
test, muscimol treatment increased the number of fighting
behaviors compared to the vehicle group (F(1,11) = 7.667,
P = 0.018, unpaired t-test, Figure 5A), while there was no
significant difference between the two groups in the duration
of fighting behavior (F(1,11) = 3.367, P = 0.133, unpaired t-test,
Figure 5B). These results indicate that orbitofrontal inactivation
enhanced impulsive aggression.

FIGURE 5 | OFC inactivation enhanced impulsive aggression. The
number (A) and duration (B) of fighting behavior in the electric-shock-induced
fighting test. Data are presented as the mean ± S.E. (∗P < 0.01, unpaired
t-test). The number of animals in each group is given above the error bar.
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Plasma Level of Corticosterone After
Restraint Stress
In the present study, we found no significant difference in the
plasma level of corticosterone following 30 min restraint stress
between the muscimol and vehicle groups (U(11,14) = 59.000,
P = 0.344, Mann-Whitney U-test, Figure 6). These data suggest
that the VO/LO in the rat is not involved in the regulation of
corticosterone levels in response to restraint stress.

DISCUSSION

In this study, we showed that chronic inactivation of the ventral
and lateral part of the OFC (VO/LO) increased anxiety-like
behavior in the open-field test and light-dark test, as well as
impulsive aggression in the electric-shock-induced fighting test.
On the other hand, it reduced depression-like behavior in the
forced swim test and did not cause a significant change in
corticosterone secretion in response to restraint stress.

OFC Dysfunction and Anxiety-Like
Behavior in Rodents
The result in the present study, chronic inactivation of the
VO/LO increased anxiety-like behaviors, suggests that the
VO/LO have an inhibitory role against anxiety-like behaviors
in rodents. In a previous study, transient inactivation of the
medial part of the OFC by lidocaine infusion increased the
anxiety-like defensive response of mice when they were exposed
to rats (Wall et al., 2004). On the other hand, excitotoxic lesion
of the entire OFC, LO or VO/LO did not alter anxiety-like
behavior of rats evaluated using the open field test, elevated plus
maze test and successive alley test (modified elevated plus maze
test; Lacroix et al., 2000; Rudebeck et al., 2007; Orsini et al.,
2015). This inconsistency may have arisen from the differences

FIGURE 6 | Effect of OFC inactivation on endocrine response to stress.
Plasma corticosterone level after restraint stress. There was no significant
difference between the two groups (Mann-Whitney U-test). Data are
normalized to the mean value of the vehicle group and presented as the
mean ± S.E. The number of animals in each group is given above the
error bar.

in the manipulation (pharmacological inactivation or lesion), the
duration of OFC dysfunction (acute or chronic) or the size and
location of the targeted area (small or large, medial or lateral
part of OFC).

Regarding the duration of OFC dysfunction, animal behavior
was examined within several minutes after starting inactivation
in the acute study (Wall et al., 2004), while the lesion studies
(Lacroix et al., 2000; Rudebeck et al., 2007; Orsini et al., 2015)
examined behavior following a period of 1 week or more after
making the OFC lesion. Thus, it is possible that the effect of
OFC inactivation is rescued within the following several days and
therefore not found in the lesion studies. However, the present
results show that chronic inactivation of the VO/LO can affect
anxiety-like behavior.

As to the methods for OFC inactivation, the previous studies
used excitotoxic lesion or pharmacological inactivation using
lidocaine. Because they could cause unintended damage to
other brain regions connected anterogradely or retrogradely
(Vanburen, 1963; Poduri et al., 1995) and to passing fibers,
respectively, the effect of the lesion and inactivation might
not have been restricted to the OFC. On the other hand, in
the present experiments, we have inactivated the OFC using
muscimol, which selectively inhibits somatic action potentials
and exerts fewer effects on axons because of the sparse density of
axonal GABAA receptors (Martin and Ghez, 1999; Robbins et al.,
2013). Therefore, the present results demonstrate that chronic
inactivation restricted to the VO/LO can augment anxiety-like
behavior in rats.

Several previous studies focused on another prefrontal region,
the medial PFC (mPFC), and found that inactivation or lesion of
the entiremPFC consistently attenuated anxiety-like behaviors in
rodents (Lacroix et al., 2000; Sullivan and Gratton, 2002; Deacon
et al., 2003; Shah and Treit, 2003; Blanco et al., 2009; Solati et al.,
2013). The OFC and mPFC might have counteracting functions
in the regulation of anxiety-like behavior in rodents.

OFC Facilitates Depression-Like Behavior
in Rodents
To our knowledge, this is the first study to demonstrate
the effect of OFC inactivation on depression-like behavior
in rodents. Muscimol infused animals significantly reduced
immobility and increased climbing behavior. Swimming
behavior was also reduced probably because these animals had
spent time in climbing behavior throughout the test period.
Thus, the inactivation of the VO/LO significantly suppressed
depression-like behavior in the forced swim test, suggesting a
facilitatory role of the VO/LO in depression-like behavior. A
previous study reported that the microinjection of a histone
deacetylases inhibitor, valproic acid into the VO/LO showed
antidepressant-like effects in the forced swim test (Xing
et al., 2011). Although valproic acid might have exerted the
antidepressant-like effects through epigenetic mechanisms,
it is known that valproic acid acts as a GABA enhancer by
inhibiting GABA transaminase (Johannessen, 2000). Therefore,
the antidepressant-like effects of valproic acid injection may
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reflect a suppression of neural activity in the VO/LO as observed
in the present experiments.

Other studies reported that inactivation or blockade of
NMDA receptor in the ventral subdivision of the mPFC
(infralimbic cortex, IL) reduced depression-like behavior
(Scopinho et al., 2010; Slattery et al., 2011; Pereira et al., 2015)
in rats. Thus, both the VO/LO and IL might have a facilitating
function for depression-like behavior.

OFC Dysfunction Increases Impulsivity and
Aggression in Rodents
Previous studies have shown that electric lesion of the OFC
enhanced impulsive aggression in the electric-shock-induced
fighting test used in the present experiments (Kolb, 1974; Kolb
and Nonneman, 1974). Other studies also reported that lesion
of the entire OFC or LO increased impulsivity and aggression
in rats (de Bruin et al., 1983; Rudebeck et al., 2007; Mar
et al., 2011). These findings suggest a role of the OFC in
the regulation of impulsivity and aggression, though it is not
conclusive because lesion experiments always carry a possibility
that other brain regions might be affected due to cell loss and
damage of passing fibers. In fact, in a recent study (Takahashi
et al., 2014), optogenetic activation of principal neurons in the
mPFC suppressed aggressive behavior of mice, but the activation
was not effective when given to the OFC. On the other hand,
the present study using local inactivation by muscimol provides
further evidence for a role of the VO/LO in the regulation of
impulsivity and aggression. Activity in the VO/LO might be
necessary but not sufficient for the suppression of aggressive
behavior.

OFC Inactivation Did Not Affect Endocrine
Response to Stress in Rats
Human functional imaging studies reported that activity in
the OFC and mPFC correlates with an increase and decrease
of cortisol secretion, respectively (Dedovic et al., 2009).
Moreover, electrical stimulation of the OFC increased blood
cortisol levels in rhesus monkeys (Hall and Marr, 1975). In
rats, OFC stimulation elicited defensive and escape reaction
accompanied with blood adrenocorticotropic hormone (ACTH)
level (Endroczi et al., 1958). On the other hand, in the present
study, chronic inactivation of the VO/LO did not alter the
plasma corticosterone level in response to restraint stress in rats.
In rodents, the ventral mPFC (IL) is functionally homologous
to the primate orbitomedial PFC, with both being autonomic
centers (Vertes, 2004), and IL lesions decreased corticosterone
secretion in response to restraint stress (Radley et al., 2006).
Therefore, IL dependent pathway rather than OFC dependent
pathway may regulate secretion of corticosterone in response to
restraint stress. The previous results demonstrating the secretion
of ACTH by OFC stimulation (Endroczi et al., 1958) suggest that
OFC dependent pathway may mediate the effect of other kind
of stress. Alternatively, it is possible that the critical region for
corticosterone secretion is restricted to the IL rather than the
OFC, and the results by OFC stimulation might be an off-target
effect by stimulation of passing fibers to the IL.

In the present study, the plasma corticosterone level was
measured following a battery of behavioral tests over 5 days.
Previous studies demonstrated that repeated daily restraint stress
weakened an increase of plasma corticosterone in response to
restraint stress possibly through habituation to stress experience
(Cole et al., 2000; Girotti et al., 2006; Grissom et al., 2007).
These findings raise a possibility that a battery of behavioral
tests in the present study might have induced habituation to
stress and affected the plasma corticosterone response. On
the other hand, successive daily exposure to novel stress did
not induce a weakening of plasma corticosterone response
(Marin et al., 2007). In the present experiments, the animals
had been exposed to a battery of distinct behavioral tests
over 5 days. Therefore, it is not plausible that habituation
to repeated stress had weakened the plasma corticosterone
response in the present experiments, althoughwe can not exclude
the possibility that the stress in behavioral tests might had
affected the response in plasma corticosterone level and made
it difficult to discriminate the muscimol-treated and control
animals.

Neuronal Mechanism of Orbitofrontal
Regulation of Affective Behaviors
The present study demonstrated that VO/LO inactivation
enhanced anxiety-like and aggressive behaviors and suppressed
depression-like behavior at the same time. The VO/LO sends
projection to several brain structures which are involved
in emotional behavior, such as mPFC, amygdala, striatum,
hypothalamus, raphe and ventral tegmental area (VTA; Hoover
and Vertes, 2011). One possibility is that OFC might have
modulated affective behaviors through one of those structures
in the present study. For example, dopaminergic system is
considered to be important in all of anxiety- and depression-
like, and aggressive behaviors. Although there is no study
investigating the effect of dopaminergic manipulation on these
behaviors at the same time, pharmacological studies showed
that dopamine receptor agonist or dopamine reuptake inhibitor
exerted anxiogenic effects in the open field test and light-dark
test in mice (Simon et al., 1993, 1994). On the other hand,
dopamine reuptake inhibitor reduced depression-like behavior
in the forced swim test in rats (Hemby et al., 1997). Moreover,
intraventricular administration of dopamine enhanced impulsive
aggression in the electric-shock-induced fighting test in rats
(Geyer and Segal, 1974). The OFC sends direct projections to
the VTA which is the origin of dopaminergic neurons (Vázquez-
Borsetti et al., 2009; Hoover and Vertes, 2011), and electrical
stimulation of the OFC inhibits activity of the majority of
dopaminergic neurons in the VTA (Lodge, 2011; Takahashi et al.,
2011). Therefore, the chronic inactivation of the VO/LO might
lead to these behavioral changes via activation of dopaminergic
modulation. Alternatively, OFC inactivation might have altered
each behavior through distinct downstream circuit. For instance,
the basolateral complex of amygdala (BLA) is implicated in the
expression of anxiety-like and aggressive behaviors in rodents
(Eichelman, 1971; Tye et al., 2011). The LO sends projection to
the intercalated nuclei of amygdala, which exerts an inhibitory
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influence on the BLA (Rempel-Clower, 2007). Hence, the OFC
inactivation might cause an enhancement of anxiety-like and
aggressive behaviors through disinhibition of the amygdala. Also,
OFC sends projection to the dorsal raphe and ventral striatum
(Hoover and Vertes, 2011) which are involved in the regulation
of depression-like behavior (Russo and Nestler, 2013; Teissier
et al., 2015), thus OFC inactivation might alter depression-like
behavior through these structures. The projection specific
manipulation of neural activity will address these possibilities in
the future.

Serotonin (5-HT) has been considered to influence affective
states and emotional processing such as anxiety, depression,
impulsivity and aversive processing (Cools et al., 2008; Coccaro
et al., 2011; Albert et al., 2014). While the OFC may regulate
serotonergic system through its projection to the raphe, several
studies reported that serotonergic modulation in the OFC has
an important role in the OFC dependent functions such as
reversal learning and response inhibition (Walker et al., 2006;
Boulougouris et al., 2008; West et al., 2013). Although the
contribution of 5-HT in the OFC to the emotional behavior such
as anxiety- and depression-like behavior is less understood in
rodents, it is reported that microinjection of 5-HT1A or 5-HT1B
receptors agonist into the OFC suppressed aggressive behavior in
mice (De Almeida et al., 2006; Centenaro et al., 2008; Stein et al.,
2013). Also, systemic administration of 5-HT1A receptor agonist
or 5-HT reuptake inhibitor enhanced the firing of principal
neurons and the expression of c-fos in the PFC (Hajós-Korcsok
and Sharp, 1999; Jongsma et al., 2002; Lladó-Pelfort et al., 2012).
Therefore, 5-HTmay regulate affective behaviors via modulation
of intrinsic neural activity in the OFC in addition to mediating
the information from the OFC.

Comparison With Studies in Old World
Monkeys and Humans
Contribution of OFC to emotional behavior has been studied
in macaque monkey. Aspirative lesion of the OFC was reported
to increase aggressive behavior to human intruder, consistent
with the present results in rats, while showing a decrease in fear
response to snake (Izquierdo et al., 2005; Rudebeck et al., 2006;
Kalin et al., 2007). However, these findings are not conclusive
because excitotoxic lesion of the OFC did not alter the fear

response (Machado et al., 2009; Noonan et al., 2010; Rudebeck
et al., 2013). Moreover, OFC strip lesion, which mimics the
damage caused by aspiration to passing fibers, replicated the fear
decreasing effect (Rudebeck et al., 2013). Therefore, the effect of
OFC inactivation in macaque is not conclusive yet and needs
further study using more refined targeting method to consider
the role of OFC subregions and possible difference between
animal species.

In human imaging studies, a lesion of the OFC or
ventromedial PFC (vmPFC, which includes OFC) caused
abnormal anxiety, edginess, impulsivity and aggression
(Grafman et al., 1986, 1996; Berlin et al., 2004, 2005), and
hypoactivity of the OFC was reported in patients with social
anxiety disorder and borderline personality disorder with
impulsive aggression (Soloff et al., 2003; Hahn et al., 2011).
Moreover, damage of the vmPFC alleviated depression severity
(Koenigs et al., 2008; Koenigs and Grafman, 2009), while
OFC activity increased in depressive patients (Drevets, 2007).
Considering these human imaging studies with our results, the
OFC may have a suppressive function in anxiety and impulsive
aggression and a facilitative function with depressive symptoms
in both humans and rodents.
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