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Consumption of a Western Diet (WD) that is high in saturated fat and added sugars

negatively impacts cognitive function, particularly mnemonic processes that rely on the

integrity of the hippocampus. Emerging evidence suggests that the gut microbiome

influences cognitive function via the gut-brain axis, and that WD factors significantly

alter the proportions of commensal bacteria in the gastrointestinal tract. Here we

review mechanisms through which consuming a WD negatively impacts neurocognitive

function, with a particular focus on recent evidence linking the gut microbiome with

dietary- and metabolic-associated hippocampal impairment. We highlight evidence

linking gut bacteria to altered intestinal permeability and blood brain barrier integrity,

thus making the brain more vulnerable to the influx of deleterious substances from the

circulation. WD consumption also increases production of endotoxin by commensal

bacteria, which may promote neuroinflammation and cognitive dysfunction. Recent

findings also show that diet-induced alterations in gut microbiota impair peripheral

insulin sensitivity, which is associated with hippocampal neuronal derrangements and

associated mnemonic deficits. In some cases treatment with specific probiotics or

prebiotics can prevent or reverse some of the deleterious impact of WD consumption

on neuropsychological outcomes, indicating that targeting the microbiome may be

a successful strategy for combating dietary- and metabolic-associated cognitive

impairment.
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INTRODUCTION

Substantial evidence has linked consumption of a Western Diet (WD), defined here as diets
consisting of both high levels of fat (35–60% total kcal) and added sugars, with cognitive
dysfunction (Molteni et al., 2002, 2004; Kanoski et al., 2007, 2010; Kanoski and Davidson, 2011;
Davidson et al., 2012; Francis and Stevenson, 2013; Baym et al., 2014; Beilharz et al., 2014,
2016a,b; Noble et al., 2014; Hsu et al., 2015; Khan et al., 2015b; Noble and Kanoski, 2016). The
hippocampus, a brain region associated with the control of certain learning and memory processes,
is particularly vulnerable to the deleterious effects of WD intake (Kanoski and Davidson, 2011;
Baym et al., 2014; Davidson et al., 2014). The mechanisms through which WD consumption
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impacts the brain are not completely understood, however
emerging research has implicated the gut-brain axis as playing
a critical role. The gut microbiome (the collective genome of
microbes residing in the gastrointestinal tract) has a substantial
impact on brain function (Bercik et al., 2011; Davari et al., 2013;
Hsiao et al., 2013; Bruce-Keller et al., 2015). Moreover, the gut
microbiome is profoundly affected by dietary factors (de La
Serre et al., 2010; David et al., 2014; Noble et al., 2017). In this
review we raise the hypothesis that the microbiome is a critical
link between WD consumption and neurocognitive dysfunction.
Putative mechanisms connecting WD consumption, microbiota
alterations, and cognitive impairment include barrier integrity
(gastrointestinal tract, neurovascular), neuroinflammation, and
impaired insulin signaling. Though each topic is considered
individually, it is likely that these and other biological outcomes
associated with WD consumption work in concert to impact
brain function.

WESTERN DIET, HIPPOCAMPAL
FUNCTION, AND GUT MICROBIOTA

Extensive evidence from rodent (reviewed in Kanoski and
Davidson, 2011) and human studies (Kalmijn et al., 2004; Francis
and Stevenson, 2011; Baym et al., 2014) reveals that consumption
of a WD is linked with impaired hippocampal-dependent
learning and memory function. Due to the obesity-promoting
nature of WD, it is difficult to discern the relative contribution
of dietary factors and obesity on cognitive outcomes. However,
while obesity per-se is associated with reduced hippocampal
volume (Jagust et al., 2005) and impaired hippocampal function
(Li et al., 2002; Winocur et al., 2005; Khan et al., 2015a), evidence
shows that a WD negatively impacts hippocampal function
independent of obesity. For example, hippocampal-dependent
spatial memory impairments have been reported after only 3
(Kanoski and Davidson, 2010) or 9 (Murray et al., 2009) days of
consuming a WD, despite similar body weights between animals
compared to standard chow-fed controls. Similar to WDs, high
fructose diets can also impair hippocampal-dependent learning
and memory in rodents independent of obesity (Hsu et al., 2015;
Agrawal et al., 2016; Meng et al., 2016; Noble and Kanoski,
2016). Together these data suggest that dietary factors common
in a WD have the capacity to impart cognitive dysfunction
after only a brief exposure, and independent of severe metabolic
impairments.

While much progress has been made in elucidating the
neurobiological mechanisms underlying WD-associated
cognitive impairment (reviewed in Kanoski and Davidson, 2011;
Beilharz et al., 2015), few reports consider the gut microbiome,
which consists of an estimated 100 trillion microorganisms
that reside in the host GI tract (Bäckhed et al., 2005). The gut
microbiome has emerged as a major contributor to cognitive
health (Gareau et al., 2011; Bajaj et al., 2012; Bruce-Keller
et al., 2015; Desbonnet et al., 2015; Fröhlich et al., 2016) and
is affected by dietary factors (Daniel et al., 2014; David et al.,
2014; Bruce-Keller et al., 2015; Magnusson et al., 2015; Noble
et al., 2017). For example, consumption of a WD reduces

populations in the phylum Bacteroidetes and increases Firmicutes
and Proteobacteria (Hildebrandt et al., 2009; Zhang et al., 2012)
in adult rodents. Importantly, these shifts have been associated
with cognitive impairments. Magnusson et al., observed that
both high fat (45% kcal from fat) and high sugar (70% kcal from
carbohydrate) diets elevated levels of Clostridiales (Phylum:
Firmicutes) and reduced levels of Bacteroidales (Phylum:
Bacteroidetes) in rodents, changes that correlated to poor
cognitive flexibility (Magnusson et al., 2015). Recent evidence
supports a functional link between the gut microbiome and
WD-induced cognitive dysfunction. Bruce-Keller and colleagues
revealed that fecal/cecal transplantation from adult mice fed a
WD to antibiotic pre-treated mice fed a control diet increased
anxiety and stereotypic activity and impaired contextual fear
conditioning (Bruce-Keller et al., 2015). While the bacterial
species or combination of species responsible for the behavioral
effects was not identifiable due to the whole microbiome
transfer approach, the bacteria Akkermansia muciniphila were
substantially (5.4-fold) reduced by the WD, whereas Bilophila
sp. were elevated in the WD group and barely detectable
in the control group (Bruce-Keller et al., 2015). Notably, A.
muciniphila promotes insulin sensitivity and reduces metabolic
endotoxemia in mice (Shin et al., 2014) and is negatively
associated with metabolic disease, intestinal inflammatory
diseases, and autism in humans (reviewed in Derrien et al.,
2016). Conversely, Bilophila are positively associated with
inflammatory intestinal diseases (Devkota et al., 2012; Jia et al.,
2012) and may contribute to neurocognitive abnormalities by
promoting inflammation, though this has not been directly
tested.

Recent studies examined the individual contributions of
particular macronutrients from a WD on the gut microbiome.
For example, a high-fat, carbohydrate-free diet (72% kcal from
fat) reduces Bifidobacteria (Cani et al., 2007, 2008), which have
been shown modulate intestinal barrier function and reduce
endotoxin levels in the gut (Griffiths et al., 2004; Wang et al.,
2006). Conversely, Jena and colleagues found that a low-fat chow
diet supplemented with a 65% w/v fructose solution had no
effect on levels of Bifidobacteria (Jena et al., 2014). However,
using more moderate concentrations that model commonly
consumed sugar sweetened beverages, recent data from our
group reveal that Bifidobacteria were elevated following free
access to the sugar solutions (and chow and water) relative to
controls that were not given sugar (Noble et al., 2017), suggesting
that sugar-induced gut microbiome alterations are dependent
on the carbohydrate concentration. Data from our recent
study further show that consuming the sugar solutions altered
gut bacteria at every phylogenetic level, including significant
group effects in ∼25% of gut bacteria at the family level.
Similar to animals on very high doses of fructose solution
(Jena et al., 2014), our data revealed that sugar consumption
elevated Enterobacteriaceae, which are associated with gut (Lupp
et al., 2007) and brain inflammation, and poor cognition in
hepatic encephalopathy (Bajaj et al., 2012; Ahluwalia et al.,
2016). Surprisingly, rodents consuming 11% concentrations
of sugar solutions have elevated levels of Lactobacilli (Noble
et al., 2017), which are anti-inflammatory, whereas rodents
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consuming much higher concentrations of sugar solutions
(Jena et al., 2014) or dietary fat (Lecomte et al., 2015) have
reduced levels of Lactobacilli. Notably, Lactobacilli facilitate
short chain fatty acid transport (Kumar et al., 2015). Short
chain fatty acids (SCFAs) alter human health and their reduced
absorption may be one of the mechanisms by which diet impacts
cognitive health via the gut microbiome, a concept reviewed
below.

SHORT CHAIN FATTY ACIDS

SCFAs such as acetate, propionate, and butyrate are produced in
the gut by microbial-mediated fermentation of indigestible
carbohydrates, such as resistant starch and non-starch
polysaccharides from cereals, vegetables, and fruits (MacFarlane
and MacFarlane, 2011). The production of SCFAs is significantly
reduced in humans within days following a dietary change
from a complex carbohydrate rich plant-based diet to an
animal based diet high in saturated fat and low in complex
carbohydrates (David et al., 2014). Similarly, rodents fed a
WD had reduced levels of SCFAs, including acetic, propionic,
isobutyric, and isovaleric acids (Ojo et al., 2016) as well as
butyric and valeric acids (Berger et al., 2014), compared with
controls fed a low-fat chow diet. When taken in context
with previously discussed studies demonstrating that short-
term consumption of a WD significantly impacts cognitive
function (Kanoski and Davidson, 2010; Beilharz et al.,
2014, 2016a,b), the rapid alteration of SCFAs as a putative
contributor to WD-induced cognitive dysfunction is temporally
feasible.

While the majority of the SCFAs in portal circulation are
metabolized by the liver, SCFAs produced in the distal colon
bypass portal circulation and reach the brain through circulation
(reviewed in MacFabe, 2012). In the brain, SCFAs have a
neuroprotective effects (Sun et al., 2015), for example, the
salt of the SCFA butyric acid, sodium butyrate, promotes cell
proliferation and differentiation in the dentate gyrus, increases
the expression of brain-derived neurotrophic factor (BDNF)
and glia-derived neurotrophic factor (GDNF), and improves
memory performance in the novel object recognition task (Wu
et al., 2008; Stefanko et al., 2009; Intlekofer et al., 2013; Yoo
et al., 2015). These neuroprotective effects of sodium butyrate
potentially occur through the inhibition of histone deacetylase
(HDAC), which is known to prevent the transcription of
BDNF and GDNF (Wu et al., 2008). Butyrate also has anti-
inflammatory actions in the gut and brain by preventing the
induction of the inflammatory cytokine TNFα by the endotoxin
lipopolysaccharide (LPS) via the suppression of nuclear factor
κB (Segain et al., 2000). Taken together, SCFAs produced by gut
bacteria (whose levels are reduced by WD consumption; Berger
et al., 2014) may affect brain health directly via HDAC inhibition
in the brain, or indirectly by reducing systemic inflammation
in the gut. Butyrate has also been shown to stabilize hypoxia-
inducible factor (HIF; Kelly et al., 2015), which is critical for
maintaining gut barrier integrity and protecting against the influx
of potentially harmful toxins, a topic discussed in more depth
below.

GUT AND NEUROVASCULAR BARRIER
INTEGRITY

Emerging research is revealing that gut microbiota have potent
effects on gut permeability (Cani et al., 2007, 2008, 2009; Lam
et al., 2012; Pendyala et al., 2012; Tulstrup et al., 2015; Maffeis
et al., 2016; Mokkala et al., 2016; Müller et al., 2016) and blood-
brain barrier integrity (Braniste et al., 2014), both of which are
negatively impacted by WD intake and proposed mechanisms
underlying WD induced cognitive impairments (Kanoski et al.,
2010; Davidson et al., 2012; Hsu and Kanoski, 2014; Ouyang
et al., 2014; Hargrave et al., 2016; Stranahan et al., 2016). Several
studies discussed here support a causal relationship between
WD-mediated gut microbiota alterations, the gut/neurovascular
barrier integrity, and hippocampal function.

The gut barrier consists of a specialized, semi-permeable
mucosal, and epithelial cell layers that are reinforced by tight
junction proteins. Among other functions, this barrier serves
to regulate nutrient and water entry and prevents the entry
of harmful compounds into extra-luminal tissues (for review
see Turner, 2009). WD consumption impairs gut permeability,
which in turn allows for the influx of adverse substances and
may ultimately contribute to the development of metabolic
disorders, and cognitive dysfunction. For example, in humans
there is a strong association between obesity, gut permeability,
and systemic inflammation (Maffeis et al., 2016; Rainone et al.,
2016). In rodents,WD intake decreases levels of the tight junction
protein ZO-1 and transepithelial resistance in the proximal colon,
both markers of gut barrier dysfunction (Lam et al., 2012). A
compromised gut barrier makes the intestinal tract potentially
vulnerable to the gram-negative bacteria-derived LPS, which
upon excess entry into circulation promotes endotoxemia and
systemic inflammation (Griffiths et al., 2004; Cani et al., 2007,
2008; Tsukumo et al., 2007). Indeed, mice maintained on a
WD for 4 weeks exhibit a ∼three-fold increase in circulating
LPS levels with concurrent increased intestinal permeability, as
reflected by reduced mRNA expression of tight junction proteins
ZO-1 and occludin, as well as elevated plasma levels of a gavaged
fluorescent molecule (FITC-dextran) that is typically unable to
cross the gut barrier (Cani et al., 2008). This study further
demonstrated that antibiotic treatment attenuated obesity-
induced endotoxemia, thus providing potential physiological
links between WD, the gut microbiome, and gut barrier integrity
(Cani et al., 2008).

The blood-brain barrier (BBB) consists of a structural complex
of endothelial cells, pericytes, and glial cells that encompass
microvasculature networks within the central nervous system.
It serves as a critical regulator for the entry of blood-derived
nutrients and compounds required for healthy brain function,
while simultaneously precluding the entry of potentially harmful
blood-derived toxins. Importantly, WD intake is associated
with BBB damage, which may be causally related to WD-
induced cognitive dysfunction (Kanoski et al., 2010; Freeman
et al., 2011; Davidson et al., 2012; Freeman and Granholm,
2012; Pallebage-Gamarallage et al., 2012; Hargrave et al., 2016;
Stranahan et al., 2016). For example, in a study from Kanoski
et al. (2010), rats maintained on a WD for 90 days exhibited a
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leaky BBB in the hippocampus and reduced mRNA expression
of the tight junction proteins claudin-5 and claudin-12. These
negative BBB outcomes were accompanied by impairments in
hippocampal-dependent memory tasks, suggesting that WD-
induced BBB damage may be causally related to cognitive
deficits. Davidson and colleagues extended this work (Davidson
et al., 2012) by showing that rats prone to obesity are
more susceptible to WD-induced BBB damage and cognitive
impairment compared to obesity resistant animals. Moreover, the
magnitude of BBB damage and memory impairment depends
on both obesity susceptibility and the duration of WD exposure
(Hargrave et al., 2016). Collectively, these data provide strong
evidence linking WD intake, BBB integrity, and hippocampal
dysfunction.

Braniste et al. (2014) illuminate an association between
gut microbiome perturbation and impaired BBB integrity.
Infrared-labeled immunoglobulin antibody (IgG2b; normally
precluded from brain parenchyma) injected into pregnant
germ-free (microbiome-free) mouse dams was abundant in
the brains of their mouse embryos compared to the embryos
of pathogen-free (microbiome-intact) dams, suggesting that
maternal gut microbiome has strong influences on the offspring’s
BBB integrity. Moreover, compared to adult pathogen-free
mice, adult germ-free mice exhibited impaired BBB integrity
evidenced by increased brain uptake of tail-vein injected radio
labeled ligand [11C] raclopride and increased presence of Evans
blue dye (normally precluded from BBB penetration) in brain
parenchyma following circulatory injections. Interestingly,
transfer of pathogen-free fecal matter to germ-free mice
attenuated BBB damage, reflected by the increased expression
of tight junction proteins. These data implicate an important
role for the gut microbiome in regulating BBB integrity.
Whether gut microbiome perturbations associated with
WD consumption are causally related to WD-associated
barrier dysfunction and memory impairments require further
investigation.

NEUROINFLAMMATION

Rodent studies have consistently shown that chronic
consumption of a WD elevates levels of neuroinflammatory
markers, which are associated with impaired cognition (Pistell
et al., 2010; Puig et al., 2012; Herculano et al., 2013; Camer et al.,
2015; Hsu et al., 2015; Ledreux et al., 2016). In conjunction
with cognitive impairments, rats fed a WD have increased
neuroinflammation in both the hippocampus (Puig et al.,
2012; Herculano et al., 2013; Hsu et al., 2015; Ledreux et al.,
2016) and in the cortex (Pistell et al., 2010; Camer et al., 2015).
Moreover, clinical reports implicate a positive association
between circulating inflammatory factors and cognitive decline
in humans (Sweat et al., 2008; Sellbom and Gunstad, 2012). A
WD may impact neuroinflammation and cognitive outcomes
in part via altering levels of gut bacteria, as certain gut bacteria
stimulate the innate immune system to elevate inflammatory
cytokines in the brain (for review see Sankowski et al., 2015).

One putative mechanism through which WD influences
gut bacteria and imparts hippocampal dysfunction involves

elevated levels of endotoxin and accompanying inflammatory
cytokines. WD consumption elevates levels of inflammatory
endotoxins such as LPS (Cani et al., 2007; Amar et al., 2008;
Bruce-Keller et al., 2015), and elevated levels of microbiome-
derived LPS in circulation stimulate inflammatory pathways.
Additionally, gut microbiota directly stimulate the production of
the proinflammatory cytokines IL-1β and TNFα (Heumann et al.,
1994), which have been shown to impair hippocampal-dependent
memories in rodents (Rachal Pugh et al., 2001; Goshen et al.,
2007; Hein et al., 2010).

In addition to elevating levels of endotoxin producing
bacteria, a WD may affect neuroinflammation by reducing
levels of anti-inflammatory commensal gut bacteria. Bruce-
Keller et al. (2015) demonstrated that WD fecal/cecal transplant
recipient mice were normal weight, yet had elevated levels
of endotoxin and neuroinflammatory markers accompanied by
impaired cognitive function. The bacterial species A. muciniphila
was reduced by the diet (Bruce-Keller et al., 2015); a species
that is negatively associated with inflammation (Schneeberger
et al., 2015). Similarly, anti-inflammatory Lactobacilli are reduced
by WD factors (Jena et al., 2014; Lecomte et al., 2015)
and supplementation with Lactobacillus helveticus prevents
spatial memory impairment in WD-fed mice lacking the
anti-inflammatory cytokine IL-10 (Ohland et al., 2013). One
method by which members of the Lactobacilli family and other
commensal bacteria may reduce systemic inflammation is by
improving insulin sensitivity (Simon et al., 2015), a concept
reviewed in the following section.

INSULIN

Insulin, produced in pancreatic beta cells and released in
response to conditioned cephalic cues or circulating metabolites,
crosses the BBB via a saturable transporter, and insulin
receptors are present in neurons and primarily localized to
synapses (Zhao and Alkon, 2001). Levels of insulin receptor
are particularly concentrated in the hippocampus (Havrankova
et al., 1978) where insulin signaling improves cognitive function
and neuronal plasticity (Biessels et al., 1998; Kamal et al., 2000;
Grillo et al., 2009, 2015; Biessels and Reagan, 2015). WD-
induced peripheral insulin resistance is associated with impaired
cognitive function and synaptic plasticity in rats (Elias et al., 1997;
Grodstein et al., 2001; Hiltunen et al., 2001; Yaffe et al., 2004;
Stranahan et al., 2008; Pavlik et al., 2013; Gao et al., 2015) and the
risk for developing Alzheimer’s disease or dementia in humans
(Ott et al., 1999; Arvanitakis et al., 2004; Luchsinger et al., 2004;
Cukierman et al., 2005; Rönnemaa et al., 2008).

Insulin impacts neurological health via multiple mechanisms.
One of the functions of CNS insulin is to phosphorylate α-
amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA)
receptors, which leads to increased hippocampal long-term
potentiation (LTP; Adzovic and Domenici, 2014). Another
mechanism through which insulin may improve cognitive
function is by reducing neuroinflammation. For example,
intracerebroventricular injection of insulin attenuates LPS-
induced elevations in IL-1β and improves spatial memory
impairment in young rats (Adzovic et al., 2015). Insulin has a
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similar anti-inflammatory function in the periphery, where it
has been shown to reduce the systemic inflammatory response
to endotoxin (Jeschke et al., 2004). Thus, if gut microbiota
impact cognitive function in part via the modulation of
inflammatory responses, or by elevating levels of peripheral or
central endotoxin, then insulin may provide protection against
gut microbiome-mediated cognitive dysfunction in insulin
sensitive individuals. Given that long-term exposure to ad
libitum fructose (15% w/v in water) impairs insulin receptor
function in the hippocampus and reduced hippocampus-
dependent spatial memory (Agrawal et al., 2016), a harmful
synergy may occur through which WD intake both increases
neuroinflammation (as reviewed above) and impairs central
insulin sensitivity, thereby preventing insulin from attenuating
inflammatory responses and associated adverse neuronal
outcomes.

Recent findings directly link gut microbiota and
CNS/peripheral insulin sensitivity. In humans, an intra-
duodenal microbiome transfer from lean healthy donors to
individuals with impaired insulin sensitivity improves insulin
sensitivity in the recipients (Vrieze et al., 2012). Interestingly,

transferring the fecal microbiome from obese or lean discordant
human twin pairs to mice resulted in impaired glucose
metabolism in the mouse if the transfer came from an obese
twin (Ridaura et al., 2013). In mice, antiobiotic-induced
microbiome depletion improves peripheral insulin sensitivity
caused by aWD (Suárez-Zamorano et al., 2015). The effect of gut
microbiota on peripheral insulin sensitivity begins at the level
of the intestinal mucosa, as WD-induced insulin resistance is
prevented by blocking live intestinal bacteria from translocating
into the blood and tissues where they generate an inflammatory
response (Amar et al., 2011). Bacterial translocation preceded
WD-induced insulin resistance, and required functioning Nod1
and CD14 receptors, which bind to gram-negative bacteria.
Furthermore, the translocation of bacteria and the insulin
resistance were preventable when animals were treated with the
probiotic Bifidobacterium Animalis, which specifically prevents
translocation of Enterobacteriaceae (Amar et al., 2011). Taken
together, commensal bacteria may alter peripheral insulin
sensitivity in a mechanism that likely involves inflammatory
signaling and/or bacterial translocation from the gut into the
periphery.

FIGURE 1 | A summary of putative mechanisms linking Western Diet (WD) consumption, the gut microbiome, and cognitive dysfunction. [1] A high

fat/high sugar WD diet alters gut bacteria [2] WD reduces short chain fatty acids (SCFA), which may impair neuroprotection or anti-inflammatory effects in the gut.

SCFAs affect insulin signaling by stimulating L cell production of GLP-1. [3] WD may impair intestinal barrier and promote translocation of endotoxin-producing gram

negative bacteria into the blood. [4] Inflammatory cytokines and/or reduced insulin sensitivity caused by WD-induced gut bacteria may negatively affect hippocampal

function and memory. [5] A WD impairs BBB integrity, which may be caused in part by altered gut microbiota. [6] WD consumption significantly impairs hippocampal

dependent learning and memory.
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Whether consuming a WD promotes cognitive dysfunction
through modifying gut microbiota that impair insulin receptor
signaling remains to be determined. However, one study revealed
that probiotic treatment normalized spatial memory deficits
and improved hippocampal LTP in a streptozocin rat model
of diabetes (Davari et al., 2013), suggesting that gut microbiota
can improve cognitive dysfunction due to reduced insulin
production. Interestingly, evidence suggests that commensal gut
bacteria may enhance insulin sensitivity and cognitive function
by modulating the production and/or secretion of the incretin
hormones glucagon-like peptide—1 (GLP-1). SCFAs, such as
butyrate, produced by commensal gut bacteria act on G protein
coupled receptors to stimulate GLP-1 secretion (Tolhurst et al.,
2012). Hwang and collegues showed that antibiotics reduced
the proportion of Bacteriodetes and Firmicutes in mice, which
resulted in attenuated pancreatic islet hypertrophy and improved
insulin and glucose tolerance through a GLP-1 signaling pathway
(Hwang et al., 2015). Importantly, GLP-1 signaling promotes
hippocampal neural plasticity and improved memory function
(During et al., 2003; McClean et al., 2010; Li et al., 2012).
Taken together, these collective data suggest that commensal gut
bacteria modulate insulin sensitivity via multiple mechanisms,
which may be related to WD-induced hippocampal dysfunction.

CONCLUDING REMARKS

Several neurobiological mechanisms link WD consumption
with gut microbiome alterations that potentially contribute to
WD-mediated cognitive dysfunction, including reduced SCFA
production, compromised barrier integrity, neuroinflammation,
and peripheral and/or central insulin receptor resistance
(Figure 1). Consuming a WD promotes endotoxemia, which
is linked with memory impairment, either via translocation of
gram-negative bacteria into circulation, and/or by impairing

the permeability of the gut barrier. Both gut microbiota and
WD intake have been shown to impair the permeability of
the BBB, however mechanistic studies linking WD intake,
BBB integrity, and the gut microbiome are required. WD-
associated microbiota alterations impair peripheral insulin
sensitivity, which is strongly linked with central insulin
resistance and hippocampal dysfunction. In addition, insulin
protects against peripheral inflammatory responses to endotoxin,
and may prevent the deleterious effects imparted by WD-
mediated bacterial production of endotoxins in insulin sensitive
individuals.

Overall we present multiple pathways through which WD-
induced microbiome alterations can impact neurocognitive
function. Mechanistic studies examining these putative gut
brain axis pathways may facilitate the development of therapies
that target the microbiome (probiotics, prebiotics, antibiotics,
or microbiota transfer) to treat neurobiological and cognitive
dysfunction associated with WD intake and associated metabolic
disorders.
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