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Intermittent alcohol exposure is a common pattern of adolescent alcohol use
that can lead to binge drinking episodes. Alcohol use is known to modulate
the endocannabinoid system (ECS), which is involved in neuronal communication,
neuroplasticity, neuroinflammation and behavior. Adolescent male Wistar rats were
exposed to 4-week intermittent alcohol intoxication (3 g/kg injections for 4 days/week)
or saline (N = 12 per group). After alcohol deprivation, adult rats were assessed
for emotionality and cognition and the gene expression of the ECS and other
factors related to behavior and neuroinflammation was examined in the brain.
Alcohol-exposed rats exhibited anxiogenic-like responses and impaired recognition
memory but no motor alterations. There were brain region-dependent changes in the
mRNA levels of the ECS and molecular signals compared with control rats. Thus, overall,
alcohol-exposed rats expressed higher mRNA levels of endocannabinoid synthetic
enzymes (N-acyl-phosphatidylethanolamine phospholipase D and diacylglycerol lipases)
in the medial-prefrontal cortex (MPFC) but lower mRNA levels in the amygdala.
Furthermore, we observed lower mRNA levels of receptors CB4 CB» and peroxisome
proliferator-activated receptor-a in the striatum. Regarding neuropeptide signaling,
alcohol-exposed rats displayed lower mRNA levels of the neuropeptide Y signaling,
particularly NPY receptor-2, in the amygdala and hippocampus and higher mRNA
levels of corticotropin-releasing factor in the hippocampus. Additionally, we observed
changes of several neuroinflammation-related factors. Whereas, the mRNA levels of
toll-like receptor-4, tumor necrosis factor-a, cyclooxygenase-2 and glial fibrillary acidic
protein were significantly increased in the mPFC, the mRNA levels of cyclooxygenase-2
and glial fibrillary acidic protein were decreased in the striatum and hippocampus.
However, nuclear factor-kp mRBNA levels were lower in the mPFC and striatum and
allograft inflammatory factor-1 levels were differentially expressed in the amygdala and
hippocampus. In conclusion, rats exposed to adolescent intermittent alcohol displayed
anxiety-like behavior and cognitive deficits in adulthood and these alterations were
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accompanied by brain region-dependent changes in the gene expression of the ECS and
other signals associated with neuroinflammation and behavior. An intermittent adolescent
alcohol exposure has behavioral and molecular consequences in the adult brain, which
might be linked to higher vulnerability to addictive behaviors and psychopathologies.

Keywords: rats, intermittent alcohol, adolescence, endocannabinoid system, neuroinflammation, anxiety, brain,

recognition memory

INTRODUCTION

Alcohol is the most widely used recreational drug, and its
consumption is increasing in young people and adolescents. A
common pattern of alcohol intake among adolescents is the
intermittent alcohol exposure, which can lead eventually to heavy
episodic drinking. Thus, adolescent binge drinking is a major
public health concern and it is associated with long-term health
consequences, including mental problems (e.g., anxiety, mood
and personality disorders) and substance use disorders, primarily
alcoholism (Oesterle et al., 2004; Dawson et al., 2008; Read et al.,
2008). Further, the potential role of alcohol use as a risk factor for
adult psychiatric disorders cannot be discarded.

The molecular actions of alcohol on the brain are complex,
and involve several mechanisms and signaling systems and some
of these actions occur in both the adult and the adolescent
brain. Brain maturation mainly happens during adolescence,
when numerous plastic and dynamic processes are happening,
and the vulnerability of the developing brain to the toxic effects of
alcohol is higher. Therefore, early alcohol exposure can produce
alterations in the brain structure and function, resulting in
behavioral and cognitive deficits (Nagel et al., 2005; Zeigler et al.,
2005; Guerri et al., 2009). These long-term harmful effects of
alcohol exposure on behavior have also been confirmed in animal
models (e.g., learning dysfunctions in adolescent rats exposed to
repeated alcohol continue into adulthood) (Crews et al., 2000;
Pascual et al., 2007).

Alcohol and other drugs of abuse induce changes in the
Central Nervous System (CNS) that can lead to pathological
behaviors related to addiction. In fact, the transition to
alcoholism involves changes in the reinforcing and rewarding
effects of alcohol use, a dysregulation of synaptic plasticity
and the development of maladaptive stress responses (Kalivas
and O’Brien, 2008; Koob, 2008). A variety of signals and
neurotransmitters (e.g., dopamine, serotonin, glutamate, GABA,
opioids, endocannabinoids...) in the CNS are implicated in the
pathophysiology and development of alcoholism which play a
prominent role in mediating behavioral and pharmacological
effects of alcohol (Koob et al., 1998).

Over the past years, numerous studies have demonstrated the
involvement of the endogenous cannabinoid system (ECS) in
the behavioral and pharmacological effects of alcohol (Serrano
and Parsons, 2011). The ECS includes endogenous ligands,
cannabinoid receptors and the enzymatic machinery for the
synthesis and inactivation of endocannabinoids. The main
endocannabinoids are arachidonoylethanolamide (AEA) and
2-arachidonoylglycerol (2-AG), which bind to cannabinoid
receptors to exert their effects. The cannabinoid receptors are G

protein-coupled receptors and two types have been characterized
and cloned, CB; and CB, (Howlett et al., 1990; Munro et al,,
1993). Regarding the metabolic pathways for endocannabinoids,
there are very complex enzymatic cascades for synthesis and
inactivation that are crucial in regulating their levels. The
primary pathway for AEA synthesis is mediated by a specific
phospholipase D (NAPE-PLD) (Okamoto et al., 2004), while the
synthetic pathway for 2-AG is mainly mediated by two sn-1-
selective diacylglycerol lipases (DAGL-a and DAGL-B) (Bisogno
et al., 2003). Finally, the inactivation of endocannabinoids
is mediated by cellular reuptake and subsequent intracellular
hydrolysis and both fatty acid amide hydrolase (FAAH)
and monoacylglycerol lipase (MAGL) have been identified as
enzymes primarily responsible for the degradation of AEA and
2-AG, respectively (Cravatt et al., 1996; Dinh et al., 2002).

The ECS has been widely studied in recent years due to
its anti-inflammatory and homeostatic properties, which is of
interest because alcohol abuse is associated with the induction
of neuroinflammatory and neurodegenerative processes. In
this regard, binge-like alcohol exposure increases the nuclear
factor-kappa p (NF-kB)-DNA binding activity, up-regulates
the expression of cyclooxygenase-2 (COX-2), causes microglia
activation (Knapp and Crews, 1999; Obernier et al., 2002a;
Crews et al,, 2006) and induces brain injury in the cortex and
hippocampus associated with cognitive deficits (Crews et al,
2000; Obernier et al., 2002b; Tajuddin et al., 2014; Anton et al.,
2016). However, it is important to consider that all the mentioned
effects of alcohol use depend on several factors, including age of
the subject, amount of alcohol consumed, duration and pattern
of alcohol consumption (Kovacs and Messingham, 2002; Goral
et al., 2008).

Long-term effects of alcohol exposure in animal models have
revealed clear deleterious impact on emotional and cognitive
processing, as well as on underlying inflammatory responses
triggered by the unique ability of alcohol to direct activate natural
immunity through toll-like receptor-4 (TLR4) (Fernandez-
Lizarbe et al., 2009; Pascual et al., 2011). In fact, recent studies
have reported the role of TLR4 in behavioral and cognitive
dysfunctions using models of intermittent alcohol exposure in
adolescence (Montesinos et al., 2015, 2016).

In this context, the present study aimed to characterize
the impact of an adolescent intermittent alcohol exposure
in emotional behaviors (open field and elevated-plus maze),
cognitive responses (novel object recognition memory) and
gene expression of primary signaling systems related to
neuroinflammation, anxiety and stress in adult rats. The medial
prefrontal cortex, amygdala, striatum and hippocampus
were selected for gene expression analysis since they
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play a predominant role in alcohol-related behaviors and
neuroadaptations.

MATERIALS AND METHODS

Animals and Ethical Statement

Twenty-four male Wistar rats (Charles River Laboratories,
Barcelona, Spain) weighing 100-125g on postnatal day (pnd)
24 were housed individually in a humidity and temperature-
controlled vivarium on a 12h light/dark cycle (lights off
at 19:00h). Rats were allowed to acclimatize to the new
environment for 7 days before any experimental procedure was
performed (pnd 31). Water and rat chow pellets were available
ad libitum.

This study was carried out in accordance with the European
Directive 2010/63/EU for the protection of animals used
for scientific purposes and Spanish regulations (Real Decreto
53/2013 and 178/2004, Ley 32/2007 and 9/2003 and Decreto
320/2010) for the care and use of laboratory animals. The
protocol was approved by the Ethic and research Committee at
the Universidad de Malaga. All efforts were made to minimize
animal suffering and social isolation, as well as to reduce the
number of animals used.

Experimental Design

As shown in Figure 1, adolescent rats (pnd 31) were randomly
assigned to the experimental alcohol group following 4 weeks of
intermittent alcohol exposure (n = 12) or control group (n =12).

Intermittent Alcohol Procedure

An intraperitoneal (i.p.) administration of ethanol solution was
used as intermittent intoxication during 4 weeks. Rats were
injected weekly with 3 g/kg of ethanol (20% in saline, w/v) for
4 consecutive days followed by 3 days of alcohol deprivation.
After the adolescent alcohol exposure, rats were left undisturbed
in their home-cages before performing behavioral tests to
evaluate locomotor activity, cognitive responses and anxiety-like
behaviors. Following a schedule similar to the alcohol group,
control animals received an injection of saline and they were
also individually maintained in their home-cages for controlling
the effects of social isolation on behavioral experiments and
biochemical determinations previously reported in adolescence
(Skelly et al., 2015).

Determination of Blood Ethanol

Concentration

Rats were tail-bled 1 h after the last alcohol exposure. Blood
was collected into a microtube containing anticoagulant (4 pl
heparin; 1000 USP units/ml) and centrifuged at 2000 x g for 10
min. Serum was extracted and assayed for ethanol concentration
(BEC) using the alcohol oxidase method with an AM1 Alcohol
Analyzer (Analox Instrument, London, UK).

Behavioral Studies
Behavioral tests were conducted by trained observers who were
unaware of the experimental conditions.

Open Field Test
Motor and anxiety-like behaviors were studied in an opaque open
field (100 x 100 x 40 cm) divided into 16 squares with two zones;
the center (4 squares) and periphery (12 squares) of the field.
The open field was illuminated using a ceiling halogen lamp that
was regulated to yield 350 lux at the center of the field. On the
experimental day, the animals were placed in the center and the
locomotor activity and time spent in the center and periphery
were scored for 15 min. The number of crossings (expressed
as number lines/squares crossed) and the percent of time spent
in the center (time spent in the center/total time x 100) were
calculated.

This task was also used as habituation session for the novel
object recognition test.

Novel Object Recognition Test

The novel object recognition procedure consists of habituation,
familiarization, and test phases. Familiarization phase was
conducted 24 h after the habituation phase. During the
familiarization phase, animals were placed in the test field and
allowed to explore for 3 min two identical objects. Then, animals
were returned to their home-cage for 1 h. Test phase was
conducted by placing rats for 3 min in the test field with 2
different objects, one was familiar and the other one was novel.
Objects were made in plastic but different in shape, size and
color. Between each test, the relative position of both objects were
counterbalanced and permuted.

The time spent in exploring these objects were recorded in
both phases. The exploration time was defined as the time that
animals spent in licking, sniffing or touching each object, but
it was not considered the time spent in standing or sitting on
or leaning against each object (expressed in seconds). The novel
object preference was determined using the discrimination ratio
(expressed as the difference in time exploring the novel and the
familiar objects/total exploration time).

Elevated Plus-Maze

The elevated plus-maze was made of opaque plastic and was
composed of 2 oppositely positioned open arms (45 x 10 cm), 2
oppositely positioned closed arms of the same size and 50-cm-
high walls. The arms were connected by a central and neutral
area (10 x 10 cm). The entire apparatus was elevated 75 cm above
a white floor and exposed to dim illumination (70 lux). At the
beginning, rats were placed in the center of the maze, facing an
open arm, and were allowed to freely explore the maze for 5 min.
The number of entries (an arm entry was defined as all four paws
in the arm zone) and the time spent in each arm were scored
using a video monitor. The number of entries into the closed
arms (expressed as number of entries into the closed arms) and
the percent of time spent in the exposed arm (time spent in the
open arms/total time x 100) were calculated.

Sample Collection

Two weeks after the last alcohol exposure (pnd 70), rats
were anesthetized with sodium pentobarbital (50 mg/kg, i.p.)
and brain samples were collected. The brains were quickly
removed, immediately frozen on dry ice and stored at —80°C,
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III ADOLESCENCE ADULTHOOD

pnd 24 31 Intermittent Alcohol Exposure 55 62 63 69 70
-~ e
ACCLIMATIZATION OF OR EPM
pnd 31 55 Brain
samples

week

FIGURE 1 | Experimental design of the study. Rats were exposed to an intermittent alcohol exposure for 4 weeks (from pnd 31 to 55). During this period, rats
were randomly assigned to alcohol (repeated i.p. administration) or control (saline) group. Blood ethanol concentrations (BEC) were determined 60 min after the last
alcohol exposure. The analyzes of behavior on the open field (OF), novel object recognition (OR) and elevated plus-maze (EPM) were carried out in the different groups
at 1 and 2 weeks after the alcohol exposure. All animals were sacrificed 2 weeks after the last alcohol exposure and brain samples were collected.

until determination of the gene expression of proteins using
quantitative real-time reverse transcription polymerase chain
reaction (RT-qPCR).

Dissection of the Brain

The frozen brains were placed in acrylic rat brain matrices, and
2-mm thick slices were obtained using brain matrix razor blades.
The medial prefrontal cortex (mPFC), striatum (accumbens,
caudate, and putamen nucleus), entire amygdala and dorsal and
ventral hippocampus were dissected out bilaterally and collected
using a scalpel (mPFC and hippocampus) and a sample corer
(striatum and amygdala). The localization of the brain regions
was performed using a rat brain atlas and considering the bregma
point as zero coordinate in the rostral-caudal coordinates: mPFC,
+3.0mm to +5.0mm from bregma; striatum, +1.0mm to
—1.0mm from bregma; amygdala, —1.0 mm to —3.0 mm from
bregma; and hippocampus, —3.0 mm to —5.0 mm from bregma
(Paxinos and Watson, 1998).

RNA Isolation and RT-qPCR Analysis

Total RNA was extracted from brain samples using Trizol
Reagent (Gibco BRL Life Technologies, Baltimore, MD,
USA) and the concentrations were quantified using a
spectrophotometer to ensure ratios of absorbance at 260 to 280
nm of 1.8-2.0. The reverse transcription was performed using
the Transcriptor Reverse Transcriptase kit and random hexamer
primers (Transcriptor RT; Roche Diagnostic, Mannheim,
Germany). The RT-qPCR was performed using an ABI
PRISM® 7300 Real-Time PCR System (Applied Biosystems,

Foster City, CA, USA) and the FAM dye label format for
the TagMan Gene Expression Assays (Applied Biosystems).
The absolute values from each sample were normalized
relative to the housekeeping B-actin gene (Actb). The relative
quantification was calculated using the AACt method and
normalized to the control group. Primers for the RT-qPCR were
obtained based on the Applied Biosystems genome database
of rat mRNA references (http://bioinfo.appliedbiosystems.
com/genome-database/gene-expression.html)

(Table 1).

Statistical Analysis

All the data in the graphs are expressed as the means 4+ SEM.
The statistical analysis was performed using GraphPad Prism
version 5.04 (GraphPad Software, San Diego, CA, USA) and the
normal distribution of data was evaluated by D’ Agostino-Pearson
omnibus test. Student’s f-test and Welch’s t-test for unequal
variances were conducted to compare continuous variables
between the two experimental groups (Control and Alcohol).
Two-way analysis of variance (ANOVA) was conducted in the
Novel Object Recognition Test using alcohol exposure (control
and alcohol) and type of object (familiar and novel) as factors
and using Bonferroni as post hoc test. Benjamini-Hochberg
false discovery rate (FDR) approach was used for multiple
comparisons (Benjamini et al., 2001) of the mRNA expression
analysis. The statistics (t-statistic and F-statistic) and degrees
of freedom were indicated in the description of results. The
significance level was established at 0.05 and a p-value of less
than 0.05 was considered statistically significant. Additionally,
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TABLE 1 | Primers references for TaqMan® Gene Expression Assays.

Gene symbol Assay ID GenBank accession  Amplicon length
number

Actb Rn00667869_m1 NM_031144.3 91
Cnr1 Rn02758689_s1 NM_012784.4 92
cnr2 Rn01637601_m1 NM_020543.4 68
Dagla Rn01454304_m1  NM_001005886.1 67
Daglb Rn01453771_m1  NM_001107120.1 98
Faah Rn00577086_m1  NM_024132.3 63
Mgll Rn00593297_m1  NM_138502.2 78
Napepld Rn01786262_m1  NM_199381.1 71
Ppara Rn00566193_m1  NM_013196.1 98
Crh Rn01462137_m1 NM_031019.1 112
Crhr1 Rn00578611_m1  XM_006247542.2 58
Crhr2 Rn00575617_m1  NM_022714.1 82
Npy Rn00561681_m1 NM_012614.2 63
Npy1r Rn02769337_s1  NM_001113357.1 98
Npy2r Rn00576733_s1  NM_023968.1 65
Npy5r Rn02089867_s1  NM_012869.1 107
Aif1 Rn00574125_g1  NM_017196.3 126
Gfap Rn01253033_m1  NM_017009.2 75
Ptgs2 Rn01483830_g1 NM_017232.3 69
Rela Rn01502266_m1 NM_199267.2 67
Tird4 Rn00569848_m1 NM_019178.1 127
Tnf Rn99999017_m1 NM_012675.3 108

FDR adjusted significance levels were indicated for the multiple
comparisons in each case.

RESULTS

In the present study, we examined adult rats exposed to
intermittent alcohol exposures during adolescence. We assessed
anxiety-like and cognitive behaviors as well as the mRNA
expression of numerous enzymes and receptors involved in the
ECS and other mediators linked to behavior, neuroinflammation
and plasticity.

Body Weight Gain and Food Intake during

Adolescent Intermittent Alcohol Exposure
As shown in Figure 2A, during the period of alcohol exposure,
there was a significant decrease in body weight gain in the alcohol
group compared with the control group [#(;2) = 4.00, p < 0.001].
Similarly, the averages of food intake during these 4 weeks were
also significantly different [t(5;) = 3.68, p = 0.001] (Figure 2B).

After the last alcohol exposure, the BEC in the alcohol group
reached an average of 201 & 6 mg/dl.

Effects of Intermittent Alcohol Exposure on

Locomotion and Anxiety-Like Behaviors
We next explored whether alcohol exposure during adolescence
induced locomotor or emotional alterations.

One week after the last adolescent alcohol exposure, we
measured spontaneous locomotor and exploratory activity using
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FIGURE 2 | Body weight gain and food intake during intermittent
alcohol exposure in adolescent rats. Cumulative body weight gain (A) and
food intake (B) after 4 weeks of alcohol exposure. Bars represent the mean +
SEM (8-12 animals per group). Data were analyzed by Student’s t-test
(Welch’s correction). **p < 0.01 and **p < 0.001 denote significant
differences compared with the control group.

the open field test in rats. We observed no significant differences
in the number of crossings between both groups (Figure 3A).
Additionally, we measured anxiety-like behavior by time spent
in the center area of the field (Figure 3B) and we detected a
significant decrease in the time spent in the center area in the
alcohol group compared with the control group [f4) = 4.19,
p < 0.001].

The rats were also tested on the elevated plus-maze under
novelty conditions 2 weeks after alcohol exposure. Regarding
the locomotor activity in the elevated plus-maze, we found no
differences in the number of entries in the closed arms between
groups (Figure 3C). In this maze, we measured anxiety-like
behavior by the time spent in the open arms and significant
differences were found. As shown in Figure 3D, there was a
significant decrease in the time of open arm exploration in the
alcohol group compared with the control group [t(14) = 4.65,
p < 0.001].

Effects of Intermittent Alcohol Exposure on

Novel Object Recognition

One week after adolescent alcohol exposure, the recognition
memory was measured using the novel object recognition task.
During the familiarization phase, none of the groups displayed
any preference for the objects but the statistical analysis revealed
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FIGURE 3 | Locomotion and anxiety-like behavior in adult rats exposed to intermittent adolescent alcohol. Number of crossings (A) and time spent in the
center of the field (B) were evaluated in the open field test 1 week after the last alcohol exposure (pnd 62). Closed arm entries (C) and time spent exploring the open
arms (D) were evaluated in the elevated plus-maze 2 weeks after the last alcohol exposure (pnd 69). Bars represent the mean + SEM (8-12 animals per group). Data
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significant differences on the total exploration time (Figure 4A).
Thus, the alcohol group spent less time to explore both objects
than the control group [t(;;) = 4.73, p < 0.001].

One hour later, the test session was repeated using a novel
object. A two-way ANOVA revealed a main effect of alcohol
exposure on the exploration time [F(;, 42) = 12.76, p < 0.001] but
also an interaction between alcohol exposure and type of object
[F(1,42) = 14.40, p < 0.001]. As shown in Figure 4B, the post
hoc comparison indicated that the control group had a higher
preference for the novel object relative to the familiar object (p <
0.05), whereas the alcohol group displayed a lower preference for
the novel object (p < 0.05). Additionally, there was a significant
decrease in the preference of the novel object in the alcohol group
compared with the control group (p < 0.001).

Consequently, the alcohol group exhibited a negative
discrimination ratio that indicated an impaired recognition
memory [ty = 5.83, p < 0.001] (Figure 4C).

Effects of Intermittent Alcohol Exposure on
the Gene Expression of Endocannabinoid
System

We examined the effect of adolescent alcohol exposure on
the gene expression encoding relevant enzymes and receptors
involved in endocannabinoid signaling [receptors: CB; (Cnrl),
CB; (Cnr2) and peroxisome proliferator-activated receptor-o

(PPAR-a) (Ppara); synthesis enzymes: NAPE-PLD (Napepld),
DAGL-a (Dagla) and DAGL-B (Daglb); degradation enzymes:
FAAH (Faah) and MAGL (Mgll)] following 2 weeks after the last
exposure.

Medial Prefrontal Cortex

In the mPFC (Figure 5A), the observed effects were mostly
activatory. The mRNA expression of Ppara [t;y = 4.96,
p = 0.002]; the synthesis enzymes Napepld [t4 = 6.12,
p < 0.001], Dagla [t(;y = 12.47, p < 0.001] and Daglb [ty = 9.47,
p < 0.001]; and Faah [t(14) = 2.53, p = 0.024] were significantly
increased in the alcohol group relative to the control group
before adjustment for multiple comparisons. The FDR adjusted
significance level (g = 0.031) indicated that all differences in the
mRNA levels were still significant.

Striatum

Conversely, the adolescent exposure during adolescence
produced only inhibitory effects, as shown in Figure 5B. Thus,
rats exposed to alcohol displayed a significant decrease in the
striatal mRNA expression of the receptors: Cnrl[tz) = 6.66, p
< 0.001], Cnr2 [ty = 2.94, p = 0.022] and Ppara [t(g) = 14.55,
p < 0.001] compared with the control group. However, the
FDR adjusted significance level (¢ = 0.013) showed a significant
decrease in the expression of Cnrl and Ppara.
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Amygdala

Similar to the striatum, we found again inhibitory effects in the
amygdala (Figure 5C). The mRNA levels of Cnrl [t(14) = 4.12,
p = 0.001], Napepld [tg) = 2.69, p = 0.025] and Dagla [t4)
= 3.44, p = 0.004] were significantly decreased in the alcohol
group relative to the control group before adjustment for multiple
comparisons. The subsequent correction (g = 0.013) revealed
significant differences in the expression of Cnrl and Dagla but
not in Napepld.

Hippocampus
In the hippocampus (Figure 5D), the alcohol group displayed a
significant decrease in the mRNA levels of Cnr2 [t(;y = 3.96, p =

0.006] and a significant increase in both Dagla [t(14) = 2.81, p =
0.014] and Mgl [t9) = 3.02, p = 0.015] relative to the control
group. Consistently, the FDR adjusted significance level (g =
0.019) revealed that these differences in the mRNA expression
were still significant.

Table S1 summarizes the adjustment for multiple comparisons
of the mRNA expression of the ECS in each brain region.

Effects of Intermittent Alcohol Exposure
during Adolescence on the Gene
Expression of Neuropeptides Linked to

Anxiety and Stress

We also evaluated the effect of alcohol exposure during
adolescence on the gene expression of neuropeptides linked
to anxiety/stress responses and their receptors [neuropeptides:
corticotropin-releasing factor (CRF) (Crh) and neuropeptides
Y (NPY) (Npy); and receptors: CRFIR (Crhrl), CRF2R
(Crhr2), NPY1R (Npylr), NPY2R (Npy2r) and NPY5R
(Npy5r)]. Determinations were conducted in the amygdala
and hippocampus, two main regions belonging to the circuit that
modulates emotional responses.

Amygdala

As shown in Figure 6A, the statistical analysis indicated no
differences in the mRNA expression of Crh and its receptors
but there were significant decreases in the expression of Npy
[t(o) = 2.40, p = 0.040] and Npy2r [t14 = 3.07, p = 0.007] in
the alcohol group compared with the control group. However,
the FDR adjusted significance level (g = 0.007) only remained
significant differences between groups for Npy2r.

Hippocampus
In the hippocampus (Figure 6B), repeated t-tests showed
significant differences in the mRNA levels of Crh, Npy, Npy2r, and
Npy5r between groups. Thus, the alcohol group displayed higher
Crh mRNA expression [£(14) = 3.76, p = 0.002] and lower mRNA
expression of Npy [t(14y = 2.22, p = 0.043], Npy2r [t14) = 6.60,
p < 0.001] and Npy5r [t(14) = 2.46, p = 0.027] than the control
group. After adjusting for multiple comparisons (q¢ = 0.014) in
the hippocampus, the significant differences were only observed
in Crh and Npy2r.

Table S2 summarizes the adjustment for multiple comparisons
of the mRNA expression of neuropeptides and receptors in the
amygdala and hippocampus.

Effects of Intermittent Alcohol Exposure
during Adolescence on the Gene

Expression of Neuroinflammatory Factors
Finally, we examined the effect of alcohol exposure during
adolescence on the gene expression of relevant inflammatory-
related markers [pro-inflammatory mediators: tumor necrosis
factor-a (TNF-a) (Tnf), TLR4 (Tlr4), COX-2 (Ptgs2) and NF-kf
(Rela); and glia-activating factors: glial fibrillary acidic protein
(GFAP) (Gfap) and allograft inflammatory factor-1 or microglia
response factor (MRF-1) (Aifl)] following 2 weeks after the last
alcohol exposure.
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Medial Prefrontal Cortex

In the mPFC (Figure 7A), the mRNA levels of Tnf [tq) =
3.55, p = 0.006], Tlr4 [tqq) = 12.50, p < 0.001], Pigs2 [t(1s)
= 2.67, p = 0.018] and Gfap [t;;y = 9.08, p < 0.001] were
significantly increased in the alcohol group in comparison with
the control group. By contrast, the mRNA expression of Rela
was significantly decreased in the alcohol group [t(14) = 4.17,
p < 0.001]. The adjustment for multiple comparisons (q = 0.042)
confirmed all the significant differences found after repeated
t-tests.

Striatum

In the striatum (Figure 7B), the statistical analysis showed a
significant decrease in the mRNA levels of Ptgs2 [t(14) = 4.34,p <
0.001], Rela [t() = 5.91, p < 0.001], Gfap [t(14) = 2.48, p = 0.027]
and AifI [ty = 2.51, p = 0.041] in the alcohol group compared
with the control group. However, the FDR adjusted significance
level (¢ = 0.018) remained significant differences only in the
expression of Ptgs2 and Rela.

Amygdala

As shown in Figure 7C, the alcohol group only displayed lower
Aifl mRNA levels compared with the control group [tg) =
3.45, p = 0.008] and this difference was still observed after the
correction for multiple comparisons (g = 0.008).

Hippocampus
Regarding the hippocampus (Figure 7D), the statistical analysis
indicated that the alcohol group displayed lower mRNA levels of
Ptgs2 [t(14) = 2.72, p = 0.017] and Gfap [t(14) = 2.74, p = 0.016]
and higher Aifl mRNA levels [t(g) = 2.84, p = 0.022] compared
with the control group. The adjustment for multiple comparisons
(g = 0.025) confirmed the significance of all differences found
using repeated ¢-tests.

Table S3 summarizes the adjustment for multiple comparisons
of the mRNA expression of neuroinflammation-related factors in
each brain region.

DISCUSSION

The present study in adult rats investigated the effects of
intermittent alcohol intoxication on emotional behavior,
cognition and the relative mRNA expression of genes
from the endocannabinoid system (ECS), neuropeptides
regulating anxiety- and alcohol-related behavior and
mediators of neuroinflammation and plasticity. We must
keep in mind that the social isolation of the animals in
their home-cages throughout the experiments can affect the
basal values in emotional behaviors (e.g., isolation induces
anxiety-like behaviors and impairs fear extinction) and the
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expression of signaling systems in the brain (Skelly et al,
2015).

Intermittent Alcohol Intoxication

As expected, the alcohol group showed elevated ethanol levels
in the blood. These BECs were about 200 mg/dl and they
are comparable to the concentrations reported in other studies
conducted in adolescent Wistar rats using a model of binge-
like drinking with i.p. injections of 3 g/kg, which reported 150-
180 mg/dl 1h postinjection (Przybycien-Szymanska et al., 2010,
2012). Although our procedure raised plasma alcohol levels
in a binge-like manner [binge drinking is indeed defined as
heavy episodic drinking within a BEC of 80 mg/dl or higher
(NIAAA, 2004)], the alcohol administration was injected and
it is possible that our model would yield higher alcohol doses
than animals would consume voluntarily as it is expected in a
binge drinking pattern (Spanagel, 2000). However, both patterns
of excessive alcohol consumption are characterized by high
BECs, and this can be critical in the effects of adolescent
alcohol on behavior and expression of signaling systems in the
brain.

During the alcohol exposure, we monitored the feeding
behavior of adolescent rats by measuring body weight and
food intake. Thus, the alcohol group displayed a lower body
weight gain accompanied by a reduction in food intake during
the alcohol exposure. These observations agree with previous
studies reporting a significant decrease in body weight after
i.p. administration of ethanol (Luz et al., 1996; Iwaniec and
Turner, 2013). In fact, Lauing and colleagues reported decreased
weight gain after modeling binge drinking using i.p. alcohol
administration delivered on 2 consecutive days followed by 5
days of abstinence (Lauing et al., 2008). Several factors such
as local inflammation and pain related to repeated injections,
repeated acute ethanol intoxications with subsequent physical
discomfort... could participate in this negative energy balance.
However, there are studies reporting no differences in the
final body weight after an intermittent binge-drinking exposure
(Przybycien-Szymanska et al., 2010) although the total duration
of this protocol was only 8 days.

Effects on Emotional Behaviors and

Cognitive Responses

After the alcohol exposure, locomotor activity, anxiety-like
behavior and cognitive responses were assessed using a
behavioral test battery consisting of the open field, elevated plus
maze and novel object recognition task.

One week after the last alcohol session, we observed no
differences in locomotor activity in the open field but there was
an anxiogenic-like response to the test in the alcohol group
compared with the control group, which could be related to
the effects of alcohol deprivation on emotional behavior. These
results are consistent with previous studies in rodents exposed
to repeated binge-drinking during adolescence, which reported
long-term anxiety disorders (Gilpin et al., 2012; Montesinos
et al., 2016). One week later, the same rats were assessed in the
elevated plus-maze and the anxiogenic-like behavior was also
detected in the alcohol group. Ethanol withdrawal in rodents is
associated with a negative affective state, including an enhanced
anxiety-like behavior. Following a period of abstinence, rats spent
significantly less time in the open arms of the elevated-plus maze
than control animals (File et al., 1993; Moy et al., 1997; Wilson
etal,, 1998; Pandey et al., 2003). This behavioral profile can persist
for as long as 28 days (Rasmussen et al., 2001). In our animals,
the elevated anxiety in the alcohol group persisted unchanged for
at least 2 weeks following the last alcohol exposure, suggesting
enduring changes on emotionality.

A novel object recognition task was used to detect the
existence of cognitive impairments because this paradigm relies
on the innate preference that rodents display for exploring novel
rather than familiar objects (Ennaceur and Delacour, 1988).
To perform the task, we used a 1h delay interval between
the familiarization and novelty phases to consolidate a short-
term memory that depends on the integrity of the hippocampal
formation (Garcia-Moreno et al., 2002). The results showed that
rats exposed to alcohol displayed a decreased preference for the
novel object over the familiar object but similar exploration time
of the familiar object. This attracted our attention, because this
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less exploration time of the novel object was not associated with a
locomotor impairment in this task, which was in agreement with
the open field observations. In fact, the alcohol group displayed
less exploration time during the familiarization phase when
both identical objects were considered novel. Thus, the reduced
preference for the novel object exhibited by the rats exposed to
alcohol might be associated with the development of neophobia-
induced anxiety and cognitive deficit, which is thought to prevent
exploratory behavior (Myhrer, 1988).

Effects on Endocannabinoid System

Components

The brain is undergoing extensive maturation during
adolescence. Similarly, the ECS is also undergoing maturational
changes and some alteration of these processes of maturation can
produces long-term alterations, including deficits in emotional
behavior and cognition.

Several lines of evidence indicate that alcohol leads to
neuroadaptations in endocannabinoid signaling mechanisms
(Basavarajappa and Hungund, 1999; Basavarajappa et al,
2003). The present results showed that rats exposed to
adolescent alcohol displayed alterations in the expression of
endocannabinoid enzymes and receptors that appear to be reliant
on the brain region, which is consistent with previous studies

reporting regionally distinct effects on brain endocannabinoid
levels after alcohol exposure (Gonzalez et al., 2002, 2004; Rubio
et al.,, 2007).

The mPFC is a key region for multiple cognitive functions,
including executive function or anxiety. In addition, the ECS is
involved in the regulation of emotional behaviors in this brain
region (Rubino et al., 2008; McLaughlin et al., 2014; Morena et al.,
2016). Thus, the negative impact of the alcohol to the adolescent
mPFC may be associated to the observed alterations in cognition
and behavior. We found that rats exposed to adolescent alcohol
had a strong increase in the mRNA expression of Napepld and
Dagl in this region. These observations suggest that the ECS is
activated in response to the negative affective state associated
to alcohol withdrawal. Additionally, the alcohol group displayed
an increase in the mRNA expression of Faah and the receptor
Ppara. It has been described that localized infusion of the FAAH
inhibitor URB597 into the mPFC increases ethanol consumption
by rats (Hansson et al., 2007). Also, a recent study has reported
that pretreatment with an inhibitor of FAAH prevents against
oxidative stress caused by binge ethanol consumption in the
mPFC of adolescent rats (Pelicdo et al., 2016). Furthermore,
PPAR-a is involved in the actions of other N-acylethanolamines
with no endocannabinoid activity (e.g., oleoylethanolamide and
palmitoylethanolamide) that have been reported to exhibit
neuroprotective effects (Fu et al., 2003; Scuderi et al., 2012).
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Collectively these findings suggest a strengthening of the
ECS that may reflect a homeostatic mechanism to prevent
the neurotoxic effects induced by alcohol with a relevant
role of other non-cannabinoid congeners in the alcohol
exposure.

The ECS is an important modulator of neuroplasticity in
the striatum. Overall, we observed that alcohol-exposed rats
displayed a decreased mRNA expression of Cnrl and Ppara,
as well as a decreasing trend in Cnr2. These results agree with
preclinical studies that indicate a decrease in Cnrl mRNA levels
after alcohol exposure in mice (Vinod et al, 2006) and rats
(Adermark et al.,, 2011). Regarding the Cnr2 mRNA levels, it is
known that alcohol consumption alters the Cnr2 expression in
the brain and that an increased ethanol preference is associated
with a reduced Cnr2 expression in the striatum (Onaivi et al.,
2008).

The amygdala is a crucial subcortical area that integrates
reward, emotions, and conditioned learning. Previous studies
have demonstrated drug-induced alterations in amygdalar
endocannabinoid function (Orio et al., 2009; Kamprath et al.,
2011; Schmidt et al., 2011). In the present study, we observed
a decreasing trend in the receptors and synthesis enzymes but
not in the degradative enzymes. Consistently, we have reported
that chronic alcohol treatment alters the expression of different
cannabinoid signaling-related genes in the amygdala (Serrano
etal, 2012).

The hippocampus is a brain region involved in learning
which cooperates with the amygdala to modulate emotion and
belongs to the reward circuit. Numerous studies have shown
that alcohol exposure alters hippocampal function (for review
see Kutlu and Gould, 2016). Regarding the expression of the
endocannabinoid signaling in the hippocampus, we found a
dramatic decrease in the expression of Cnr2. In the hippocampus,
such cannabinoid receptor is involved in the modulation of
excitatory synapses (Garcia-Gutiérrez et al.,, 2013; Kim and Li,
2015). A recent study has demonstrated a role of the hippocampal
CB; to modulate cognitive functions in mice (Li and Kim,
2016). Thus, the effects on Cnr2 mRNA expression in our
alcohol-exposed rats may be associated to the adverse effects of
alcohol on synaptic plasticity (basically long-term potentiation
and long-term depression processes) and the consequent defects
in learning and memory (Lovinger and Roberto, 2013).

Effects on Neuropeptides Linked to

Emotional Behaviors

As mentioned above, the presence of anxiety is one of the most
consistent features of alcohol withdrawal. Since the amygdala
and hippocampus are key brain regions in the modulation
of emotional behaviors and the ECS is also involved in the
regulation of emotionality (Hill and Gorzalka, 2009), the present
findings suggest that the differential changes observed in the
ECS after adolescent alcohol exposure may be associated with
different responses to anxiety. In this regard, to get a better
understanding of the potential mechanisms underlying the
anxiety effects that were observed, we analyzed the CRF and NPY
signals in these regions. Furthermore, both neuropeptides are

clearly involved in alcohol-related behaviors and binge alcohol
drinking (Pleil et al., 2015).

Interestingly, we found an increase in the hippocampal
expression of Crh mRNA in the alcohol group with no changes
in the CRF receptors. In line with this, previous studies have
associated CRF with binge drinking and alcohol dependence
(Lowery et al., 2010; Gilpin et al., 2012; Pleil et al., 2015).

Regarding the NPY signal, in both brain areas the alcohol
group displayed a down-regulation of this system with a strong
decrease in the mRNA levels of Npy2r that may be associated
with the anxiogenic-like behavior observed in this group. These
findings are in agreement with a recent study showing that a
decrease in the expression of receptors for NPY are associated
with an increase in the anxiety-like behavior in adolescent rats
exposed to repeated binge-like alcohol drinking (McClintick
et al., 2016).

Effects on Neuroinflammatory Signals
Since alcohol increases neuroinflammation through its ability of
activating natural immunity, we evaluated the gene expression of
factors involved in pro-inflammatory signaling pathways but also
factors associated with plasticity and neurodevelopment.

The data indicate a region-specific susceptibility to the alcohol
regulation of the mRNA expression of these factors, being these
alterations more prominent in the mPFC. In line with this,
binge drinking has been reported to produce alcohol-induced
inflammatory PFC damage and this can be accompanied by
reduced executive functions and compulsive behavior (Crews
et al, 2000). Thus, we observed that adult rats exposed to
adolescent alcohol displayed an overall increase in the mRNA
expression of the neuroinflammation-related factors Tlr4, Tnf
and Ptgs2 in the mPFC. Several evidence indicates that alcohol
induces the TLR4 signaling in the PFC (Vetreno and Crews,
2012; Pascual et al, 2014), triggering the induction of a
cascade of pro-inflammatory mediators that affect, among others,
cognitive impairments and anxiety-like behaviors associated
with the alcohol abuse (Montesinos et al., 2015; Pascual et al.,
2015).

TLR4 receptors are mediators of alcohol-induced
inflammatory damage in the adolescent and adult brain
(Alfonso-Loeches et al., 2010). In fact, Crews and colleagues
have reported an increased TIr4 expression in the brain of
alcoholics as well as in mice treated chronically with ethanol
(Crews et al, 2013). In addition to TLR4, there was an up-
regulation of Tnf and Ptgs2 mRNA levels in alcohol-exposed
rats, which is consistent with previous studies reporting that
ethanol binge drinking is associated with increased cortical
levels of TNF-a and COX-2 (Knapp and Crews, 1999; Anton
et al., 2016). By contrast, the gene expression of various pro-
inflammatory mediators were down-regulated (e.g., COX-2
mRNA levels were decreased in the striatum and hippocampus
and NF-kfp mRNA levels were decreased in the mPFC and
striatum), which appears to be incongruent with literature since
alcohol exposure activates COX-2 and NF-kf by triggering
cytokine and chemokine release and neuroinflammation. In the
mPFC, the decreased gene expression of Rela may be associated
with the up-regulation of Ppara receptor observed in this
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brain region because it has been described that the activation
of this nuclear receptor inhibits Rela (Stahel et al, 2008).
Nevertheless, we have to keep in mind that changes in gene
expression are often not concordant with protein expression
(Vogel and Marcotte, 2012).

In addition to these factors and receptors, the inflammatory
response is associated with astrocytes activation (Ransohoff and
Brown, 2012). In fact, previous studies have demonstrated that
Gfap levels are affected by alcohol exposure (Miguel-Hidalgo
et al., 2006; Udomuksorn et al., 2011). Consistently, the gene
expression of GFAP and MRF-1 were found up-regulated in
the mPFC and hippocampus. Similar to COX-2 and NF-kf, the
gene expression of both astrocyte marker Gfap and microglial
marker Aifl were also down-regulated in other brain regions
(hippocampus and amygdala, respectively) and this was only
reported in human alcoholic brain in conjunction with astrocytic
loss (Lewohl et al., 2005).

Summary

In summary, adult rats exposed to intermittent alcohol exposure
during adolescence displayed anxiety-like behaviors and
cognitive deficits related to recognition memory. Furthermore,
the mRNA expression of some components of signaling systems
involved in behavior, neuroinflammation and plasticity were
found altered in these animals, with brain region-dependent
changes.

Although adult rats exposed to adolescent alcohol had
no alterations in locomotor activity, they exhibited a strong
anxiogenic-like behavior. In addition to the anxiety-like
response, we observed a clear cognitive deficit with a reduced
preference for the novelty. These behavioral and cognitive effects
in adulthood were accompanied by molecular changes in the
brain.

Alterations in the mRNA expression of genes of the ECS
appear to be reliant on the brain region. However, we observed
an overall decreasing trend in the mRNA expression of
the cannabinoid receptors in the alcohol group. This down-
regulation can be associated to the adverse effects of alcohol
on synaptic plasticity with cognitive consequences in adulthood
such as deficits in learning and memory.

Whereas, the ECS is also associated with emotionality,
neuropeptides such as CRF and NPY are clearly involved in
alcohol-related behaviors and binge alcohol drinking. Thus, we
observed changes in both signals that were linked to anxiogenic-
like behaviors, in particular a decrease in the NPY signaling
expression.

Regarding neuroinflammatory-related factors, our data
indicated a brain region-specific susceptibility in the adult rats
exposed to intermittent alcohol. These alterations were more
prominent in the mPFC with an up-regulation of the mRNA
levels of Tlr4, Tnf, Ptgs2, and Gfap and a decrease of Rela. The
activation of PPAR-a inhibits NF-kp and the mRNA expression
of Ppara was increased in the mPFC, a key region for multiple
cognitive functions. Interestingly, Ppara is involved in the anti-
inflammatory and neuroprotective actions of endocannabinoid
congeners. In contrast to the mPFC, the mRNA expression
of Ptgs2 and Gfap were down-regulated in the rest of brain
regions.

Limitations and Perspectives

We are aware of the limitations of our study, mainly because
of the exploratory nature of the present investigation and
the necessity of performing future studies that include
female subjects and alcohol exposure during adulthood.
Furthermore, the protein expression and function of signaling
systems and factors involved in behavior, neuroinflammation
and neuroplasticity will open new lines of research using
pharmacological and genetic approaches to characterize the
association and regulation of these systems with emotional
behavior and cognition in the context of adolescent alcohol and
its long-term consequences.

The existence of sex differences in the response to alcohol
and other drugs has been extensively reported (Becker and Koob,
2016) but we have conducted our experiments only in male
rats for clarity. Studies using female rats will reveal whether the
estrous cycle and gonadal hormones influence the behavioral and
molecular alterations that we have observed here.

Although our data indicate changes in the mRNA expression
of signaling systems in the brain and alterations in both
emotional and cognitive responses of adult rats exposed
to adolescent alcohol, we cannot link these molecular and
behavioral effects exclusively to an alcohol exposure during
adolescence because we have no rats exposed to alcohol during
adulthood for comparison. Consequently, the specificity of the
effects associated with intermittent alcohol exposure on these
biological substrates will have to be elucidated.

Finally, additional studies will have to resolve the lack of
the protein expression of these enzymes, factors and receptors
because changes in gene expression level are frequently not
reflected at the protein level. In fact, post-transcriptional,
translational and degradation regulation must also be taken into
account in the determination of protein concentrations because
contribute at least as much as transcriptional itself (Vogel and
Marcotte, 2012). Also, functional assays will be required to
elucidate the role of these signaling systems in the appearance
of emotional behaviors and addictive behaviors related to an
adolescent alcohol exposure.
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