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The influence of early life experience and degree of parental-infant attachment on
emotional development in children and adolescents has been comprehensively studied.
Structural and mechanistic insight into the biological foundation and maintenance of
mammalian defensive systems (metabolic, immune, nervous and behavioral) is slowly
advancing through the emerging field of developmental molecular (epi)genetics. Initial
evidence revealed that differential nurture early in life generates stable differences in
offspring hypothalamic-pituitary-adrenal (HPA) regulation, in part, through chromatin
remodeling and changes in DNA methylation of specific genes expressed in the
brain, revealing physical, biochemical and molecular paths for the epidemiological
concept of gene-environment interactions. Herein, a primary molecular mechanism
underpinning the early developmental programming and lifelong maintenance of
defensive (emotional) responses in the offspring is the alteration of chromatin
domains of specific genomic regions from a condensed state (heterochromatin) to a
transcriptionally accessible state (euchromatin). Conversely, DNA methylation promotes
the formation of heterochromatin, which is essential for gene silencing, genomic integrity
and chromosome segregation. Therefore, inter-individual differences in chromatin
modifications and DNA methylation marks hold great potential for assessing the impact
of both early life experience and effectiveness of intervention programs—from guided
psychosocial strategies focused on changing behavior to pharmacological treatments
that target chromatin remodeling and DNA methylation enzymes to dietary approaches
that alter cellular pools of metabolic intermediates and methyl donors to affect
nutrient bicavailability and metabolism. In this review article, we discuss the potential
molecular mechanism(s) of gene regulation associated with chromatin modeling and
programming of endocrine (e.g., HPA and metabolic or cardiovascular) and behavioral
(e.g., fearfulness, vigilance) responses to stress, including alterations in DNA methylation
and the role of DNA repair machinery. From parental history (e.g., drugs, housing,
illness, nutrition, socialization) to maternal-offspring exchanges of nutrition, microbiota,
antibodies and stimulation, the nature of nurture provides not only mechanistic insight
into how experiences propagate from external to internal variables, but also identifies
a composite therapeutic target, chromatin modeling, for gestational/prenatal stress,
adolescent anxiety/depression and adult-onset neuropsychiatric disease.
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INTRODUCTION

Brain development and the emergence of antecedent fear
and anxiety-like behaviors that increase the risk for severe
mood and psychotic disorders—i.e., major depressive disorder
(MDD), schizophrenia (SCZ) and bipolar disorder (BPD)—are
influenced by inherited and non-inherited (i.e., acquired
during life) factors, where environmental experience contributes
to disease onset (Pine and Fox, 2015). Major psychiatric
disease risk is largely attributed to germline mutations, with
heritability estimates ranging from 30% to 80% (Cardno
et al., 1999; Kendler and Prescott, 1999). The discordance
between monozygotic (identical) twins demonstrates that
non-inherited factors, such as environmental perturbations or
somatic mutations, may also drive disease etiology (Petronis,
2010). The latency between exposure and disease emergence
suggests that the environment propagates stable changes that
have the potential to manifest later in life. Identification and
characterization of candidate genes and mechanism(s) by which
early experiences direct key cell neurodevelopmental pathways
are essential to establish appropriate interventions that protect
child neurodevelopment—i.e., the dynamic inter-relationship
between genetic, brain, cognitive, emotional and behavioral
processes across the developmental lifespan.

Inter-individual variations in physical, cognitive and
socioemotional growth have been traditionally examined under
the conceptual framework of gene-environment (G x E)
interactions (Dick et al., 2010; Gershon et al., 2011). Herein,
animal studies have identified genetic sequences that influence
behavior, and human genome-wide association studies (GWAS)
have linked specific genotypic variants—aneuploidy, copy
number variants (CNVs), indels, retrotransposition and single
nucleotide polymorphisms (SNPs)—to certain personality
traits, including psychiatric disorders (Malhotra and Sebat,
2012; Purcell et al,, 2014) and anxiety (Murakami et al., 1999;
Binder et al., 2004). However, such relations are unable to
explain the vast majority of the inter-individual variation
in the population (Dick et al, 2010; Gershon et al, 2011).
Cellular variables and alternate molecular mechanisms have
since been examined, including epigenetic programming.
Waddington (1942) introduced the term epigenetics to describe
the mechanisms that are involved in programming identical
genes differently in different organs during embryogenesis.
Although often debated (Henikoff and Greally, 2016),
epigenetics represent mitotic or meiotic heritable patterns
of DNA methylation and chromatin protein modifications
that affect how DNA is packaged, and the stable transmission
of gene expression programs and phenotypes (Wolffe and
Matzke, 1999). Microarray-based and next generation
sequencing platforms have led to methods which provide
high-resolution genome-wide distribution of epigenetic
(collectively called epigenomic) modifications in normal
and diseased states.

Depending on the genomic location, a chromatin
modification could have a range of effects on cellular
function by altering gene expression or transcript splicing,
to further modify chromatin or to reverse an existing chromatin

modification. Considering the highly-networked state of the
brain, a small number of chromatin modifications that affect
cellular function could have far-reaching effects on neuronal
circuitry and behavioral traits. The nature and degree to which
molecules—that either attach (“writers”) or erase (“erasers”
modifications to chromatin or that bind (“readers”) to a specific
modified site—may contribute to antecedents and emergence
of neuropsychiatric disorders in humans is currently under
investigation (Singh et al, 2016). A long-standing question
has been to determine the mechanistic link between early
environmental experiences and permanent alterations in the
brain and their contribution to disease risk and progression
later in life. Here, we discuss the major molecular (epi)genetic
mechanisms that control stable gene expression (temporal and
spatial) in the brain and generated in response to physiological or
pathological signals, the environment, challenges associated with
studying the contribution of these molecular (epi)genetic
changes to complex behavioral phenotypes, and future
directions for understanding the manifestation of stress in
humans.

DYNAMIC ORGANIZATION OF
CHROMATIN STRUCTURE AND
FUNCTION

Cells in multicellular organisms are structurally and functionally
heterogeneous due to differential gene expression, which
is controlled by dynamic organization of the genome into
chromosome territories and domains of different transcriptional
potential (Allis and Jenuwein, 2016). In the nucleus of
a eukaryotic cell, gene expression is primarily controlled
by chromatin structure (Figure 1). The nucleosome is the
fundamental unit of chromatin consisting of ~147 base pairs
of DNA wrapped tightly around an octamer of histone proteins
(composed of two H2A-H2B dimers and a H3-H4 tetramer),
termed the nucleosome core. During nucleosome formation, two
H3-H4 dimers are first assembled on DNA, where they form a
subnucleosomal structure called the tetrasome. Two H2A-H2B
dimers are then incorporated into the tetrasome, to form the
mature nucleosome. Histone linker protein H1 associates with
the DNA between nucleosome cores (linker DNA) and functions
in the compaction of chromatin into higher-order structures
that comprise chromosomes (Figure 1). The formation of
specific nucleosome arrays along the genome (referred to
as the “beads on a string”) confers different structural and
functional chromatin states—for example, promoter regions of
actively transcribed genes are depleted of nucleosomes, with
nucleosome occupancy progressively increasing into coding
regions. Strong DNA-histone association results from binding
of the negatively charged DNA phosphate backbone with
the many positively charged (basic) amino acids (e.g., lysine,
arginine) of the nucleosomal histones (Figure 1). Genes
associated with this tightly compacted form of DNA, termed
heterochromatin, are transcriptionally silent. Heterochromatin
is thus an assembly that is inhibitory to cellular processes
requiring direct interactions with the genome. Alteration of
chromatin structure, termed “chromatin remodeling”, and DNA
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FIGURE 1 | The dynamic (epi)genome: DNA methylation, histone post-translational modifications and chromatin structural organization. Within the
nucleus of eukaryotic cells, chromosomes are composed of DNA coiled around an octamer of histone proteins to form nucleosomes, the basic repeating unit of
chromatin. Histone H1 proteins stabilize the coupling, wrapping and stacking of nucleosomes into a 30 nm solenoid and higher order supercoiled chromatin fiber.
The histone octamers are composed of four pairs of histone (H2A, H2B, H3, and H4) proteins, which have globular domains and N-termini tails that protrude from
the nucleosome (H2A also has a C-terminal tail). Each histone tail can undergo numerous post-translational modifications. The most common forms of mammalian
acetylation and methylation modification of lysine (K) residues are shown. Additionally, mammalian DNA can be chemically modified by methylation and
hydoxymethylation (M) of the five position of the cytosine base of 5'-cytosine-phosphodiester-guanine (CpG) dinucleotides. Chromatin structure directs the activity
(expression) of genes: genes within tightly packed nucleosomes are silenced, whereas genes within relatively spaced nucleosomes are actively transcribed
(expressed). The process of remodeling chromatin into domains of different transcriptional potentials is regulated by reciprocal changes of DNA methylation and
histone modification in response to in response to extrinsic cues and/or changes in intrinsic properties of cells (see text for details).
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accessibility from a closed to an active (euchromatin) state, can be
accomplished by: (i) adenosine triphosphate (ATP)-dependent
complexes, which modulate histone-DNA association; and
(ii) covalent modification of the core nucleosomal histones,
which mediate the transcriptional activity (Ronan et al,
2013). This molecular mechanism is regulated by a variety
of chromatin modifications, including DNA methylation,
non-coding RNAs (micro RNAs, long non-coding RNAs and
others), polycomb-group proteins and post-translational histone
modifications.

This dynamic organization of chromatin structure
prevents chromosome breakage and allows control of gene
expression as well as replication and distribution of DNA
in mitotic and meiotic cell division, thereby regulating
patterns of gene expression and maintenance of cellular
phenotype across generations. However, the extent to which
chromatin organization is passed on through cell division
during development depends heavily on cell type. Chromatin
modifications that occur in early progenitor cells during
embryogenesis are passed on to most cells of the brain and
body. Alternatively, chromatin modifications that occur in
neural progenitors in the neurogenic niche of the adult brain
are transmitted to a few number of cells. Beyond cell identity,

epigenetic mechanisms in single neurons can be modified in
response to a variety of intrinsic (e.g., transcription factors,
retro-transposition, ~ prion-protein-like mechanisms) and
external stimuli (e.g., nutrition, toxicants, drug exposure) to
provide experiential identity through persistent changes in
gene expression, cell function and phenotype, and might even
be inherited transgenerationally (Bailey et al., 2004; Ballas and
Mandel, 2005; Muotri and Gage, 2006). These emerging concepts
have biological relevance not only to cell/tissue homeostasis
during normal development and ageing, but also in the onset of
physical and mental illness.

REGULATION OF CHROMATIN BY
HISTONE MODIFICATIONS

The dynamic structure of chromatin is dependent on the histone
tails of the core histones, which interact with nucleosomal
and linker DNA and therefore not only play critical roles
in gene regulation but also in the formation of higher-order
chromatin (Figure 1). Notably, the N-terminal tails of H2B,
H3 and H4 and C-terminal tail of H2A are accessible to
histone modifying enzymes in the nucleus and can undergo
post-translational modifications, including: lysine acetylation,
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lysine mono-, di-, or tri-methylation and arginine mono- or
di- (asymmetric or symmetric) methylation, serine/threonine
phosphorylation, lysine biotinylation and butyrilation, arginine
citrulation, but also mono-ubiquitination, SUMOylation, poly-
ADP-ribosylation, deamination, carbonylation and proline
isomerization, along with their reversed processes (Zhao
and Garcia, 2015). Additionally, the chromatin fiber can be
modified by the substitution of canonical histones for histone
variants—a process termed nucleosome subunit exchange.
Together with post-translational modifications, histone variants
alter the physical properties of nucleosomes to provide chemical
signposts that serve to recruit specific nuclear proteins through
recognition of the particular modification and non-allelic histone
isoform (for H2A, H2B and H3) involved, as well as the
context and surrounding histone modifications. For example,
the H2A variant H2A.X regulates chromatin structure and
gene expression, while the phosphorylated form (yH2A.X)
helps recruit DNA repair proteins in response to severe
DNA damage—as a result of environmental insult, metabolic
mistake, or programmed process (Suberbielle et al., 2013).
Exchange of histone H2A for variant H2A.Z affects nucleosome
stability and is involved in transcriptional control, chromosome
segregation and gene silencing (Marques et al., 2010). Recent
studies suggest H2A.Z is also necessary for acetylation and
ubiquitination of histones and promotes remodeling of the
local chromatin structure to enable the DNA repair machinery
to access sites of DNA damage (Xu et al, 2012). Thus, each
histone modification can affect chromatin fiber stability and the
capacity to attract protein complexes that either compact the
chromatin even further, or facilitate accessibility of transcription
machinery (Figure 1). The effects of histone modification on
gene activity (expression) depends on the identity, location
and extent of each modification that regulates downstream
processes, such as gene transcription, DNA repair, DNA
replication and programed cell death (apoptosis). Translating the
“histone code” and understanding how histone modifications
are regulated could lead to therapies that shut down or
turn on genes in diseases that have aberrant patterns of
gene expression. Consequently, chromatin marks and histone
modifying enzymes have emerged not only as promising
biomarkers for disease diagnosis and prognosis, but also
informative for distinguishing disease subtypes and identifying
suitable treatments (Bock et al., 2016; Libertini et al., 2016a,b;
Rendeiro et al., 2016).

In general, histone deacetylation, biotinylation and
SUMOylation repress gene transcription, while histone
acetylation and phosphorylation act as activators of gene
expression. Depending on the histone residue being modified,
methylation and ubiquitination can either repress or
activate gene transcription. In order to define a precise
functional chromatin environment, histone modifications
often demonstrate interdependence—for example, histone
acetylation, phosphorylation and ubiquitination can all be
regulated by histone methylation (for review see Izzo and
Schneider, 2010). Beyond this, trans-nucleosome cross-talk
between post-translation modifications and histone modifying
enzymes contribute to the establishment and maintenance of

chromatin domains with different transcriptional potentials.
Histone modification enzymes themselves are not sequence
specific and have to be recruited to particular genomic regions
by interactions with transcription factors. Some transcription
factors (e.g., c-Jun, GATAI, NRF1) are uniquely associated
with euchromatin, while others (e.g., ZFN274, KAP1, SETDBI)
are only associated with heterochromatin (Ernst et al, 2011;
Thurman et al., 2012). The relation between transcription
factor function and chromatin state creates a mechanistic
connection through which developmental and environmental
cues might alter chromatin domains and the expression of
specific genes in post-mitotic neurons. The best characterized
histone modifications are histone acetylation/deacetylation
and histone methylation/demethylation, and the enzymes and
molecular mechanisms governing these marks are discussed
below.

HISTONE ACETYLATION—
DEACETYLATION

In the 1960s, Allfrey proposed that histone acetylation was
associated with transcriptional potential (Allfrey and Mirsky,
1964; Allfrey et al, 1964). Subsequent studies have helped
establish the causal relationship between histone modifying
enzymes, histone marks and gene regulation (Figure 1).
Acetylation at lysine (K) residues on the amino-terminal tails
of histone proteins (e.g., H3K9, H3K14, H3K36, H4K8, H4K16)
is mediated by both histone acetyltransferases (HATs) and
histone deacetylases (HDACs), which are recruited by activator
and corepressor proteins, respectively (Kalkhoven, 2004; Wang
et al, 2009). For example, the addition of an acetyl group
(acetylation) on lysine 9 of histone H3 (H3K9Ac) in gene
promoter or enhancer regions by HAT enzymes (e.g., nuclear
type A proteins, GCN5, p300/CBP and TAFII250) is associated
with transcriptionally active euchromatin. Alternatively, removal
of the acetyl group (deacetylation) by HDAC enzymes (e.g.,
nuclear class 1 proteins, HDAC 1, 2, 3 and 8) is associated with
transcriptionally inactive heterochromatin (Grunstein, 1997;
D’Alessio et al., 2007).

Histone acetylation is a process that is dependent on the
enzyme ATP-citrate lyase, which converts glucose-derived citrate
into acetyl-coenzyme A (acetyl-CoA; Takahashi et al., 2006).
HATs transfer an acetyl group from acetyl-CoA to form
e-N-acetyllysine. Acetyl-CoA is produced by glycolysis and other
catabolic pathways such as the B-oxidation of fatty acids, and
plays a key regulatory role as a substrate for the citric acid
cycle and as a precursor in the synthesis of fatty acids and
steroids. Mitochondrial and nucleocytosolic acetyl-CoA pools
are therefore a rate limiting step, coupling metabolism with
chromatin remodeling and endocrine function (Wallace and
Fan, 2010). In turn, mitochondrial dynamics permit reversible
modulation of gene expression, growth and reproduction
potential in response to changes in energy demand and nutrient
supply (Wallace, 2010)—i.e., for bioenergetic adaptation to
metabolic demands—and may affect a myriad of cellular and
biochemical processes in which acetylation and metabolism
intersect, such as aging and neurodegenerative disease states
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(e.g., Alzheimer’s disease (AD), Parkinson’s disease (PD); Liesa
and Shirihai, 2013). HATs are broadly classified into two
different classes, based on their functional localization: (1) type
A HATS, located in the nucleus and contain a bromodomain,
and (2) cytoplasmic type B HATs, that modify newly synthesized
histones before their assembly into nucleosomes (Sterner and
Berger, 2000; Roth et al., 2001). On the other hand, HDACs
are divided into five main classes based on their sequence
homology and expression patterns. Class I, IIA, IIB and IV
HDACs are Zn-dependent deacetylases, whereas the Class
III HDACs are nicotinamide adenine dinucleotide (NAD)-
dependent deacetylases (Sterner and Berger, 2000; Roth et al,,
2001).

Through animal models, HDAC inhibitors (HDACis) have
been recognized as potentially useful therapeutic interventions
for the cognitive impairments associated with chronic stress,
neurodevelopmental disorders and neurodegeneration (reviewed
in Dietz and Casaccia, 2010; Didonna and Opal, 2015). These
inhibitors include hydroxamates, such as vorinostat (SAHA) and
trichostatin A (TSA); short chain fatty acids, such as sodium
butyrate (SB) and valproic acid (VPA); cyclic tetrapeptides,
such as apicidin or depsipeptide, amides, benzamides, epoxides,
ketones and lactones. Although VPA has long been used as
an anticonvulsant drug for the treatment of migraines, as
well as partial and generalized seizure disorders in individuals
with epilepsy and BPD, the further development of similar
pan HDACis to treat neurobiology and neurological diseases
has been hampered by off-target as well as severe side effects
(Dinarello et al., 2011; Soragni et al., 2011). Similar to therapeutic
strategies to enhance the anticancer efficacy of HDAC inhibitors,
isoform-selective and/or class-selective HDAC inhibition in
combination with other epigenetic modulators and/or other
chemotherapeutic agents may not only reduce these off-target
effects, but also provide a potential strategy to respond to
resistance to current therapies in the treatment of human
neuropathology.

HISTONE METHYLATION—
DEMETHYLATION

Methylation of lysine or arginine residues on amino-terminal
tails of histone proteins (Figure 1) is controlled by the activity
of both histone lysine or arginine methyltransferases (HTMs;
e.g, EZH2, G9a, MLL, Suv39H1/2) and histone lysine or
arginine demethylases (HDMs; e.g., JARID1d, Utx; Greer and
Shi, 2012). Lysine residues can carry either mono-, di- or
trimethyl moieties on their amine group (e.g., H3K4, H3K9,
H3K27, H3K36, H3K79 and H4K20). Alternatively, arginine
residues can house mono- or di-methyl (me2) moieties on their
guanidinyl group, in either symmetric (me2s) or asymmetric
(me2a) configuration. Methylation of histone H3 on lysines
4, 36, 79 (H3K4, H3K36 and H3K79) is generally associated
with poised or active gene transcription, whereas methylation
of histone H3 on lysine 9, 20, 27 (H3K9, H3K20 and H3K27)
are hallmarks of silenced or heterochromatic regions (Ohm
and Baylin, 2007). H4K20 modification is also involved in
recruiting the checkpoint protein CRB2 to sites of DNA

damage, suggesting that HTMs may have many different roles
in the cell. Methylation of histone H3 on arginines 2, 8,
17 and 26 (H3R2, H3R8, H3R17 and H3R26) and H4 on
arginine 3 (H4R3) can be either activatory or repressive for
transcription. The distribution, recognition and regulation of
histone lysine/arginine methylation is of major interest given
their role in the regulation of chromatin and gene expression and
importance in multiple pathways in development and disease,
including metabolic and neurological disorders (Landgrave-
Gobmez et al., 2015).

The majority of HMTSs have a conserved SET (Suppressor
of variegation, Enhancer of Zeste, Trithorax) catalytic domain
and their activity towards the lysine and arginine residues
can result in mono-, di-, or tri methylation state of the amino
acids. Understanding the specificity of different SET-domain
enzymes and which human diseases can arise from changes in
HMT-binding (reading) domains may provide novel targets for
therapeutic drugs. Methylation of lysine and arginine residues
on the amino-terminal tails of histone proteins is dependent
on the methyl donor S-adenosyl methionine (SAM), SAM
itself is derived in part from dietary methyl group intake—e.g.,
choline, methionine, or methyl-tetrahydrofolate—further
linking metabolism with chromatin remodeling and cellular
physiology.

Histone demethylases, on the other hand, can be classified
into two classes: (1) Lysine Demethylase-1 (KDM1) family,
also known as LSD1, are nuclear flavin adenine dinucleotide
(FAD)-dependent amine oxidases; and (2) the Jumonji C (JmjC)
domain containing demethylases (JHDMs), which are Fe(II)
and a-ketoglutarate-dependent dioxygenase enzymes (Fodor
et al., 2006; Tsukada et al, 2006; Whetstine et al., 2006).
Unlike LSD1 enzymes, the JmjC class of enzymes are able to
demethylate trimethyl- lysine histones (Klose et al., 2006). Given
that LSD1 and JmjC histone demethlyases both require oxygen
to function, the status of histone methylation is influenced by
oxygen concentration. Cells and/or tissues become hypoxic when
the demand for cellular growth and metabolism surpasses that
of the oxygen supply. Hypoxia is an important factor in the
pathology of a number of human diseases, including cancer,
diabetes, ageing and stroke/ischemia. Initial results of current
clinical trials with inhibitors of various lysine methyltransferases
(e.g., DOTIL and EZH2) and demethylases (e.g., LSD1) for
cancer therapy will likely guide the future clinical development
for new histone methylation modifiers and different therapeutic
markers (Morera et al., 2016).

In summary, histone modification enzymes require
common metabolic intermediates (e.g., acetyl CoA, ATP,
biotin, FAD/NAD' and SAM) and their intranuclear levels
are dependent on the metabolic state of the cell. Changes
in local concentrations of key cellular metabolites can affect
enzyme functions, acting as substrates or inhibitors of covalent
modification to histone tails (Figure 1). Furthermore, levels
and turnover of metabolic intermediates are influenced
by dietary and nutrient intake, metabolic status (hypoxia,
hyperglycemia, redox status, inflammation, oxidative stress), as
well as endocrine unbalance and disease that, in turn, can alter
histone modification enzyme expression levels.
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REGULATION OF CHROMATIN BY DNA
METHYLATION—DEMETHYLATION

DNA methylation is the primary epigenetic mark (often
considered the “fifth base”) that regulates the formation of
heterochromatic regions in the genome, with crucial roles in
control of gene expression in both physiological and pathological
conditions. A large proportion of the neuronal genome is under
cytosine methylation regulation (Figure 1). In mammals, DNA
methylation is predominantly found at cytosine residues in
CpG-3’ dinucleotides to form 5-methylcytosine (5mC; Bestor,
1990; Jaenisch and Bird, 2003). The majority (~75%) of CpG
dinucleotides are methylated. Genomic regions of enriched CpG
content (CpG islands) are associated with ~60% of human
gene promoters and predominantly hypomethylated. Early in
development, however, ~4% of these gene promoter regions
become methylated and transcriptionally silenced in a tissue-
specific pattern (Borgel et al,, 2010). Conversely, gene body
DNA methylation is coupled to transcriptional activation, as
well as translation elongation efficiency and protein-production
rate (Lister et al., 2009). Silencing of repetitive elements within
the mammalian genome (e.g., LINEs and SINEs including
Alu elements in humans) by DNA methylation prevents
aberrant expression that could cause chromosomal instability,
translocations and gene disruption due to transposition events
(Muotri and Gage, 2006). DNA methylation is also involved in
the silencing of autosomal genes in a parent-of-origin manner,
termed imprinting (Kelsey, 2011). Herein, the methylation
status of the regulatory elements controlling genomic imprinting
(e.g., imprinting control regions (ICRs)) dictates whether the
paternal or maternal allele is expressed. The “imprintome” refers
to the genomic repertoire of these differentially methylated
regions, rather than the genes they regulate (Jirtle, 2009).
A similar gene-dosage reduction is seen in X chromosome
inactivation in females. DNA methylation is further linked
to nuclear organization, concentrating in dense silenced
heterochromatin regions. Allele-specific DNA methylation
(ASM) reflects tissue-specific cis-regulatory influences of DNA
polymorphisms on epigenetic status (Tycko, 2010), whereas
compromised DNMT1 function at CpG sites (Chen et al., 1998)
and deposition of methyl groups at certain CpG sites (Pfeifer,
2006) have been shown to enhance genetic variation leading
to changes in gene expression and cell function (Chen et al,
1998), suggesting that differentially methylated CpG sites serve
as evolutionarily established mediators between the genetic code
and phenotypic diversity.

The DNA methyltransferases (DNMTs)—DNMT1, DNMT2,
DNMT3A, DNMT3B and DNMT3L—are a family of enzymes
that write the patterns of DNA methylation (Okano et al,
1999). These enzymes are all expressed in the central nervous
system (CNS) and are dynamically regulated during development
(Goto et al., 1994; Feng et al,, 2005). The recognition and
selective binding to hemi-methylated DNA by maintenance
methyltransferase, DNMT1, ensures methylation patterns are
faithfully copied from parental to daughter strand during
DNA replication (Bestor, 1988, 1992). Methylation within
critical regulatory regions of genes (transcription factor binding

sites and enhancer elements) can silence gene expression by
either directly blocking access and binding of transcription
factors (Watt and Molloy, 1988; Tate and Bird, 1993), or
through recruitment of methyl-CpG binding domain (MBD)
proteins such as MeCP2 and MBD proteins 1-4 that bind to
the methylated DNA and recruit co-proteins such as SIN3A
and histone modification enzymes, leading to heterochromatin
formation (Helbo et al., 2017). Non-CpG cytosine methylation
(i.e., mCpH, where H = adenine (A), cytosine (C) or thymine
(T)) constitutes ~25% of the DNA methylome and has also
been linked to early neural development (Lister et al., 2013) and
adult mammalian brain function (Guo et al.,, 2014). Neuronal
CpH methylation is enriched in regions of low CpG density
and, similar to CpG methylation, is depleted at protein-DNA
interaction sites and functionally can repress transcription
in neurons. As CpG dinucleotides form only ~1% of the
mammalian genome, CpH methylation may therefore function
to increase the local density of methylated cytosine in neurons in
the absence of additional CpG dinucleotide methylation. Other
modifications of cytosine in DNA include 5-carboxyl-cytosine
and 5-hydroxymethylcytosine (5-hmC) formation, which forms
~40% of modified cytosines in neurons, increases in the brain
with age and in response to neuronal activity, including acute
stress (Song et al., 2011; Szulwach et al., 2011).

During mammalian development, DNA methylation marks
are globally removed from both the maternal and paternal
genomes at fertilization to ensure totipotency (Reik and Surani,
2015). Specific methylation patterns are re-established by the
de novo methyltransferases DNMT3A and -3B, and modulated by
DNMTS3L (Okano et al., 1999). DNA methylation has long been
considered a stable, static modification with few mechanisms
for removal of the methyl group; leading to studies suggesting
passive (DNA replication-dependent; Morgan et al., 2005) vs.
active (enzymatically driven, DNA replication independent;
Bhattacharya et al., 1999; Brown et al., 2008) processes. The
rediscovery of 5ShmC (Kriaucionis and Heintz, 2009; Tahiliani
et al,, 2009) led to the identification of a family of enzymes
known as ten-eleven translocation 1-3 (TET1-3) with the ability
to convert 5mC to 5hmC in an oxidation- driven reaction that
generates other intermediates (that is, 5-formylcytosine (5-fC)
and 5-carboxylcytosine (5-caC); Tahiliani et al., 2009; Ito et al,,
2010). Enzymatic excision of 5hmC by DNA glycosylases (termed
base excision repair) may follow, replacing 5-hmC with cytosine
resulting in active DNA demethylation and transcriptional
activation (He et al., 2011).

Aberrant DNA methylation patterns and expression and/or
activities of DNMTs are involved in several pathologies,
from cancer to neurodegeneration (Zwergel et al., 2016). In
cancer cells, anti-proliferation/tumor suppressor genes are
frequently silenced by promoter CpG methylation, which led
to the pursuit of DNMT inhibitors (DNMTi) as potential
cancer therapeutics to reactivate these genes and stop or
even reverse tumor growth and cell invasiveness. These
inhibitors include nucleoside analogs, such as 5-azacytidine
(Azacitidine), and more stable and less toxic 5-aza-2-
deoxycytidine (decitabine), 5-fluoro-2-deoxycytidine (FdCyd),
SGI-110 and Zebularine that intercalate into DNA during
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replication and inhibit DNMT1 activity; as well as other
small molecule inhibitors that are not incorporated into
DNA—such as RG108 (N-Phthalyl-1-tryptophan) that
binds to the catalytic site of DNMTSs causing inhibition
of DNA methylation (Brueckner et al., 2005; Zheng et al,
2008) and the antisense oligonucleotide MG98 (2'-O-CHjs-
substituted phosphorothioate oligo deoxynucleotide) that
targets the 3’ UTR of DNMT1, blocks translation of the DnmtI
mRNA, thereby causing a decrease in DNA methylation
(Stewart et al., 2003; Klisovic et al., 2008). DNMTi treatment
can also lead to widespread gene-body demethylation and
transcriptional downregulation of overexpressed oncogenes,
suggesting convergent mechanisms for DNMTi mediated
cell growth inhibition (Yang et al, 2014). For example,
key molecular targets and DNA methylation marks linked
to hormone-receptor-targeted therapy inhibition in triple-
negative breast cancer (Coyle et al., 2016) provide further
insight for novel therapeutic intervention strategies for cancer
pathology. Similar to histone-modifying enzymes, several natural
compounds such as polyphenols, flavonoids and antraquinones
(e.g., (-)-epigallocatechin-3-gallate and laccaic acid A) inhibit
DNMT activity and/or expression, resulting in the re-expression
of anti-proliferation/tumor suppressor genes, tumor growth
inhibition and cell death (Lee et al., 2006a). However, these
non-nucleoside analog inhibitors are less potent than the
nucleoside analogs and require further optimization (Chuang
et al., 2005).

Neurodegenerative disorders (including, AD, dementia with
Lewy bodies, PD, Down’s syndrome) share similar aberrant
CpG methylation profiles at DMRS that overlapped gene
promoter regions of common genes involved in a variety of
cellular signaling pathways (e.g., ErbB, TGFf, Wnt, MAPK,
Neurotrophin, p53) that influence brain development and
function (Sanchez-Mut et al, 2016). These findings suggest
not only that different neurodegenerative diseases emerge
from similar pathogenetic mechanisms, but also that DNA
methylation is key in the aberrant changes in gene expression
associated with cell survival. When administered directly into the
brain tissue of rodents, DNMTi treatment blocks neurotoxicity
associated with Huntington disease (Pan et al., 2016), while
haploinsufficiency of Dnmtl protects against irreversible damage
following acute ischemia and recurring stroke (Endres et al.,
2000, 2001), suggesting that DNA methylation-targeted drugs
may rescue CNS functions after injury, promote neuron survival
and prevent progressive dementia. However, DNMTi treatment
can also disrupt synaptic plasticity and impair hippocampal
learning and memory, and modulate reward and addiction
behaviors (Sen, 2015). Furthermore, overexpression of the
TETI1 protein (which promotes 5hmC formation and active
demethylation) results in increased expression of memory-
associated genes in neurons as well as contextual fear
memory impairment (Kaas et al., 2013). Understanding the
complexity of DNA methylation (and histone modification)
and the ability to epigenetically reprogram gene expression
in differentiated cells, such as neurons, is therefore of major
importance to cognitive research examining not only the role
of emotions in information processing but also the effects of

dysregulation on decision-making, including emotional states
in social withdrawal, impulsivity, substance dependence in
neuropsychiatric disorders and age-related neurodegenerative
diseases.

INTER-RELATIONS BETWEEN HISTONE
MODIFICATION AND DNA METHYLATION
AND TRANSCRIPTIONAL STATES

As described above, gene expression requires the alteration
of chromatin domains from condensed heterochromatin
to a transcriptionally accessible euchromatin and DNA
demethylation. Conversely, DNA methylation drives the
formation of heterochromatin and gene silencing. DNA
methylation and histone modification pathways are therefore
dependent on one another—chromatin state can direct DNA
methylation which itself can equally define chromatin state—and
this bidirectional cross-talk is mediated by biochemical
interactions between both histone-modifying enzymes and DNA
methylation enzymes in response to upstream cell signaling
pathways (D’Alessio and Szyf, 2006). This has important
implications for identifying mechanisms and molecular cascades
involved in regulation of gene and protein expression at different
stages of development or in response to pathological processes
that resolve as metabolic, immune, nervous and behavioral
systems.

Although necessary for survival, recurrent stress responses
threaten survival of cells and organisms. Stable modifications in
cell physiology involve induction of changes in gene expression
programs by the activation of cell surface receptors, intracellular
signaling pathways and activity-dependent transcription
factors that modulate chromatin structure at responsive
genes. The changes can affect DNA methylation, histone tail
modifications, exchange of histone variants, or nucleosome
occupancy by chromatin remodeling. Genome-wide and
single cell transcriptomics have revealed how organisms
respond to different stresses by regulating gene expression
from chromatin structure to transcription, mRNA stability
and mRNA translation (Valencia-Sanchez et al., 2006). Stable
modulation of gene expression through chromatin modeling
therefore has a central role in adaptation and resilience toward
stress conditions.

The question then becomes what is physiologically different
about individuals that successfully adapt to stressors and those
that do not? The influence of early life experience and degree
of parental-infant attachment on emotional development in
children and adolescents has been comprehensively studied.
Animal models of parental care provide both correlative and
mechanistic connections between early life experience and
development of cognitive and emotional responses to stress,
allowing for control of genotype and environment. Increasingly,
it has become appreciated that individual differences in maternal
care can establish stable programming of brain region-specific
gene expression through chromatin modifications and changes
in DNA methylation (Figure 1), and modify phenotypic
outcomes, including cognitive, social and stress-coping abilities
in the offspring.

Frontiers in Behavioral Neuroscience | www.frontiersin.org

March 2017 | Volume 11 | Article 41


http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive

Weaver et al.

Nurturing Early Brain Development

PARENTAL INVESTMENT, CHROMATIN
MODIFICATIONS AND HPA RESPONSES
TO STRESS IN RODENTS

A common theme for many species is that the quality and
stability of the early social context has profound influences
on long-term emotional well-being. In mammals, both the
degree of positive attachment in parent-infant bonding and
level of parental investment appear to be important mediators
of the infant’s cognitive and social-emotional development
(Canetti et al, 1997). From an evolutionary perspective,
differential parental allocation during the critical postpartum
period provides newly born altricial animals with an ability
to selectively hone gene expression profiles and physiological
pathways associated with the development of reproductive and
defensive systems to promote survival, growth and persistence
in the given environment, as well as to program for sufficient
parental investment in the subsequent generation (Gross, 2005;
Klug and Bonsall, 2010). The relationship between early life
experience and long-term health is mediated, in part, by
maternal influences on the development of neuroendocrine
systems that regulate the hypothalamus-pituitary-adrenal (HPA)
axis and behavioral responses to stress. Accumulating evidence
indicates the underlying mechanism for this developmental
programming involves chromatin remodeling and changes
in DNA methylation of specific genes expressed in the
brain.

Despite their limitations, rodent behavioral models continue
to represent the most efficient approach to elucidating
the molecular and cellular mechanisms that underlie the
etiopathogenesis of psychiatric disorders. Most importantly,
rodent models offer access to brain tissue, which is essential
for elucidating the circuit basis of these disorders (reviewed
in Weaver, 2010, 2014). Observational studies in rats (and
mice) have provided evidence for stable individual differences
in two main forms of mother-pup interactions over the first
week of lactation: licking/grooming (LG) and arched-back
nursing (ABN) posture (Stern, 1997; Champagne et al,
2003). Maternal LG-ABN behavior during the first week
of postnatal life is associated with stable programming of
individual differences in responsiveness of the HPA axis,
anxiety-like and cognitive performance and reproductive
behavior in the rat (Weaver, 2011). As adults, the male offspring
of high LG-ABN mothers show decreased expression of
corticotrophin releasing factor (CRF), in the paraventricular
nucleus of the hypothalamus (PVN), and a lower hormonal
(corticosterone) response to stress by comparison to adult
animals reared by low LG-ABN mothers (Liu et al, 1997;
Caldji et al, 1998; Francis et al, 1999). In the rat, the
maternal care appears stable across generations—the adult
female offspring of high LG-ABN mothers are high LG-ABN
towards their offspring and the offspring of low LG mothers
are low LG-ABN towards their offspring (Francis et al,
1999). These effects, including those on the behavioral and
neuroendocrine responses to stress, are reversed by cross-
fostering, revealing direct maternal effects (Liu et al., 1997;
Francis et al., 1999).

Interestingly, the maternal effects on stress responsivity
in the offspring depend upon epigenetic programming of
gene expression in the CNS. In comparison to offspring of
high LG-ABN mothers, offspring of low LG-ABN mothers
display life long enhanced DNA methylation and decreased
acetylation of lysine 9 on histone H3 (H3K9) of the neuron-
specific exon 17 glucocorticoid receptor-alpha (GRa) promoter
region, decreased NGFI-A transcription factor association,
and decreased GRa expression in the hippocampus (Weaver
et al, 2004, 2007, 2014); leading to disinhibition of CRF
secretion and higher corticosterone levels in response to
stress (Liu et al., 1997; Caldji et al, 1998; Francis et al,
1999). These group differences emerge over the first week
of lactation, are reversed with cross-fostering, and remain
stable through life and are potentially reversible in adulthood
(Weaver et al,, 2004). Additional in vivo and in vitro studies
have provided several levels of insight into the underlying
biological pathway. Maternal LG-ABN behavior during the first
week of lactation stimulates production of thyroid hormones
thyroxine (T4) and triiodothyronine (T3) and a subsequent
increase in forebrain serotonin (5-HT) levels. Activation of the
G-protein-coupled receptor, 5-HT7, in hippocampal neurons
by serotonin initiates a signaling cascade that drives cAMP
and cAMP-dependent protein kinase A (PKA) activation
and NGFI-A expression. In the neonatal hippocampus, the
transcription factor NGFI-A associates with the HAT CBP
and the methyl-binding protein MBD2b and recruits them
both to the exon 1; GR promoter (Weaver et al., 2007,
2014). At the exon 1; GR promoter, CBP increases acetylation
on histone (H3K9ac), whereas MBD2b is associated with
demethylation of the NGFI-A binding site. The remodeling
of chromatin and DNA demethylation facilitates the stable
binding of NGFI-A to the exon 1; GR promoter, which
then initiates transcription and drives GR expression and
GR signaling in the neonatal hippocampus. The variation in
methylation state of the exon 17 GR promoter sequences remains
consistent through to adulthood. In adulthood, the different
levels of hippocampal GR expression is mediated by NGFI-A,
which selectively binds and activates unmethylated exon 1; GR
promoter sequences.

These studies, among others (reviewed in Turecki
and Meaney, 2016), suggest that the maternal behavior
initiates a neural signaling cascade that directs activation
of particular transcription factors to recruit and guide
chromatin remodelers and DNA methylation enzymes to
particular chromatin domains, allowing maternal behavior
to affect several behavioral phenotypes in the offspring,
including maternal behavior. Herein, both acquired and
stable behavioral traits can be propagated across generations
through epigenetic modifications to chromatin domains in a
brain region- and genome sequence-specific manner. Support
of this idea is evidenced by the widespread differences in
hippocampal gene expression and cognitive function that
has been observed in the adult offspring of high and low LG
mothers (Weaver et al., 2006). For example, adult offspring
of low LG mothers show increased cytosine methylation
and decreased H3K9Ac of the glutamate acid decarboxylase
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(GAD)1 gene promoter and reduced Gadl mRNA expression in
the hippocampus (Zhang et al, 2010). Additionally, these
offspring show increased association of MECP2 to the
brain-derived neurotropic factor (BDNF) gene promoter
(Weaver et al, 2014), and a reduction in Bdnf expression,
neuronal survival, synaptogenesis and synaptic plasticity in
the hippocampus (Liu et al.,, 2000; Weaver et al., 2002; Bredy
et al, 2003a). Consistent with this, these offspring exhibit
deficits in hippocampal dependent tasks tests (e.g., spatial
learning, object recognition; Liu et al, 2000; Bredy et al,
2003b). These maternal effects on BDNF, including cognitive
ability, are reversed with peripubertal exposure to an enriched
environment, revealing a potential nonpharmacological strategy
to prevent the cognitive deficits associated with low levels of
maternal care (Bredy et al, 2003b, 2004; Champagne et al,
2008).

In addition to maternal behavior, studies have shown
persistent effects on offspring of paternal age (Smith et al., 2009,
2013), obesity (Ng et al., 2010; Fullston et al., 2013), enrichment
(Mashoodh et al., 2012), and physiological/psychological stress
(Franklin et al, 2010; Dietz et al., 2011; Hoyer et al., 2013;
Mychasiuk et al, 2013; Rodgers et al., 2013; Gapp et al,
2014; Wu et al, 2016). These paternal effects could be
disseminated via sperm (Dias and Ressler, 2014), facilitated
by sperm miRNA (Rodgers et al,, 2013, 2015; Gapp et al,
2014). However, studies (Dietz et al,, 2011) utilizing in vitro
fertilization following chronic paternal stress (social defeat)
further support the theory that the effects of paternal stress
experience on social, emotional and cognitive development
in the offspring are propagated by variations in maternal
behavior. The differential allocation hypothesis suggests that
the dam can detect the prior experiences of potential mates
through variation in his behavior and/or chemical cues,
and then vary her own reproductive investment accordingly,
including offspring rearing strategies. For example, dams
mated with males that had been reared in an enriched
environment, show increased LG-ABN behavior toward their
offspring (Mashoodh et al., 2012). Consistent with this, early
rearing in semi-naturalistic housing (SNH) has profound effects
on offspring development—seizure severity and number of
CRF-immunoreactive neurons were reduced in adolescent rats
raised in SNH compared to offspring reared in standard housing
(Korgan et al., 2014, 2015). Histone acetylation of the crf
gene promoter may play a role in determining long-term
sex-specific regulation of HPA endocrine function, evidenced
by: (1) sex differences in crf gene promoter methylation and
mRNA expression (Sterrenburg et al., 2011); and (2) reversal
of maternal effects on stress responses by HDAC inhibitor
(HDACIi) treatment (Weaver et al., 2006). Consistent with
this, genetic disruption of Mecp2 in the PVN resulted in
sex differences in Crf mRNA expression and corticosterone
secretion in response to stress (Fyffe et al, 2008), although
sex-differentiation mechanisms remain unclear. Taken together,
these findings suggest that preconception paternal stress and
housing could potentially influence the development of defensive
(emotional) behaviors through differential maternal allocation to
offspring.

CHROMATIN MODIFICATIONS AND HPA
RESPONSES TO STRESS IN HUMANS

Since the initial reports of epigenetic regulation of hippocampal
GR expression, several studies have associated GR gene
methylation status with parental stress, early-life adversity,
and have attempted to determine the extent to which
findings from model animals are transferable to humans
(reviewed in Turecki and Meaney, 2016). Studies investigating
methylation of the GR exon 1; in rats or GR exon variant
Ip in humans in conditions of negative early-life social
environments report increased GR promoter methylation
within or proximal to the NGFI-A binding site. Consistent
with these findings, differential methylation profiles of many
genes supporting HPA function have now been shown
to be environmentally regulated. For example, childhood
maltreatment predicts the methylation status of the FK506
binding protein 5 (FKBP5) gene, which encodes for a
functional regulator of GR protein signaling. The primary
mechanism of GR signaling is as a transcription factor
and the pleiotropic and organism-wide effects are strongly
associated with development-related pathways. Tissue specificity
is modulated by enzymatic conversion of the ligand cortisol
to an inactive form, cortisone. FKBP5 decreases cortisol
binding and prevents nuclear translocation of GR. Childhood
maltreatment is associated with an FKBP5 genotype-dependent
demethylation of a distal enhancer, resulting in enhanced
FKBP5 expression and reduced GR function (Klengel et al.,
2013). Herein, in response to early social adversity, many labile
genes coordinate in a tissue-specific fashion to collectively
contribute to the increased HPA responsivity to stress,
which may help explain the vast majority of the inter-
individual variation in gene expression and social-emotional
behavior in animal models of maternal care (Weaver et al.,
2006).

Taken together, increased GR promoter methylation
represents a general epigenetic mark of early-life stress
that could potentially be a useful biomarker for human
populations. Increased DNA methylation of the human GR
gene promoter in peripheral blood lymphocytes has been
associated with childhood maltreatment in individuals with
borderline personality disorder, suggesting that peripheral
blood could represent a proxy of the epigenetic modifications
of the GR gene promoter occurring in the CNS (Perroud
et al,, 2011). Indeed, the extent of human GR gene promoter
methylation shows a strong positive correlation to the reported
experience of childhood maltreatment decades earlier (Perroud
et al, 2014). Analysis of peripheral blood cells from adults
with posttraumatic stress disorder (PTSD) revealed distinct
DNA methylation and concomitant transcriptional changes
in patients with a history of early abuse (Mehta et al., 2013).
Together the results from these studies and others (Roberts
et al, 2014) suggest the degree of DNA methylation in
stress-related psychiatric disorders may have implications
not only for the development of more efficient preventive and
therapeutic approaches, but also in predicting and monitoring
treatment.
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CHROMATIN MODIFICATIONS AND
LEARNING AND MEMORY AND
NEURODEVELOPMENTAL DISORDERS

Learning and memory are subject to rigorous epigenetic
remodeling involving multiple mechanisms of neuronal
chromatin modifications in the brain to produce persistent
alterations in synaptic signaling, organization, morphology and
cognitive function (for review see Jarome et al., 2014; Heyward
and Sweatt, 2015). Contextual fear memory formation and
its initial maintenance is hippocampal dependent. Neuronal
activity in the hippocampus of mice induces active DNA
demethylation or de novo methylation (Guo et al, 2011),
and targeted knockouts of DNA de novo methyltransferases
cause learning and memory impairments (Feng et al., 2010).
Memory undergoes systems consolidation over ~3 weeks, so
that the remote memory becomes hippocampal independent.
Similarly, retrieval of conditioned place preference memory is
also dependent on DNA methylation in the prelimbic cortex
(Miller et al., 2010; Day and Sweatt, 2011). Although knockout of
the TET1 protein (which promotes 5ShmC formation and active
demethylation) results in compensatory upregulation of Tet2,
Tet3 and other genes required for demethylation (e.g., Gadd45b,
Smugl, Apobecl, Tdg; Jarome et al., 2015; Kumar et al., 2015),
overexpression of TET1 protein (Kaas et al., 2013) and DNA
methylation inhibition (Telese et al., 2015; Halder et al., 2016)
result in increased expression of several neural plasticity-
related genes (e.g., Bdnf, Cobl, Reelin, PP1, Calcineurin, Vrkl)
and impaired contextual fear memory. Alterations in histone
methylation (Schaefer et al., 2009) and acetylation (Guan et al,,
2002) influence long-term memory formation and synaptic
transmission. Accordingly, HDAC activity stimulates chromatin
compaction, reducing synaptic plasticity and impairing memory
formation (Guan et al., 2009). Inhibition of HDAC (by SB) can
enhance memory consolidation in young (Yuan et al., 2015) and
older animals (Blank et al., 2015). Histone methylation status is
also critical in memory formation (Wang et al., 2015).

Disruptions to genes encoding the enzymatic proteins and
metabolic intermediates that mediate DNA methylation and
chromatin remodeling have profound effects on human
neurobehavioral development. For example, functional
polymorphisms in the gene encoding methylenetetrahydrofolate
reductase (a regulatory enzyme in folate metabolism) results
in altered SAM availability and are linked to the increased
risk of psychiatric disorders (Miller et al., 1994; Poirier et al.,
2001). On the other hand, a mutation in the gene encoding
ATRX (a regulatory enzyme in chromatin remodeling) results
in an X-linked form of mental retardation associated with alpha
thalassaemia (ATRX syndrome; Picketts et al., 1996). The loss of
ATRX function causes defective H3K9me3 binding, related to
changes in the binding pocket and ability of the ATRX-DNMT3-
DNMT3L (ADD) histone reader to recognize methylation
patterns at specific lysine residues (Iwase et al., 2011; He et al.,
2015). Further, ATRX knockouts show significant chromatin
instability, even in utero (De La Fuente et al., 2015). This begs
the question regarding the functional role of ATRX in normal
cognitive and emotional development.

The two best characterized examples of the effects of
epigenetic changes on cognitive function relate to dysregulation
of MeCP2 and CBP, which are crucial for mediating precise gene
expression in neurons (Chen et al., 2003; Martinowich et al,
2003). In humans, genetic mutations in MeCP2 and CBP are
associated severe forms of intellectual disability—Rett syndrome
and Rubinstein-Taybi syndrome (RTS), respectively—as well as
increased anxiety-like behaviors (Amir et al., 1999; Alarcén et al,,
2004).

The phosphorylated (active) form of MeCP2 binds broadly
throughout the genome, affecting chromatin remodeling,
dendritic and synaptic development and hippocampus-
dependent memory (Skene et al, 2010; Li et al, 2011).
Knocking out MeCP2 in inhibitory neurons causes symptom-
specific effects, suggesting a substantial role for GABA-ergic
dysregulation in Rett syndrome (Ito-Ishida et al., 2015). BDNF
expression is also disrupted in MeCP2-deficient models. In
neurons, this could be regulated by a MeCP2 mutation-
induced overexpression of miR-15a, which can disrupt
the BDNF pathway, and thus, neuronal maturation and
dendritic morphogenesis (Gao et al., 2015). SUMOylation of
MeCP2 enhances Bdnf mRNA, LTP and memory performance
(Tai et al,, 2016). Likewise, BDNF overexpression reversed many
of the social, cognitive and physiological deficits observed in the
MeCP2 mutant mice (Shahbazian et al., 2002; Chang et al., 2006).
Truncated MeCP2 mice show cell-type independent changes in
Bdnf mRNA isoform expression, but MeCP2-induced effects
are specific to Bdnf exon VI in astrocytes (Rousseaud et al.,
2015). MeCP2-deficient astrocytes have significantly decreased
microtubule-dependent vesicle transport and correlate to
Rett-like anxiety and locomotion deficits (Delépine et al.,
2016). MeCP2 is the main 5hmC-binding protein in the
mammalian brain and MeCP2 bound 5hmC facilitates gene
transcription (Mellén et al., 2012). However, MeCP2’s binding
to 5hmC is disrupted by the Rett-causing mutation R133C.
These findings provide a potential model of how 5mC, 5hmC
and MeCP2 regulation of chromatin structure and gene
expression may be disrupted in Rett syndrome (Bedogni et al,,
2016).

RTS on the other hand, is associated with a mutation of the
CBP HAT domain resulting in decreased genome-wide histone
acetylation and cognitive deficits later in life (Kalkhoven et al,,
2003). In humans, single exon or whole gene mutations in
cbp flanking regions do not cause a differential diagnosis of
RTS, suggesting that these flanking regions are complementary
but not critical in the etiology of a clinical phenotype
(Rusconi et al, 2015). Anatomically, RTS individuals show
structure abnormalities related to deficits in activity dependent
development and neural plasticity (Korzus et al., 2004), and
display delayed myelination, neural dysgenesis, including cortical
abnormalities and a thin corpus callosum and cognitive
dysfunction early in life (Roelfsema and Peters, 2007; Lee
et al, 2015). Mice carrying a heterozygous null mutation of
CBP also exhibit genome-wide histone hypoacetylation show
severe cognitive dysfunction early in life (Josselyn, 2005).
Haploinsufficient CBP mice exhibit reduced activation of CBP
by atypical protein kinase C (aPKC), hypoacetylation of neural
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genes and decreased precursor differentiation in the fetal brain
as well as reduced vocalization early in postnatal life (Wang
et al.,, 2010). Herein chromatin analysis has provided molecular
insights into the critical functions of CBP that have simplified our
understanding of the complex RTS pathology.

Lastly, metabolic aberrations and epigenetic regulation of
gene expression in neurodegenerative disease may open the
door to additional treatment options. For example, the fatal
neurodegenerative disorder Niemann-Pick Type C (NPC) is
caused in most cases by mutations in NPCI, which encodes
the late endosomal NPC1 protein (Ory, 2004; Vance and
Peake, 2011). Alterations in amino acid metabolism and
epigenetic changes in the cerebellum have been identified in
pre-symptomatic stages of NPC disease (Kennedy et al., 2016).
Decreased expression of DNMt3a and MBD proteins, reduced
DNA methylation in the molecular and Purkinje cell layers,
demethylation of genome-wide repetitive LINE-1 elements and
hypermethylation in specific promoter regions of single-copy
genes in NPCl-deficient cerebellum at early stages of the
disease representing previously unrecognized mechanisms of
NPC pathogenesis. Deeper insight into the role of metabolic
aberrations and epigenetic regulation of gene expression
in NPCl-deficient brain may open the door to additional
treatment options. Taken together, these studies demonstrate
that dysregulation of chromatin remodeling enzymes and their
modifications in chromatin structures is sufficient to cause
profound deficits in neuronal plasticity and cognitive function
abnormalities, underlying causes of neurodegenerative and
neuropsychiatric disorders.

CHROMATIN MODIFICATIONS AND
NEUROPSYCHIATRIC DISEASE

Stress induced changes in DNA methylation and histone
modifications that fine tune HPA axis function may contribute
to altered memory formation and vulnerability to mood
disorders. Indeed, depression-related behavior and action of
antidepressant medications have long been linked to chromatin
remodeling enzymes that alter chromatin domains to regulate
gene activity (reviewed in Daskalakis et al., 2015). As described
above, neurotrophins such as BDNF promote the genesis,
survival, development, and function of neurons important in
mediating stress and depressive responses. Genetic blockade
of neurogenesis (proliferating and immature neurons) in the
hippocampus results in increased anxiety- and depression-like
behaviors in adult animals (Snyder et al., 2011; Sakharkar et al.,
2016). Mice exposed to stressors early in life show decreased
CBP (which has HAT activity) and histone H3K9ac association
with the BDNF IV promoter and decreased BDNF expression
and neurogenesis inhibition in the hippocampus and increased
anxiety- and depression-like behaviors in adulthood (Blaze et al.,
2015). These results indicate that not unlike low maternal care
early in life, stress exposure decreases CBP levels and histone
H3 acetylation in the hippocampus, which potentially decrease
BDNF expression and inhibit neurogenesis that may be involved
in stress-induced behavioral abnormalities, including adult onset
of mood disorders.

Repeated exposures to social defeat stress in rodents, cause a
robust depression-like phenotype marked by anhedonia, anxiety
and social-avoidance behaviors (Nestler and Hyman, 2010). The
“chronic social defeat” model of depression (Berton et al., 2006)
is a behavioral paradigm in which the animal is exposed to
a more aggressive animal of the same species. When brought
together again, animals chronically exposed to this stressful
event tend to avoid contact with the aggressor (Tsankova et al,,
2007). In mice, social avoidance results in altered chromatin
and transcriptional states of many of growth factors, including
BDNF (Duman and Monteggia, 2006; Castrén et al., 2007),
CNTF (Kokoeva et al., 2005; Grunblatt et al., 2006), FGF (Evans
et al., 2004), VGF (Thakker-Varia and Alder, 2009), VEGF (De
Rossi et al., 2016), TGF (Lee and Kim, 2006), Wnt (Hiester
et al., 2013), and IGF (Hoshaw et al, 2005). For example,
social avoidance results in increased transcriptionally repressive
H3K27me2 levels and decreased expression of hippocampal
Bdnf splice variants (Bdnf III and Bdnf IV, Tsankova et al.,
2006). Similarly, chronic social defeat stress was found to
increase the repressive mark H3K9me3 in the hypothalamic
orexin (hypocretin) gene promoter—a neuropeptide implicated
in normal emotion processing (Lutter et al, 2008). Chronic
administration of the widely used antidepressant imipramine
increased markers of transcriptional activation H3K9/K14ac and
H3K4me2 and reversed the repression of the Bdnf transcripts
induced by defeat stress (Tsankova et al, 2006; Wilkinson
et al., 2009). Other classes of antidepressants have also been
shown to enhance H3K4me2 levels (Lee et al., 2006b), gene
expression, cell proliferation, survival and apoptosis (Erburu
et al,, 2015), reverse social avoidance behavior and decrease
neuroinflammatory signaling in mice, following social defeat
(Ramirez et al., 2015).

The effects of imipramine on H3K9/K14ac appear to associate
specifically with HDACS5 activity (Tsankova et al, 2006).
Hdac5 overexpression blocks the enhanced H3K9/Kl14ac and
Bdnf splice variant expression responses to the antidepressant
imipramine (Tsankova et al., 2006), suggesting a potential
for HDAC inhibitors in the treatment of depression. Indeed,
several HDAC inhibitors, including SB (Tsankova et al., 2006),
Entinostat (MS-275; Covington et al., 2009), and suberoylanilide
hydroxamic acid (SAHA; Covington et al, 2009), have
demonstrated antidepressant qualities and upregulate BDNF,
NGF and GDNF (Valvassori et al., 2014) as well as reduce
Hdac5 expression in the hippocampus, reversing depression
like phenotypes in models of chronic social defeat (Schroeder
et al.,, 2007; Covington et al., 2015). Like social defeat stress,
early life stress increases vulnerability to depression-like behavior
(in rodents), which appears to be mediated through epigenetic
programming at the BDNF IV promoter (Seo et al., 2015) via
several histone modifiers (Pusalkar et al., 2016). Similarly, early
life maltreatment is capable of decreasing H3K9/K14ac at the
BDNF IV promoter (Blaze et al., 2015).

Chronic social defeat stress decreased Hdac5 mRNA levels
in the nucleus accumbens (NAc; Renthal et al, 2007),
while imipramine rescues Hdac5 mRNA expression levels
in animal models of chronic social defeat (Erburu et al.,
2015; Serchov et al., 2015). Accordingly, Hdac5 KO animals
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showed depression-associated behavior but no effects of
imipramine treatment. Additionally, Hdac2—but not of Hdacl
or Hdac3—levels were reduced in the NAc of mice following
chronic social defeat and in human post mortem NAc tissue
from clinically depressed individuals (Covington et al., 2009).
Indeed, HDAC inhibitors themselves are capable of reversing
depression like phenotypes (Covington et al., 2015) and different
types of HDAC inhibitors may be effective as antidepressants
by each modifying distinct cellular targets. For example,
in the rat, chronic antidepressant treatment with fluoxetine
increases Hdac2 mRNA expression and H3K9/Kl14ac levels,
and enhances expression of MeCP2 and MBDI in the frontal
cortex and hippocampus (Cassel et al., 2006). HDAC inhibition
may therefore enhance the effectiveness of antidepressants
through enhancing chromatin access. For example, while
fluoxetine treatment is only anxiolytic in Balb/C mice with
HDAC II inhibition, combination therapy leads to enhanced
acetylation association (Schmauss, 2015) and TET1-mediated
DNA demethylation (Wei et al, 2015) of BDNF promoter
and increased transcription. Optogenetic models of gene
regulation (Konermann et al., 2013; Polstein and Gersbach, 2015)
promise to provide further insight into the specific molecular
mechanism(s) that underlies these effects, crucial for future drug
development and treatment strategies for mood disorders.

The discovery of biomarkers and the ability to target
etiological disease epigenetic changes (epimutations) in
psychiatric disorders may improve their diagnosis, treatment and
even their prevention. Abnormal GABAergic transmission and
altered GABA-related gene methylation have been associated
with SCZ, MDD and suicidal behavior in humans (Schmidt
and Mirnics, 2015). For example, compared with control
individuals the GABA-A al receptor and Bdnf exon IV
promoter regions are hypermethylated in prefrontal cortex
tissue from individuals with depression that have died by suicide
(Poulter et al., 2008; Keller et al., 2010). These individuals
also show increased forebrain Dnmt3b mRNA and protein
expression. DNMT3a levels in the DG have also been shown to
predict resilient/susceptible depressive phenotypes (Hammels
et al., 2015). Suicidal behavior has also been associated with
altered chromatin remodeling and DNA methylation and
aberrant loss of transcriptional and transcription protein
synthesis capacity. For example, Ribosomal RNA (rRNA)
promoter methylation (Brown and Szyf, 2007, 2008) is enhanced
in the hippocampus (but not the cerebellum) of individuals who
died by suicide who were victims of abuse during childhood
(McGowan et al., 2008). Epigenome-wide studies have identified
several DNA methylation alterations in genes involved in both
normal brain development and neuropsychiatric pathologies
(Mill et al., 2008). Some of these epigenetic changes are sex-
specific and either inherited or acquired before birth (Kaminsky
et al., 2012). Interestingly, the relationship of psychosocial
stress with psychiatric illness is most evident in neuroses,
followed by depression and SCZ, which is influenced not only
by the nature of the challenge, but also by the individual’s
biological vulnerability (i.e., genetic variation) and ability to
cope (i.e., resilience; Schneiderman et al., 2005). Given that
neuropsychiatric disorders in adolescence and adulthood

appear to have their origins in pathways that begin much
earlier in life, this demonstrates the importance of preventive
early intervention programs, especially those targeting early
developmental antecedents such as anxiety to prevent the onset
of severe mental illness (Uher et al., 2014).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

While developmental genetic studies continue to enhance our
understanding of phenotypic variation in human health and
disease pathologies, emerging evidence suggests that chromatin
remodeling potentially plays an important role in mediating the
effects of early experience on life long programming of defensive
responses to stress and stress-induced pathologies in offspring.
Regulation of epigenetic programs by metabolic intermediates is
emerging as an important mechanism of biological integration
of distinct cellular functions. A full understanding of the link
between intermediary metabolites and chromatin regulators
will require the development of highly sensitive and selective
sensors that measure metabolite concentrations in different
organs and cellular compartments, drawing upon advances in
single-cell analyses (e.g., FRET, molecular beacons, optogenetics)
and genome editing technology (e.g., the CRISPR-Cas9 system).
Such exploratory research in models of human complex disease
(including metabolic and neurodegenerative disorders) may help
to distinguish between the cause or consequence of genetic
and epigenetic variation and allow a comprehensive evaluation
of combinational epigenetic therapies (including HDACi and
DNMTi inhibitors) on habitual functions (such as learning and
memory) from a developmental perspective. Determining how
epigenetic mechanisms serve as a conduit for gene-environment
interactions is complex, especially when they pertain to early
life programming and transmission of antecedent personality
and behavioral traits and the emergence of severe mental illness.
Accordingly, the nature of gene misregulation conferring risk
also has broad ranging implications for our understanding
of personality and the interrelations between physiology and
pathology of emotions.
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