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Slow wave sleep (SWS) has been identified as the sleep stage involved in consolidating
newly acquired information. A growing body of evidence has shown that delta (1–4 Hz)
oscillatory activity, the characteristic electroencephalographic signature of SWS, is
involved in coordinating interaction between the hippocampus and the neocortex and
is thought to take a role in stabilizing memory traces related to a novel task. This case
report describes a new protocol that uses neuroprosthetics training of a non-human
primate to evaluate the effects of surface cortical electrical stimulation triggered from
SWS cycles. The results suggest that stimulation phase-locked to SWS oscillatory
activity promoted learning of the neuroprosthetic task. This protocol could be used
to elucidate mechanisms of synaptic plasticity underlying off-line learning during sleep
and offers new insights into the role of brain oscillations in information processing and
memory consolidation.
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INTRODUCTION

One of the main applications of closed-loop bidirectional brain-machine interfaces (BBMI) is to
generate synaptic plasticity in the central nervous system (Fetz, 2015). At the cellular level the
synaptic connections between two sites can be strengthened by using spike activity recorded at
one site to trigger electrical stimulation on the other site (Jackson et al., 2006; Rebesco et al.,
2010; Nishimura et al., 2013). This Hebbian paradigm for creating synaptic plasticity relied on
action potentials of single units and was implemented with intracortical electrodes to record
neural activity and to deliver stimuli. A recent study (Zanos et al., 2016) showed that short-term
changes in effective intracortical connectivity could be obtained through electrical cortical
surface stimulation (ECS) triggered by brain oscillations recorded with electrocorticography
(ECoG). Oscillatory activity has been implicated in information processing and consolidation
of information by synchronizing neural activity at multiple temporal and spatial scales (Engel
et al., 1991a,b; Buzsáki and Draguhn, 2004; Buzsáki et al., 2004). In particular, slow-wave sleep
(SWS), characterized by large delta waves (1–4 Hz) mostly occurring during non-rapid-eye-
movement (NREM) sleep, are crucial for learning and memory consolidation. A growing body
of literature has provided important insights into its role in improving performance and in
coordinating a hippocampo-cortical interaction (Ghilardi et al., 2000; Stickgold et al., 2000a,b;
Walker et al., 2002, 2003a,b; Huber et al., 2004; Gulati et al., 2014; Maingret et al., 2016).
SWS generated within the neocortex reflects widespread synchronization of network activity
and its up and down states correspond, respectively, to widespread membrane depolarization
with increased neuronal excitability, and membrane hyperpolarization with neuronal quiescence
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(Steriade et al., 1993b; Steriade and Timofeev, 2003; Steriade,
2003; Crochet et al., 2006). This characteristic rhythmic activity
is thought to promote the consolidation of motor skills (Huber
et al., 2006; Tamaki et al., 2013) and is also implicated in
the consolidation of neuroprosthetic skills (Gulati et al., 2014).
Therefore during SWS, synaptic connections between neuronal
ensembles involved in the newly acquired skills undergo
plasticity. While different hypotheses involve the mechanism
which relates SWS and cortical plasticity (Tononi and Cirelli,
2003, 2006;Mölle et al., 2004; Euston et al., 2007), the role of sleep
in learning and memory has yet to be precisely characterized.

One method to dynamically manipulate cortical plasticity
and investigate the role of SWS in memory consolidation
is by delivering electrical stimuli to the cortex during sleep
and evaluating the task performance on the next day. In this
context, Marshall et al. (2006) showed an enhancement in the
retention of hippocampus-dependent declarative memories by
inducing slow oscillations through transcranial application of
oscillating potentials during SWS in humans. Maingret et al.
(2016), instead, delivered pulses of electrical stimulation to
the neocortex triggered by sharp-wave ripples during SWS
to boost the coupling between the hippocampus and the
cortex in rats being trained in a spatial memory task. This
resulted in a subsequent increase in performance on the
next day, compared to the control rats which performed at
chance levels. Based on these observations, we developed a
new protocol to investigate neuronal dynamics during sleep
that employs neuroprosthetic training during wakefulness and
closed-loop ECS during sleep in non-human primates. A
macaque monkey was concurrently trained in two brain-
machine interface (BMI) tasks of equal difficulty; SW cycle-
triggered stimulation during sleep was delivered to the cortical
site involved in one of the two BMI tasks. We timed the
stimulation to occur in the up-state of SWS. Gulati et al.
(2014) reported that task-related neurons, whose rate the
animals learned to enhance during a BMI task, increased
their entrainment to the up-state of SWS after learning,
with no consistent change in the local field potential (LFP)
power spectrum. These up-states are an indirect mark of
correlated activity in large neuronal populations and the
Gulati et al. (2014) study showed they play role in memory
consolidation. We wanted to test this hypothesis, by coupling
the electrical stimulation with the negative phases of SWS,
which are signatures of up-states. Our hypothesis is that
enhancement of SWS activity through precisely-timed electrical
stimulation would promote a temporal ‘‘rearrangement’’ of
neural activity involved in the task which could help consolidate
synaptic plasticity. Here we showed that the BMI task,
whose cortical site was associated with cortical stimulation
during SWS, was easily recalled and was performed at a
faster rate. Given the nature of the case report and pending
relevant control experiments, we believe this study can serve
as proof-of-principle that the behavioral consequences of
closed-loop stimulation during sleep can be studied using a
BMI task. Such studies may elucidate mechanisms of cortical
plasticity associated with memory consolidation and off-line
learning.

MATERIALS AND METHODS

Experiments were performed with a male macaque nemestrina
monkey (12 Kg). The experiments were approved by the
Institutional Animal Care and Use Committee (IACUC) at the
University of Washington and all procedures conformed to the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

Cortical Implant
The implant surgery was performed using sterile techniques
while the animal was anesthetized with sevoflurane gas. Epidural
electrodes were implanted through individual 0.5 mm burr holes
drilled with a stereotaxic guide. A total of 24 electrodes were
placed in two hemispheres. On each hemisphere, nine electrodes
were located over the sensorimotor cortex (primarily M1),
arranged in a 3× 3 grid with 3-mm spacing, and three electrodes
over the supplementary motor cortex (SMA). The epidural
electrodes were made with 9 mm cut length of platinum rod (AM
Systems #711000, 0.254mmdiameter) insulated with heat-shrink
Pebax (Small Parts #B0013HMWJQ). Pebax was cut so that the
diameter of the exposed tip was ∼0.5 mm, corresponding to
an exposed surface area of ∼0.06 mm2. Skull screws placed in
the occipital area served as ground leads. The implant and the
connectors were secured to the skull with acrylic cement and
enclosed in a titanium casing that was also attached to the skull
with cement and skull screws.

EOG Implant
In a second surgery the monkey received electrooculography
(EOG) electrodes. After skin incision, insulated stainless steel
wires were secured to the bone with titanium screws and were
routed subcutaneously to a connector in the chamber. EOG leads
were placed at the lateral can thus and superior margin of the left
orbit; another lead was positioned at the superior margin of the
right orbit.

Experimental Timeline
To test the hypothesis that off-line learning can be influenced by
sleep-related stimulation, we trained the monkey to perform two
BMI tasks of equal difficulty; one was associated with ipsilateral
stimulation, the other was not. Each BMI task involved the
volitional control of oscillatory ECoG activity at two selected
motor cortical sites, one on the left hemisphere (‘‘left task’’)
and the other on the right hemisphere (‘‘right task’’). The
monkey was trained on both tasks daily, during two 2-h-long
sessions, one in the morning and one in the evening, for a
total of 17 days. The daily training order for the two tasks was
randomized between morning and evening times, to control
for the effect of time of day on learning (Kemény and Lukács,
2016). Between training sessions the monkey was returned to the
cage.

After the end of the evening training session the monkey was
returned to the cage for the night. Using a portable computer for
recording and stimulation, the Neurochip2 (Zanos et al., 2011),
stimulation triggered by low frequency oscillatory ECoG activity
during sleep was delivered to the right site. We will refer to
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FIGURE 1 | Experiment schema. The monkey was trained on two
brain-machine interface (BMI) tasks: the slow-wave activity triggered
stimulation (SWATS)-area task (top panel) was paired with
slow-wave-triggered stimulation after each training session, while the
contra-area task (bottom panel) had no associated stimulation. The monkey
had to learn to enhance low-frequency oscillations through one M1 electrode;
the only difference between the two tasks was the hemisphere: while
SWATS-area task involved M1 electrode of right hemisphere, contra-area task
involved an M1 electrode of left hemisphere. For SWATS-area task,
slow-waves triggered stimuli were delivered on two electrodes adjacent to the
trained electrode through Neurochip2 when the monkey was housed in the
cage after the training in booth.

the right task as the ‘‘slow-wave activity triggered stimulation’’
(SWATS) task for the rest of manuscript. The left site did not
receive any stimulation (‘‘contra-area’’ task; Figure 1). Sleep-
related stimulation occurred every night for the duration of the
17 days of BMI training.

Booth Recording
In the booth, ECoG activity was recorded from the epidural
electrodes using active headstages (ZC-16, Tucker-Davis,
Alachua, FL, USA) and digital amplifiers (gUSBamp,
g.tecMedical Engineering Gmbh, Schiedlberg, Austria). Signals
were sampled at 2.4 kS/s. Data from the amplifiers were streamed
to a personal computer through a USB link, then stored and
visualized in real-time using a Simulink-based (MathWorks,
Natick, MA, USA) graphical user interface (GUI), developed
in-house.

Brain-Control Task
During BMI training the monkey had to control a computer
cursor using volitionally controlled ECoG activity from a
selected cortical electrode. The cortical signal was filtered in
real-time between 2–5 Hz (delta band), and the power was
linearly converted to the vertical position of a cursor on a
video monitor placed in front of the monkey. Specifically, the
algorithm implemented the sliding Discrete Fourier Transform
(DFT) where the spectral value of the kth bin is calculated
from N-points DFT. The N-points window is then advanced
by one sample in order to obtain a spectral bin output rate
equals to the data input rate (Jacobsen and Lyons, 2003). Each

trial began with the cursor at the bottom of the screen; the
target was presented at the top. The monkey had to enhance
delta activity to reach the target and hold the cursor inside
the target for 0.3 s to receive a juice reward. A reward tone
was delivered at the end to strengthen the association between
successful trials and reward. Auditory feedback was continuously
provided; tone frequency increased with the decreasing distance
between the cursor and the target. The training time called
‘‘feedback-on’’ time, generally lasted between 40 min and 55 min
per session. Each session also comprised 5–10 min of ‘‘feedback-
off’’ time during which the display, the auditory feedback and
rewards were turned off, while ongoing brain activity was still
recorded. This procedure allowed us to quantify the number
of spontaneous events that would correspond to ‘‘successes’’
which occurred while the animal was not actively performing
the volitional control task. We then compared such number
with the corresponding number of successes achieved during
the active control (i.e., feedback-on) during the same training
session.

Recording during Sleep
Recordings during sleep occurred with the animal housed in
its cage. Neurochip2 acquired three different signals at 8-bit
resolution. To quantify gross motor movement (head and whole
body movement), a 3-axis accelerometer powered by a 3 V
lithium coin cell was fixed in the titanium casing. The three
analog outputs of the accelerometer were passed through a
sum-of-absolute circuit to provide acceleration magnitude. This
voltage was recorded on one of Neurochip2 channels at 2 kS/s.
A second recording channel recorded ECoG from one of the
implanted electrodes in the motor cortex, and a third channel
recorded EOG from one eye. The latter two channels were
sampled at 2 kS/s.

Each recording began with the animal seated in a primate
chair in the lab. Neurochip2 was then programmed by entering
the desired settings into Matlab GUI and uploading them via
IR connection. The animal was then returned to its cage where
it moved freely until the following training session. Recorded
data were stored on a removable flash memory card with 2-GB
capacity and later imported to Matlab.

Closed-Loop Stimulation during SWS
Neurochip2 was programmed to discriminate the trough
(surface-negative phase) of high-amplitude slow-wave
oscillations from the site used for the BMI task (motor
cortex of the right hemisphere) and trigger the stimulator.
The discrimination was implemented via a threshold and
two time-amplitude windows applied on the ongoing ECoG
signal band-pass filtered in the frequency range of 1–4 Hz. The
two time-amplitude windows were set to discriminate signals
within the amplifier range. This prevented the discrimination
of stimulus artifacts that caused saturation of the signal
(Figure 2). The acceleration signal was used to gate the delivery
of stimuli. To deliver the stimulation two conditions had to
be met: (1) acceleration had to equal zero; and (2) ECoG
signal from the recorded electrode exhibited high-amplitude,
low-frequency oscillations. These two conditions allowed
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FIGURE 2 | Stimulation delivered at the slow wave sleep (SWS) troughs with Neurochip2. Eight seconds of recorded signals (acceleration,
electrooculography (EOG), electrocorticography (ECoG)) during stimulation of SWS cycles. Neurochip2 was set to deliver a single 4 mA bipolar current pulse at the
trough of low-frequency-filtered local field potentials (LFPs) based on amplitude and timing of two discriminating windows. In the box below the
stimulation-triggered-average over 2 h of recording (number of events = 3192). The plot shows 2 s of averaged signal centered at the stimulation onset.

successful discrimination between NREM and rapid eye
movement (REM) sleep in our recordings. Other studies
employed neural activity together with the electromyographic
activity (EMG) to score the sleep stages (Louis et al., 2004;
Brankack et al., 2010; Oishi et al., 2016). The power of the neural
signals is generally used to distinguish between NREM and REM,
while the EMG improves the separation of waking and REM
sleep. Because we did not have access to any EMG signal, we used
head acceleration as a marker of movements. Neurochip2 was
then configured to discriminate only delta oscillations with high
amplitude; the amplitude of delta oscillations during REM sleep
was too small to be detected by the discriminator. The EOG was
recorded only as control signal for off-line visual inspection. The
discriminator generated triggers which were used in real-time to
trigger the delivery of single biphasic pulses at 4 mA to a pair of
cortical electrodes placed in the close proximity to the recorded
ECoG site.

Statistical Analysis
In order to evaluate the task performance, we segmented each
SWATS-area and contra-area task session in bins of 1 min
duration; for each bin we counted the number of successful
target acquisitions (rate of target acquisition, RTA). We then
obtained, for each session, a distribution of RTA achieved during
feedback-on and during feedback-off.

To test for a statistically significant difference in the
RTA between feedback-on and feedback-off times within a
given session, we used the t-test, Bonferroni-corrected for
multiple comparisons (the total number of sessions). To test
for a statistically significant difference in the RTA between
a SWATS-area and a contra-area task on a given day, we
used t-test, Bonferroni-corrected for multiple comparisons (the
total number of days). All t-test were performed on MATLAB
using the ttest2 function of the Statistics and Machine Learning
Toolbox.
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To test whether the RTA increases with training independent
of the effect of the task and the feedback, we constructed
a general linear model (GLM) to capture the dependence of
the RTA(Y) on three independent variables: day (X1), task
(SWATS-area or contra-area; X2) and feedback (feedback-on or
feedback-off; X3):

Y = B0 + B1X1 + B2X2 + B3X3.

In addition to the individual coefficients B, the model
returns a p value for each coefficient, which indicates the
statistical significance of the contribution of the corresponding
independent variable to the estimated prediction. The GLM
analysis was performed onMATLAB using the generalized linear
regressionmodel function of the Statistics andMachine Learning
Toolbox.

RESULTS

Discrimination of NREM Slow Oscillations
In order to configure Neurochip2 to detect SWS, we first
investigated the physiological signatures of different stages
of sleep in the animal. We recorded broad-band ECoG,
EOG and head/whole body acceleration while the monkey
was housed in its cage for 24 h at a time. Visual inspection
of the signals revealed standard sleep stages previously
described in Rhesus monkeys (Daley et al., 2006; Hsieh
et al., 2008). Wakefulness was characterized by high-
frequency, low-amplitude ECoG with large and REMs often
associated with head/whole body movements (Figure 3). Sleep
included two distinguishable stages: NREM and REM sleep
(Figure 3). NREM sleep was characterized by absence of
movement (i.e., acceleration equals zero), with high-amplitude,
low-frequency ECoG and slow, reduced EOG activity. REM sleep

FIGURE 3 | Sleep architecture of monkey. (A) One night of continuous recording of sleep from 7 pm to 7 am with Neurochip2. From top to bottom: head
acceleration, eye movements, power (dB) for different frequency bands: Delta (3–5 Hz), Beta (15–35 Hz), Gamma (70–100 Hz). Each plot shows the average over
30-s bins. The arrows point at non-rapid-eye-movement (NREM) sleep stages (NR) characterized by a relative higher contribution of delta oscillations to ECoG
signals with a reduction in eye movements (∗). (B) Example of 2-s epoch polygraph records showing, from top to bottom, NREM, rapid eye movement (REM) and
Wake stage in the monkey.
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was characterized by absence of movement, desynchronized,
low-amplitude ECoG, similar to that of wakefulness and REMs
(Figure 3).

After collecting several baseline sleep recordings, we
configured Neurochip2 to detect the trough of high-amplitude
SWS oscillations, which mostly occur during NREM sleep
(Figure 3). As expected, the number of SWS oscillations
discriminated by the Neurochip3 varied throughout the
night (Figure 4A), showing a pattern consistent with the
time course of SWS stages during sleep. The same time
course of SWS stages was also observed during sessions
without stimulation, confirming that stimulation did not
alter the periodic nature of REM and NREM sleep, although
the rate of detected slow waves with stimulation is lower
compared to that during no stimulation (Figure 4A). This
difference could be due to the stimulation artifact, which

saturates the signal for around 300 ms. In order to verify
this hypothesis, we configured the Neurochip to detect the
SWS without delivering any stimulation and we implemented
a refractory period of 300 ms after each detected cycle,
during which no new cycles could be detected. Figure 4B
shows the distributions of the discriminated SWS oscillation
rate over several recordings (N = 11) for three different
conditions: Stimulation OFF, Stimulation OFF with simulated
artifact removal and Stimulation ON. The t-tests returned
non-significant p-values (p-values > 0.05) for all pair-wise
comparisons. The simulated inter-stimulus interval histogram
(Figure 4C) shows a peak around 0.4 s (2.5 Hz) which is similar
to the one shown in the inter-stimulus interval histogram of
Figure 4D, generated from a sleep recording with stimulation
ON. In both cases the peaks are consistent with the period of
slow waves.

FIGURE 4 | Detection of SWS cycles from SWATS-area (with stimulation ON) and from contra-area (with stimulation OFF). (A) SWS cycles detected per
minute as a function of night time during stimulation OFF (dotted line) and stimulation ON (solid line) collected in two different nights. (B) Average (mean ± STD) rate
of identified SWS cycles during the entire night over several recordings (N = 11) for three different conditions: Stimulation OFF, Stimulation OFF with artifact
correction, Stimulation ON. The distributions are not significantly different (pair-wise t-test returned p-values > 0.05 for all comparisons). (C) Inter-discrimination-
interval histogram of 2 h of recording from contra-area during sleep with deletion of 300 ms after each detected cycle that would have triggered the stimulation. The
peak is centered at 0.4005 s, which corresponds to 2.5 Hz. (D) Inter-stimulus-interval histogram from 2 h of SWATS-area sleep recording with stimulation ON from
9 pm to 11 pm. The peak is centered at 0.4485 s, which corresponds to 2.2 Hz.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 April 2017 | Volume 11 | Article 59

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Rembado et al. SWS-Triggered Stimulation Facilitates Learning

TABLE 1 | Number of detected slow wave sleep (SWS) episodes per 30-s
epoch (mean ± STD).

Wake Sleep

Stim ON 5.99 ± 2.64 13.97 ± 2.78
Stim OFF 10.45 ± 2.99 21.89 ± 7.98
Stim OFF-simulated artifact correction 8.34 ± 2.02 16.03 ± 5.20

In order to assess whether the stimulation rate showed
differences between wakefulness and sleep, two representative
sleep recordings, one with stimulation ON and the other with
stimulation OFF, were visually scored in 30-s epochs as either
sleep or awake according to the criteria established for human
sleep by Rechtschaffen and Kales (1968). By counting the number
of stimuli per each epoch, we estimated the rate of occurrence
of slow oscillations for the two scored conditions. The same
counting was performed on recording with stimulation OFF
corrected by the simulated refractory period of 300 ms. The rate
of detected cycles during wakefulness was significantly lower
(p-value < 0.01) than during sleep in all three conditions,
meaning that the stimulation mostly occurred during sleep
(Table 1). Therefore the presence of delivered stimuli did not
affect the characteristic asymmetry between wakefulness and
sleep (Table 1).

Increase of Performance for the
SWATS-Area Task
To test whether closed-loop stimulation during SWS affected
the learning rate of a BMI task, we trained the monkey
on two BMI tasks of equal difficulty, one of which (the
‘‘SWATS-area task’’) was dependent on activity in the right,
stimulated, hemisphere. The two tasks were trained daily, for
the same amount of time, every day for 17 days. Over the
course of a typical 55-min practice session, the animal showed
improvements in task performance from day 10 to day 17 for
both tasks, with an increase in the number of successful trials
and a significant reduction in time between two consecutive
rewards (Figure 5). Figure 6 shows performance in both
tasks during feedback-on and feedback-off times expressed as
rate of successful trials achieved per minute for each training
session. Feedback-on performance in the SWATS-area task
became significantly (p < 0.05, Bonferroni corrected) higher
than feedback-off performance at day 12 (indicated with ‘‘∗’’
in Figure 6), although the increasing trend started on day
11. For the contra-area task feedback-on performance became
significantly higher than feedback-off at day 15. The feedback-on
performance of the SWATS-area task became significantly higher
than the same-day feedback-on performance of contra-area
task starting from day 13 (indicated with ‘‘+’’ in Figure 6).
The same t-test was performed to compare the performance
of each day during feedback-off between the two tasks and
only at day 12 the test returned a significant p-value (data not
shown).

We then performed the GLM analysis to predict the rate
of successful trials per minute (dependent variable) in term
of three experimental variables: day, task and feedback-on/off
time. The analysis returned small p-values for all three variables

FIGURE 5 | Performance comparison: day 10 (left column) vs. day 17
(right). (A) Rate of successes during training for SWATS-area task (top panel,
red) and contra-area task (bottom panel, blue). Each bar reports the number
of successes achieved in 5 min of training. Bright color corresponds to
feedback-on time and dark color represents feedback-off time. (B) Reward
interval distribution during feedback-on time for SWATS-area task (top panel,
red) and contra-area task (bottom panel, blue). Black lines indicate median
values.

(respectively: p-value = 0, p-value = 3.14e-147, p-value = 7.75e-
131. 4896 degrees of freedom), meaning that all of those were
significantly affecting the estimation of the dependent variable.

The Power of Oscillations Does Not
Explain the Performance Improvement
Figure 7 shows the averaged delta power around the reward
onset during feedback-on time for both tasks. The plot does
not show any clear and significant trend that correlates with
the BMI performance: the power of the SWATS-area task
was significantly higher (p < 0.05, Bonferroni corrected) than
the power of the contra-area task for days 12, 15 and 17,
but at day 13 the order was inverted and days 14 and
16 did not show any significant difference. Although the power
generally increased for both tasks throughout the experiment
(the independent variable ‘‘day’’ predicted the power data
through a linear model with a p-value = 1.61e-74), the same
model returned a p-value of 0.013 when the independent
variable ‘‘task’’ was used to predict the same data. This
outcome suggests that the improvement in BMI performance
for SWATS area-task was mostly associated with an increase
in the number of successful targets achieved per minute;
the monkey learned to achieve more targets by generating
oscillations with increased frequency but not of increased
amplitude (Figures 6, 7).

Task-Related Neural Signal
Figure 8 shows the reward-triggered average of delta power
during the execution of both tasks for three representative days of
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FIGURE 6 | Brain Control performance overall 17 days of training. SWATS-area task (top panel, red), contra-area task (bottom panel, blue). Each bar
represents the average number of successful trials achieved per minute (mean ± STD). Bright color shows the performance during feedback on time and dark color
represents the feedback off time for each day session (x-axis). For both tasks, the ∗ indicates the days when the difference in performance between feedback-on and
feedback-off is significant (p-value < 0.05, Bonferroni corrected). The × indicates significant (p-value < 0.05, Bonferroni corrected) difference during feedback-on
performance between the two tasks.

training: day 1, day 10 and day 17. For each day, four conditions
are shown: right site during the SWATS-area task, left site during
contra-area task (in both cases, the signals were volitionally
controlled), and right site during contra-area task, left site during
SWATS-area task (non-volitionally controlled signals). There
was no difference in the absolute value of delta power at the
reward onset between SWATS-area task and contra-area task
for the actively controlled electrode. Activation of the rewarded
site was larger, even though left/right activations were not
completely independent (i.e., during SWATS-area task delta
power of contra-lateral electrode showed a peak at the reward
onset and vice versa). This suggests that during training the
monkey was volitionally controlling delta power preferentially on
the electrode involved in the task.

DISCUSSION

Our findings indicate that delta-coupled stimulation during SWS
may affect the learning rate of amotor cortex-dependent task.We
used the Neurochip2 to deliver cortical stimuli precisely-timed
to the depth-negative phases of SWS during nights following the
training of a monkey in two BMI tasks. We found that the BMI
task whose associated cortical site received stimulation during

SWS (the SWATS site) was recalled easily and at a faster rate than
the task in the hemisphere that received no stimulation.

Slow-Wave Sleep and Off-Line BMI
Learning
A night’s sleep is subdivided into REM and NREM periods
based on specific neocortical rhythms, electrooculogram (EOG)
and usually electromyogram (EMG; Kemp, 2010). REM exhibits
mostly desynchronized neural activity, very similar to that
observed during the waking state, while NREM sleep exhibits
slow and widespread oscillations (Kemp, 2010). Using the
head-fixed Neurochip2, we discriminated between sleep stages
in a non-restrained macaque monkey by using three signals:
head/whole body acceleration, ECoG and EOG (Figure 3). The
NREM/ REM sleep cycle has a period of 60–90 min (Daley et al.,
2006; Hsieh et al., 2008) and our overnight recordings showed
this characteristic sleep architecture (Figure 3).

In our recordings, delta oscillations (1–4 Hz) of NREM
SWS showed a significantly lower rate during wakefulness
(Table 1) and tended to occur at discrete times throughout
the night (Figures 3A, 4A). Importantly, this sleep structure
was maintained when cycle-triggered stimulation was delivered,
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FIGURE 7 | Delta power at the reward onset during the execution of the BMI tasks overall 17 days of training (x-axis). SWATS-area task (top panel, red),
contra-area task (bottom panel, blue). Each bar represents the average delta power over all trials (mean ± STD). The ∗ indicates the days when the difference in
power between the two tasks was significant (p-value < 0.05, Bonferroni corrected).

meaning that the stimulation did not alter the sleep stage cycles
(Figure 4A). On nights when stimulation was delivered the rate
of detected oscillations was, on average, lower than during nights
without stimulation-possibly because the stimulus artifact which
saturated the signal for around 300 ms, precluded detection of
waves that occurred during that time (Figures 4B,C). The fact
that slow wave-triggered stimulation did not alter the cyclic
structure of sleep is an important point since REM and NREM
stages have complementary roles in off-line learning (Frankland
and Bontempi, 2005) and SWS is considered a key stage for
memory consolidation (Peigneux et al., 2004; Ribeiro et al., 2004;
Genzel et al., 2014).

Slow wave oscillatory cycles consist of depolarizing and
hyperpolarizing states, which respectively represent global
neuronal activation and global neuronal inactivation (Steriade
et al., 1993a,b; Steriade, 2003; Steriade and Timofeev, 2003;
Crochet et al., 2006). This neocortical rhythm is thought to
coordinate interactions between the neocortex and subcortical
structures necessary to integrate newly encoded memories with
pre-existing long-term memories (Sirota et al., 2003; Sirota and
Buzsáki, 2005; Genzel et al., 2014). The amount of SWS correlates
with improvements in task performance (Huber et al., 2004;
Pugin et al., 2015), suggesting that SWS may support acquisition
of new skills. Gulati et al. (2014) showed that successful learning

of a BMI task in rats correlates with an increased entrainment of
the activity of task-related neural ensembles to the negative phase
of SWS. Conversely, poor learning sessions were associated with
no increase in SWS phase-locking, suggesting that new learning
and skill acquisition are linked to a coherent re-activation
of emergent task-related activity during post-learning SWS.
Their finding showed that neuroprosthetic learning, like other
procedural learning, goes through the same off-line processing
to stabilize and consolidate the ‘‘prosthetic memory’’. Therefore,
to achieve good BMI control, mechanisms of long-term cortical
plasticity have to take place.

Our study aimed to further investigate this hypothesis, by
using closed-loop phase-dependent stimulation during sleep and
by observing its behavioral consequences through performance
of two BMI tasks in which the subject was being trained in
parallel. Compared to a standard motor task, a BMI task is better
controlled by the investigator, such that the task’s complexity
can be easily adjusted to fit the experimental needs. Moreover,
neural activity involved in the task is spatially localized, so
cortical modifications related to the acquisition of new skills
can be monitored. In our study, task performance was assessed
by comparing the rate of success achieved during volitional
control (feedback-on) to the spontaneous target acquisition rate
(feedback-off). Besides day-to-day variability, both tasks showed
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FIGURE 8 | Reward-triggered average of delta power for day 1 (top),
day 10 (middle) and day 17 (bottom) during SWATS-area task (left) and
contra-area task (right). Red lines show the signal from SWATS electrode
(conditioned hemisphere) and blue lines show the signal from contralateral
electrode (non-conditioned hemisphere). X axis represents time from reward
onset (black line). The green bars show the difference between the peaks of
the two signals at the reward onset.

a similar rate of ‘‘success’’ during feedback-off throughout
the experiment, indicating that the two hemispheres were
spontaneously generating the same amount of oscillatory activity
(Figures 5A, 6). The amplitude of oscillations associated with
volitional cursor control did not show the same increase as
the BMI performance itself (Figure 7); this suggests that the
monkey learned to increase not the amplitude of oscillations but
rather the frequency of their occurrence, in order to obtain more
rewards per minute. As shown in Figure 8, the monkey also
learned to dissociate the two tasks by gaining active control of
the neural signal between the two cortical sites, indicating that
the monkey learned the two tasks in parallel. At the beginning
of training, performance of both tasks was under chance level
(i.e., feedback-off > feedback-on), but performance of the
SWATS-area task started to significantly improve at day 12 of
training and success rates were maintained above chance level
until the end of the experiment. In contrast, performance of
the contra-area task did not show a significant improvement
until day 15 (Figure 6). At the end of training the performance
of the SWATS-area task during feedback-on were significantly
larger than those of contra-area task (Figures 5, 6). Thus, the
monkey started to learn the contra-area task few days later than

the SWATS task and even then its performance was not as
good.

A possible interpretation of this finding is that the task
controlled by the cortical site that received cycle-triggered
stimulation during SWS was learned faster than the task
controlled by the site with no conditioning stimulation. In this
perspective, the stimulation is a direct cause of the sped up
learning rate. However, the effect could simply be due to a
difference between the difficulties of the two different tasks. In
the same way that the brain has a finer control of one hand than
the other (handedness), it could be possible that it was easier for
the monkey to volitionally modulate the SWATS area compared
to the contra-area. To our knowledge, a brain laterality effect
in BMI control has not been documented in the literature. As
we showed through the day-by-day feedback-off performance,
the two tasks showed a similar baseline activity, which did
not indicate a spontaneously preference for the SWATS task.
Although this observation is relevant, it cannot be considered a
conclusive measurement of task difficulty. To address this issue,
a possible control experiment would be to show that the monkey
can achieve the same BMI performance for both hemispheres
without any stimulation.

SWS-Triggered Stimulation and Synaptic
Plasticity
There are two main hypotheses regarding the mechanisms
underlying memory consolidation during sleep. The synaptic
homeostasis model (Tononi and Cirelli, 2003, 2006) proposes
that sleep promotes consolidation by global synaptic downscaling
(depression). The active system consolidation model (McClelland
et al., 1995; Marshall and Born, 2007) proposes that memory
consolidation is the result of re-activation of memory traces
during sleep. However these two hypotheses are not mutually
exclusive and our study together with the observations of
Gulati et al. (2014) might suggest that the two processes act in
concert.

The homeostatic hypothesis of sleep is supported by
both electrophysiological and molecular evidence showing
that wakefulness is associated with net synaptic potentiation
whereas sleep preserves the overall balance of synaptic strength
through global synaptic depression (Vyazovskiy et al., 2008a,b).
According to the homeostatic model the amount of local
SWS is tied to the amount of synaptic potentiation that has
occurred in a specific brain area during previous wakefulness,
associated with training in the new task (Ghilardi et al., 2000;
Huber et al., 2004). A possible mechanism that links local
synaptic potentiation during wakefulness with the amount of
SWS may be a strong activation of sodium-dependent potassium
currents during SWS, due to the potentiation of cortico-cortical
synapses during wakefulness. SWS comprises a depolarized
up-state, during which single neurons fire at relatively high
rates, followed by the hyperpolarizing down-state generated by
an activation of sodium-dependent potassium current. Thus,
potentiation of cortico-cortical connections would in turn lead
to a longer and more hyperpolarized down state, therefore
increased amplitude of slow oscillations (Amzica and Steriade,
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1995; Steriade, 2003; Hill and Tononi, 2005). Slow waves of
larger amplitude in the electroencephalogram are caused by an
increase of slow oscillations at the single cell level together with
an increase of synchronization of oscillations among neuronal
populations.

Whichever the specific mechanism, the suggested role of
sleep is to scale down synaptic strength in order to restore the
neural circuits to a level energetically suitable by down-selecting
or pruning some synapses (Tononi and Cirelli, 2003, 2006).
As illustrated in recent studies, one way to do so is for
neurons to reduce synaptic strength in an activity-dependent
manner, which protects against depression the synapses that are
strongly activated during previous wakefulness and down-selects
the synapses that are weakly activated (Hashmi et al., 2013;
Nere et al., 2013). Thus, during sleep, stronger synapses,
which presumably capture aspects of sensory experience that
agree with previously acquired knowledge, survive and are
consolidated, whereas weak synapses, which are more likely to
reflect background noise, are depressed.

Overall, learning ability is de-saturated by maintaining a
balance in the synaptic inputs of cortical neurons. In line with this
model, Gulati et al. (2014) found that a ‘‘replay’’ of task-related
activity is in phase with up-states of SWS. Our results show
that delta-coupled stimulation in phase with SWS up-states
facilitated learning of a BMI task over a second competitive
one. Besides being a local phenomenon (Ghilardi et al., 2000;
Huber et al., 2004, 2006), SWS has been described as a global
phenomenon (i.e., occurring in phase across most brain areas),
which allows concurrent reactivation of the newly encoded
traces in different structures, including the hippocampus and
neocortex, thereby serving to potentiate the cortico-cortical
connections underlying stored representations (Logothetis et al.,
2012; Miyamoto et al., 2016). Slow oscillations generate an
important functional reorganization of cortical network that
supports the consolidation of memories (Sirota et al., 2003;
Sirota and Buzsáki, 2005; Genzel et al., 2014). In line also with
the competitive down-selection principle (Hashmi et al., 2013;
Nere et al., 2013), one interpretation of our result is that an

enhancement of activity during the depolarizing up-states of
SWS resulted in a potentiation of some synapses over the others.
As a consequence, off-line processes underlying consolidation
of the BMI task whose cortical site received SWS-dependent
stimulation could have been facilitated and that task was more
easily recalled during the daily training.

The evidence from this case study remains preliminary, so
we cannot make a definitive conclusion about the mechanisms
underlying memory consolidation nor claim that we enhanced
learning. Several control experiments are needed to address
open questions. For example, what is the role of up and down
states of slow oscillations in off-line learning?Would stimulation
triggered by the SWS hyperpolarizing down-states slow down the
learning rate of the task? How does the stimulation frequency
affect the learning process? Would randomized stimulation,
i.e., not in-phase with any oscillation, affect the off-line learning
process? Can these effects be generalized to other BMI tasks
which do not explicitly involve SWS?

While not providing a conclusive answer to these issues, this
case study illustrates a novel and effective methodology to further
investigate off-line learning during sleep; these techniques could
be adopted to further elucidate mechanisms of cortical plasticity
associated with brain oscillations.
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