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Anxiety disorders are the most common type of mental disorder during adolescence,

which is at least partly due to the resistance to extinction exhibited at this age. The

dopaminergic system is known to be dysregulated during adolescence; therefore,

we aimed to facilitate extinction in adolescent rats using the dopamine receptor 2

partial agonist aripiprazole (AbilifyTM), and examine the behavioral and neural outcomes.

Adolescent rats were conditioned to fear a tone. The next day, rats received extinction

30 min after a systemic injection of either 5 mg/kg aripiprazole or vehicle, and then

were tested the following day. For the immunohistochemistry experiment, naïve and “no

extinction” conditions were added and rats were perfused either on the extinction day or

test day. To assess the activation of neurons receiving dopaminergic input, c-Fos, and

dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) labeled neurons

were quantified in the amygdala and the medial prefrontal cortex (mPFC). Systemic

treatment with aripiprazole at the time of extinction significantly reduced freezing at test

the next day. This effect was not observed in rats that were fear conditioned but did

not receive any extinction. Aripiprazole’s facilitation of extinction was accompanied by

increased activation of neurons in the mPFC. Taken together, aripiprazole represents

a novel pharmacological adjunct to exposure therapy worthy of further examination.

The effect of aripiprazole is related to enhanced activation of mPFC neurons receiving

dopaminergic innervation.
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INTRODUCTION

Adolescence has been repeatedly identified as a vulnerable period for the prevalence of anxiety
disorders (Merikangas et al., 2010b; Polanczyk et al., 2015), with adolescent onset of anxiety
disorders being a strong predictor for anxiety later in life (Roza et al., 2003). We have previously
demonstrated that adolescent rats are impaired in extinction of conditioned fear compared to
preadolescent and adult rats (Kim et al., 2011), a finding that has since been replicated in humans
(Pattwell et al., 2012). Extinction refers to how fear to a stimulus can be reduced by repeated
presentations of that stimulus without any adverse consequences. It is the process that underlies
exposure-based therapies integral to cognitive-behavioral therapy. Thus, our rodent studies directly
model how adolescents are more resistant to treatments of this nature and are more likely to relapse
compared to other ages (Southam-Gerow et al., 2001; Kim and Ganella, 2015).
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Our present aim is to investigate a drug that may
facilitate extinction in adolescent rats in order to discover
an effective pharmacological adjunct to behavioral therapy.
While behavioral therapies are the most effective way to
treat anxiety disorders, less than one in five adolescents have
received them for their anxiety (Merikangas et al., 2011).
In fact, anxiety disorders show the biggest gap between
prevalence and treatment rates out of all types of youth
mental disorders (Merikangas et al., 2010a). This was identified
in part due to financial costs and accessibility of behavioral
therapy, which is often more expensive and time consuming
compared to medication (Merikangas et al., 2010a, 2011). We
propose that an effective pharmacological adjunct that facilitates
exposure therapy would significantly reduce the amount of
treatment necessary, cost, and chronic use of medication,
and increase the accessibility of services for more anxious
adolescents.

The dopaminergic system plays a key role in extinction
processes, and therefore offers a potential target to enhance
learning and memory that occur during exposure therapy
(Pezze and Feldon, 2004; Peters et al., 2009; Abraham et al.,
2014). Importantly, there is a well-established imbalance between
dopamine receptor 1 vs. 2 (D1R vs. D2R) signaling during
adolescence, which leads to inefficiency in prefrontal cortical
processing that is required for cue inhibition (Andersen et al.,
2000; Kim et al., 2017). Specifically, there is a relative dominance
of D1R compared to D2R activity in the medial prefrontal cortex
(mPFC) during adolescence compared to adulthood (Tarazi
et al., 1998; Seamans and Yang, 2004). As such, we chose to
enhance D2R signaling during extinction using aripiprazole,
which is predominantly a D2R partial agonist. Indeed, we have
recently shown that extinction of a cue previously associated
with cocaine is significantly facilitated by a pre-extinction
systemic injection of aripiprazole in adolescent rats (Zbukvic
et al., 2016). Interestingly, the pharmacological profile of
aripiprazole is not limited to activity at dopamine receptors,
it is also a partial agonist at the serotonin 5HT1A receptor,
and partial antagonist at 5HT2A (Jordan et al., 2002; DeLeon
et al., 2004). Considering that a recent study demonstrated
that 5HT1A receptor agonism may facilitate fear extinction via
release of dopamine into cortical regions (Saito et al., 2013),
testing aripiprazole’s potential effects on fear extinction appear
warranted.

Aripiprazole is a Food and Drug Administration
(FDA) approved medication used widely in teenagers for
neuropsychiatric conditions, such as schizophrenia (Burris
et al., 2002; Jordan et al., 2002; Davies et al., 2004; DeLeon
et al., 2004). It has good tolerability and a low side effect
profile making it an ideal candidate for use as an adjunct to
treatment of anxiety disorders (DeLeon et al., 2004). Therefore,
we examined aripiprazole’s potential to facilitate fear extinction
in adolescent rats, and assessed associated activation of the
dopamine innervated neurons in the mPFC and the amygdala
by measuring the immediate early gene c-Fos (Dragunow and
Faull, 1989) and dopamine- and cAMP regulated neuronal
phosphoprotein (DARPP-32; Hemmings et al., 1984; Gould and
Manji, 2005).

MATERIALS AND METHODS

Subjects
Male Sprague-Dawley rats were used for the present study (bred
in-house). Rats were weaned at postnatal day (P) 21, and were
housed with littermates in groups of 6 in individually ventilated
cages under a 12/12 h cycle (lights on: 07:00) with food and
water available ad libitum. All rats were P34 (±1) at the start of
experimentation and handled for 3 days prior. All animals were
treated in accordance with the guidelines for animal use set out
in the Australian code of practice for the care and use of animals
for scientific purposes (8th edition, 2013), and all procedures
were approved by the Animal Care and Ethics Committee of the
Florey Institute of Neuroscience and Mental Health, Melbourne,
Australia.

Apparatus
Behavioral experiments were conducted using Contextual Near
Infra-red Fear Conditioning System andVideo Freeze system (Med
Associates, VT, USA). The dimensions of the chambers were as
described previously (Ganella et al., 2016), with the grid floor
composed of 19 × 4.8 mm stainless steel rods that delivered
scrambled electric shocks as needed. The chambers were located
in two individual rooms to provide two different contexts
(Context A and Context B) for conditioning and extinction, as
described previously (Ganella et al., 2016). Briefly, Context A had
houselights on, round stickers on the back wall with wood chip
bedding beneath the grid floor, and cleaned with soap containing
a mild eucalyptus odor. Context B had curved walls, and a tray of
paper towel placed beneath the grid floor, and cleaned with 80%
v/v ethanol.

Drug Injections
Aripiprazole (Alliaance Biotech, India) was suspended in a
solution of 5% v/v Tween-80 (Sigma-Aldrich Co., MO, USA) in
saline at a concentration of 5 mg/ml. Vehicle was 5% v/v Tween-
80 in saline. All rats were injected subcutaneously at a volume
of 1 ml/kg. Our dose of 5 mg/kg was chosen based on previous
studies examining systemic injections of aripiprazole (Feltenstein
et al., 2007; Zbukvic et al., 2016).

Procedures
Conditioning. Rats were placed in the novel experimental
chambers without receiving prior habituation, and after a 2 min
baseline period, the conditioned stimulus (CS, tone; 5000 Hz,
80 dB) was presented for 10 s, which co-terminated with the 1 s
unconditioned stimulus (US, foot-shock; 0.6 mA). Rats received
3 CS-US pairings. The inter-trial interval (ITI) ranged between
85 and 135 s, with a mean of 110 s.

Extinction. The next day, rats were injected with aripiprazole
or vehicle. Thirty minutes following an injection, the rat was
placed in a different context to fear conditioning. After a
2 min baseline period the 10 s CS was presented alone 30
times (10 s ITI). Rats that received “no extinction” (Experiment
2) were placed in the chamber for the identical period of
time as extinguished rats without any CSs. In Experiment 2,
half of the rats were perfused 90 min following extinction
while the remaining rats were tested the next day. Test. The
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day after extinction, rats were tested back in the extinction
context (ABB design), with baseline freezing recorded in the
first minute, followed by a 2min presentation of the CS. The
remaining rats in Experiment 2 were perfused 90min following
test.

Perfusions
Rats were terminally anesthetized with sodium pentobarbital
(100 mg/kg, i.p.), then transcardially perfused with 50 ml 0.1
M phosphate buffered saline (PBS) followed by ∼250ml 4%
paraformaldehyde (PFA) in 0.1 M PBS. The perfused brains were
post-fixed for 1 h in PFA, washed in PBS for 1 h, and then left
overnight in a 20% sucrose PBS solution. Brains were then snap
frozen using liquid nitrogen and stored at−20◦C until sectioned.

Tissue Processing and
Immunohistochemistry
Coronal slices of the mPFC and amygdala were cut in a 1 in
4 series at a thickness of 40 µm and stored in cryoprotectant
at −20◦C until immunohistochemistry. Sections were washed
3 × 10min in PBS, then incubated for 30 min in a blocking
solution (10% normal donkey serum (NDS) and 0.5% Triton
X-100 in PBS). Brain tissue was then incubated overnight at
21◦C with primary antibodies: rabbit anti-DARPP-32 at 1:1000
(AB10518, Merck Millipore, Massachusetts, USA) and goat anti-
c-Fos at 1:500 (sc-52-G, Santa Cruz Biotechnology, Texas, USA)
in PBS with 1% NDS and 0.5% Triton X-100. Sections were
then washed in PBS, blocked (60min), and then incubated
for 2 h in the dark at 21◦C in secondary antibodies: donkey
anti-rabbit IgG at 1:200 (Alexa Fluor 488, Life Technologies,
CA, USA) and donkey anti-goat IgG at 1:200 (Alexa Fluor
594, Life Technologies, CA, USA) in PBS with 1% NDS and
0.5% Triton X-100. Sections were then washed in PBS prior
to mounting onto gelatin coated slides, and coverslipped with
fluorescent mounting medium (Dako North America Inc., CA,
USA).

Microscopy and Quantification of
Immunohistochemistry
We imaged and counted 3 rostrocaudal sections per region in
the right hemisphere (+3.2 to +2.88 mm for the mPFC and
−2.7 to −3.02 mm for the amygdala; DM LB2 microscope,

TABLE 1 | Mean levels of percent baseline freezing at extinction and test

(mean ± standard error of the mean).

Experiment Group n Extinction Test

1 Vehicle 8 5.5 (± 2.3) 31.4 (± 16.7)

Aripiprazole 9 14.9 (± 11.2) 21.1 (± 11.2)

2 No Extinction—Vehicle 12 4.7 (± 6.1) 2.7 (± 1.8)

No Extinction—Aripiprazole 13 6.0 (± 2.4) 1.3 (± 1.2)

Extinction—Vehicle 12 33.2 (± 10.8) 18 (± 10.8)

Extinction—Aripiprazole 12 4.2 (± 8.6) 2.3 (± 2.0)

There were no significant group differences in either experiment (ps > 0.05).

Leica Microsystems, North Ryde, Australia) as described
previously (Kim et al., 2012). Because DARPP-32 levels
did not vary across any groups, DARPP-32/c-Fos double
labeling was standardized as a percentage of total DARPP-
32 immunostaining (%DARPP-DBL). Images from the mPFC
were cropped as individual prelimbic (e.g., PrL) or IL
regions, and amygdala images were cropped into subregions,
central amygdala (e.g., CeA), basal amygdala (BA) and
lateral amygdala (LA) for manual counting, which were
delineated into standardized area size according to the rat
brain atlas (Paxinos and Watson, 1998). Observers unaware
of experimental groups counted using ImageJ (NIH, MD,
USA).

Data Analyses
In all behavioral sessions, freezing was measured as the fear
conditioned response (CR) to the CS, which was calculated

FIGURE 1 | Mean (± standard error of the mean) levels of conditioned

stimulus (CS)-elicited freezing. (A) Experiment 1, rats were conditioned on

day 1, received extinction 30 min after rats received an injection of either

aripiprazole (5 mg/kg) or vehicle on day 2, and then tested for CS-elicited

freezing on day 3. Aripiprazole n = 9; Vehicle n = 8. “*” Indicates a significant

effect of drug (p < 0.05). (B) Experiment 2, rats were conditioned on day 1,

there were no differences between groups so all data was pooled. On day 2,

rats receiving aripiprazole (5 mg/kg) or vehicle underwent CS-extinction or

were exposed to the chamber with no CS presentations, “no extinction” 30

min after injection (Extinction–Aripiprazole n = 12; Extinction–Vehicle n = 12;

No Extinction–Aripiprazole n = 13; No Extinction–Vehicle n = 12). “*” Indicates

a significant interaction between Extinction Condition and Extinction Block

(p < 0.05). Some rats were perfused 90 min after extinction

(Extinction–Aripiprazole n = 7; Extinction–Vehicle n = 6; No

Extinction–Aripiprazole n = 7; No Extinction–Vehicle n = 6); the remaining rats

were tested for CS-elicited freezing the next day and then perfused 90 min

after test (Extinction–Aripiprazole n = 5; Extinction–Vehicle n = 6; No

Extinction–Aripiprazole n = 6; No Extinction–Vehicle n = 6). “*” Indicates a

significant post-hoc effect of drug (p < 0.05) following a significant drug ×

extinction interaction.
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via automated near infra-red video tracking equipment and
computer software (Video Freeze, Med Associates, VT, USA)
with a motion threshold 50, as described previously (Handford
et al., 2014). For all experiments, conditioning and extinction
data were analyzed using repeated-measures (RM) analysis
of variance (ANOVA), with p ≤ 0.05. There were no
significant differences in baseline freezing for any experiments
on conditioning, extinction or test days (ps > 0.05), see Table 1.
For analyses of immunohistochemical data we included the
counts per rostrocaudal section as a within-subjects factor,
and have reported the rostrocaudal effects only for those that
were significantly affected by experimental manipulation (i.e.,
Extinction Condition and/or Drug) in the present results. Two
brains from post-test perfusions were severely damaged during

FIGURE 2 | Representative images of the immunohistochemical

staining for DARPP-32 positive (green) and c-Fos positive cells (red) in

(A) medial prefrontal cortex (mPFC), including the prelimbic (PrL) and

infralimbic (IL) regions, and (B) amygdala, including the central amygdala

(CeA), basal amygdala (BA) and lateral amygdala (LA) subregions. The left

panels show the anatomical schemactic taken from the rat atlas (Paxinos and

Watson, 1998) that was used to define boundaries of individual subregions

within the mPFC and amygdala. (C) Representative image taken from a rat in

the extinction—aripiprazole group, of DARPP-32 positive cells (left panel,

green), c-Fos positive cells (middle panel, red) and merge (right panel) showing

cells that are co-labeled with c-Fos and DARPP-32.

freezing and we were unable to count c-Fos and DARPP
immunostaining (No Extinction—Vehicle n = 1; Extinction—
Vehicle n= 1).

RESULTS

Experiment 1—Pre-extinction Systemic
Injection of Aripiprazole Facilitates
Long-Term Extinction in Adolescent Rats
Rats fear conditioned comparably, with a significant effect of
CS-US Trial [F(2, 30) = 44.2, p < 0.0001] but no other effects

TABLE 2 | DARPP immunolabeled cells and DARPP/Fos double labeled

cells as a percentage of total DARPP staining (%DARPP-DBL) in the

prefrontal cortex and amygdala of rats perfused post-extinction.

Experimental condition Brain

region

DARPP (± SEM) % DARPP-DBL

(± SEM)

Naïve—vehicle PrL 339.0±41.7 5.0±3.3

IL 125.2±14.9 8.4±4.2

CeA 67.4±19.9 7.2±3.9

BA 29.3±16.9 16.0±11.3

LA 11.6±3.3 30.1±10.1

Naïve—aripiprazole PrL 403.9±66.3 3.5±1.5

IL 112.9±24.7 10.1±5.8

CeA 93.4±17.4 3.7±0.9

BA 48.0±13.7 12.3±5.8

LA 12.2±3.1 10.9±7.6

No Extinction—vehicle PrL 379.7±37.0 5.9±1.5

IL 137.3±18.0 9.2±2.0

CeA 83.5±12.4 5.3±2.3

BA 79.2±14.6 8.4±2.6

LA 21.3±4.1 30.1±9.2

No extinction—aripiprazole PrL 419.0±41.8 9.8±3.1

IL 140.3±15.0 15.3±5.1

CeA 84.4±15.0 3.5±1.2

BA 70.6±14.3 13.4±11.1

LA 24.2±3.9 20.0±9.7

Extinction—vehicle PrL 408.1±44.9 9.3±2.5

IL 160.9±24.5 10.4±2.9

CeA 71.9±5.4 8.6±1.8

BA 84.1±12.4 9.3±5.6

LA 17.7±1.9 28.5±13.1

Extinction—aripiprazole PrL 438.0±34.4 11.0±2.5

IL 148.4±12.0 12.9±2.4

CeA 75.6±11.1 8.7±3.2

BA 85.0±20.8 10.6±3.3

LA 19.8±5.0 25.2±7.8

Values are represented as a group mean of the average counts across three rostrocaudal

sections imaged ± SEM. PrL, prelimbic cortex; IL, infralimbic cortex; CeA, central

amygdala; BA, basal amygdala; LA, lateral amygdala; DARPP, dopamine- and cAMP-

regulated phosphoprotein; SEM, standard error of the mean.
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(ps > 0.05), therefore the conditioning data are pooled across
pre-extinction drug condition in Figure 1A. On extinction day
there was a significant effect of extinction Block [F(5, 75) =

4.5, p < 0.01], but no main effect of drug [F(1, 15) = 3.9,
p = 0.07] and no other effects (ps > 0.05). In order to
test whether long-term extinction was effective in adolescent
rats, we conducted RM ANOVA comparing the last block of
extinction and test. This yielded a significant effect of day
[F(1, 15) = 5.5, p < 0.05], which indicates that adolescent rats
failed to show long-term extinction in this experiment. At
test there was a significant effect of Drug [t(15) = 2.3 p <

0.05], indicating that pre-extinction injection of aripiprazole
significantly facilitated long-term extinction in adolescent
rats.

Experiment 2—Aripiprazole Effects Are
Specific Following Cue Extinction, and
Lead to Activation of the Prelimbic Cortex
Neurons at Test
There were no significant differences between groups in
conditioning; therefore conditioning data from all rats were
pooled (Figure 1B). During extinction, there was a significant
effect of Extinction Block [F(5, 225) = 37.8, p < 0.0001],
Extinction Condition [F(1, 45) = 77.4, p < 0.0001], and an
interaction between the two [F(5, 225) = 19.5, p < 0.0001], but
no other effects (ps > 0.05). These results indicate that only the
rats in the extinction condition froze and then extinguished to
CS, while the no extinction rats that were merely exposed to

FIGURE 3 | Mean (± standard error of the mean) c-Fos counts across three rostrocaudal sections of the medial prefrontal cortex and amygdala of rats

perfused post-extinction. (A) prelimbic region (PrL), (B) infralimbic region (IL), (C) lateral amygdala (LA), (D) basal amygdala (BA), and (E) central amygdala (CeA).

Extinction–Aripiprazole n = 7; Extinction–Vehicle n = 6; No Extinction–Aripiprazole n = 7; No Extinction–Vehicle n = 6; Naïve–Aripiprazole n = 4; Naïve–Vehicle n = 4.

“*” Indicates a significant effect of extinction condition (naïve vs. extinction) following post-hoc tests with Tukey multiple comparisons (p < 0.05).

the chamber did not freeze. In order to test whether long-term
extinction was effective, we conducted RM ANOVA comparing
the last block of extinction and test in rats that received
extinction. This yielded a significant effect of day [F(1, 9) = 10.7,
p < 0.05], which indicates that adolescent rats failed to show
long-term extinction. At test there was a significant effect of Drug
[F(1, 19) = 13.3, p < 0.01], and an interaction between Extinction
Condition × Drug [F(1, 19) = 4.9, p < 0.05], but no effect of
Extinction Condition (p > 0.05). Post-hoc t-tests revealed that in
extinction groups there was a significant effect of Drug [t(9) =

4.9, p < 0.001], with no such effect in the no extinction groups
(t < 1). Taken together, extinction in adolescent rats did not
reduce freezing levels at test compared to no extinction controls.
Systemic injection of aripiprazole prior to extinction alleviated
this extinction deficit and significantly reduced freezing at test.

To assess the neural effects of pre-extinction aripiprazole
following extinction or test, an additional group of “naïve”
rats were included for immunohistochemistry. Naïve rats were
handled alongside the rats that underwent behavior, and were
injected with either aripiprazole or vehicle 30 mins before being
handled, then perfused 90 min post-handling. We examined
c-Fos as a marker for neuronal activation (Dragunow and
Faull, 1989), and DARPP-32 as a marker for dopaminergic
input (Hemmings et al., 1984; Gould and Manji, 2005). See
Figure 2 for representations of brain regions and staining. In
the brains perfused post-extinction, there were significant effects
of Extinction Condition of PrL-Fos [F(2, 28) = 3.6, p < 0.05],
IL-Fos [F(2, 28) = 3.2, p < 0.05], LA-Fos [F(2, 28) = 4.1, p <

0.05], and a trend for BA-Fos [F(2, 28) = 3.1, p = 0.059], but
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no other main effects or interactions in DARPP-32 counts or
double-labeling (Table 2). Post-hoc tests with Tukey multiple
comparisons revealed a significant difference between rats in the
naïve vs. extinction condition for PrL-Fos, IL-Fos, BA-Fos, and
LA-Fos (ps < 0.05; Figure 3).

In the brains perfused post-test, there were no effects in
DARPP-32 counts (Tables 3 and 4 for average DARPP-32 and
Fos counts). There was an Extinction Condition × Section
interaction identified for PrL-Fos [F(4, 46) = 7.1, p < 0.001], PrL-
%DARPP-DBL [F(4, 46) = 3.1, p < 0.05] and IL-Fos [F(4, 46) =
3.0, p < 0.05]. There was a Drug × Section interaction for PrL-
Fos [F(2, 46) = 4.9, p < 0.05], PrL-%DARPP-DBL [F(2, 46) = 4.5,
p < 0.05], IL-Fos [F(2, 46) = 3.6, p < 0.05] and IL-%DARPP-
DBL [F(2, 46) = 4.1, p < 0.05]. Post-hoc analysis for each section
revealed that there was a significant effect of Drug for PrL1-Fos,
[F(1, 23) = 6.00, p < 0.05] and PrL1-%DARPP-DBL, [F(1, 23) =
4.6, p < 0.05], but no effects in IL-Fos or IL-%DARPP-DBL (ps >

0.05; Figure 4).
There was also a 3-way interaction between Section × Drug

× Extinction Condition for PrL-Fos [F(4, 46) = 5.4, p < 0.05].
Post-hoc analysis for each rostrocaudal section indicated that
aripiprazole significantly increased PrL-Fos in the extinction
groups [t(8) = 9.8 p < 0.05], but not in other groups. No effects
were found in amygdala regions post-test (ps > 0.05).

DISCUSSION

Our results demonstrate that adolescent rats show impaired long-
term extinction that can be ameliorated with a single systemic
injection of aripiprazole prior to extinction. As shown in our
previous studies, an extinction session involving 30 CS-alone
presentations in adolescent rats did not lead to a long-term
reduction in fear when tested the next day. When extinction
was combined with aripiprazole, however, adolescent rats showed
a significant decrease in CS-elicited fear at test. Aripiprazole
reduced freezing at test only when given in conjunction with
extinction, with no extinction rats maintaining high CS-elicited
freezing levels at test. This is important because it shows that
aripiprazole does not merely cause non-specific reductions in
freezing at test. Aripiprazole also did not significantly affect the
rate of within-session extinction or overall levels of freezing
during the extinction session, suggesting that it may strengthen
the CS-no shock “safety” memory of extinction once acquired.
Regardless of the drug received, post-extinction perfused brains
showed that extinction induced significant c-Fos labeling in
the PrL, IL, LA, and the BA compared to naïve rats, although
the no extinction group were not significantly different to
either conditions. Because extinction and no extinction groups
were placed in a novel chamber compared to the naïve rats
that were merely handled, this result suggest that an exposure
to a novel chamber may contribute to increases in c-Fos
labeling observed following extinction, while novelty alone does
not induce significant changes in c-Fos labeling compared to
being handled. Interestingly, pre-extinction aripiprazole did
not significantly affect the number of c-Fos labeled neurons
following extinction in the amygdala or the mPFC, whereas

TABLE 3 | DARPP immunolabeled cells and DARPP/Fos double labeled

cells as a percentage of total DARPP staining (%DARPP-DBL) in the

prefrontal cortex and amygdala of rats perfused post-test.

Experimental

condition

Brain

region

DARPP

(± SEM)

%DARPP-DBL

(± SEM)

Naïve–vehicle PrL 527.4 ± 104.1 3.4 ± 1.6

IL 146.0 ± 32.6 4.0 ± 1.6

CeA 130.1 ± 23.4 1.5 ± 0.5

BA 39.5 ± 15.8 6.0 ± 3.7

LA 26.2 ± 11.7 2.0 ± 2.3

Naïve–aripiprazole PrL 600.6 ± 86.1 5.9 ± 2.0

IL 157.8 ± 34.4 6.7 ± 2.1

CeA 155.8 ± 23.6 2.1 ± 0.9

BA 119.3 ± 27.8 2.4 ± 1.0

LA 27.3 ± 5.9 1.8 ± 1.4

No Extinction–vehicle PrL 529.6 ± 62.4 5.0 ± 2.1

IL 222.3 ± 17.9 4.2 ± 1.2

CeA 119.2 ± 17.7 3.0 ± 1.5

BA 92.5 ± 9.8 5.3 ± 2.4

LA 29.9 ± 4.2 7.8 ± 3.5

No extinction–aripiprazole PrL 492.9 ± 56.1 5.1 ± 1.9

IL 150.2 ± 14.4 5.5 ± 2.0

CeA 341.0 ± 53.6 1.7 ± 0.9

BA 90.0 ± 29.2 3.0 ± 1.1

LA 19.8 ± 5.4 6.6 ± 1.9

Extinction–vehicle PrL 455.9 ± 51.6 5.3 ± 2.7

IL 176.9 ± 32.2 5.8 ± 1.9

CeA 142.2 ± 27.3 1.5 ± 0.5

BA 89.6 ± 12.9 10.0 ± 4.6

LA 20.9 ± 1.4 13.5 ± 10.9

Extinction–aripiprazole PrL 442.4 ± 56.3 14.4 ± 6.0

IL 160.3 ± 18.5 8.5 ± 2.3

CeA 96.1 ± 19.8 10.1 ± 7.0

BA 57.1 ± 28.1 4.5 ± 2.9

LA 14.7 ± 3.5 5.3 ± 2.9

Values are represented as a group mean of the average counts across three rostrocaudal

sections imaged ± SEM. PrL, prelimbic cortex; IL, infralimbic cortex; CeA, central

amygdala; BA, basal amygdala; LA, lateral amygdala; DARPP, dopamine- and cAMP-

regulated phosphoprotein; SEM, standard error of the mean.

it significantly increased c-Fos labeled neurons in the PrL
following test.

Enhancing Extinction in Adolescence
Our finding that adolescent rats show ineffective long-term
extinction is consistent with the growing literature on rodent
findings modeling adolescent vulnerability to relapse in anxiety
disorders (McCallum et al., 2010; Kim et al., 2011; Pattwell
et al., 2012, 2016; Baker and Richardson, 2015; Zbukvic et al.,
2017). Using this rodent model, various manipulations that can
alleviate such adolescent impairment in extinction have since
been discovered. The first effective behavioral manipulation
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TABLE 4 | Average Fos counts in the prefrontal cortex and amygdala of

rats perfused post-test.

Experimental condition Brain region Fos (± SEM)

Naïve–vehicle PrL 105.7 ± 73.0

IL 48.3 ± 30.5

CeA 9.8 ± 3.6

BA 14.3 ± 7.6

LA 11.8 ± 6.0

Naïve–aripiprazole PrL 191.6 ± 100.2

IL 74.3 ± 37.8

CeA 22.8 ± 60.3

BA 60.3 ± 36.0

LA 34.8 ± 23.3

No Extinction–vehicle PrL 91.5 ± 69.3

IL 42.7 ± 19.9

CeA 12.9 ± 4.9

BA 46.0 ± 23.0

LA 30.7 ± 16.7

No extinction–aripiprazole PrL 115.7 ± 57.3

IL 41.2 ± 11.3

CeA 10.9 ± 4.6

BA 27.1 ± 5.3

LA 13.7 ± 3.1

Extinction–vehicle PrL 61.7 ± 13.0

IL 32.8 ± 8.9

CeA 5.8 ± 1.6

BA 18.8 ± 3.4

LA 12.5 ± 3.2

Extinction–aripiprazole PrL 232.4 ± 59.5

IL 89.3 ± 25.5

CeA 17.9 ± 10.7

BA 49.2 ± 31.9

LA 32.5 ± 22.6

Values are represented as a group mean of the average counts across three rostrocaudal

sections imaged ± SEM. PrL, prelimbic cortex; IL, infralimbic cortex; CeA, central

amygdala; BA, basal amygdala; LA, lateral amygdala; SEM, standard error of the mean.

discovered was doubling the amount of extinction (McCallum
et al., 2010; Kim et al., 2011). However, doubling the amount of
extinction is impractical and costly in the clinical setting, because
exposure therapy can require months to years to complete
(Foa and McLean, 2016). The second effective behavioral
manipulation discovered was administering extinction in the fear
conditioning context (Pattwell et al., 2016). Again, this approach
is difficult to translate, as it would be impractical or impossible
to conduct exposure therapy where the fear memory was initially
formed in anxious adolescents. Consequently, we contend that
the best approach that is readily translatable to the clinic would
be to facilitate extinction using acute pharmacological adjuncts
at the time of extinction to reduce the amount of exposure
therapy needed. Indeed, it has been observed that systemic

injection of the NMDA receptor partial agonist D-cycloserine
(DCS) following extinction can significantly reduce the relapse
of extinguished fear observed in adolescent rats (McCallum
et al., 2010). DCS is one of the most widely used medications
worldwide for the treatment of tuberculosis, and while it has
been shown to facilitate extinction robustly in rodents, large-scale
clinical trials in humans have reported small to no effects (for
review see Otto et al., 2015). In fact, a 2015 Cochrane review
found no evidence of DCS efficacy to facilitate exposure therapy
(Ori et al., 2015). Additionally, we have recently demonstrated
that systemic injection of DCS following fear conditioning can
significantly augment fear conditioned responding (Handford
et al., 2014), which suggests that administration of DCS too
close to a traumatic event may exacerbate the fear. Therefore,
the present finding that aripiprazole facilitates extinction in
adolescent rats offers a new pharmacological adjunct for
further investigation to enhance exposure therapy, at least in
adolescents. Interestingly, we have noted previously that while
aripiprazole alone failed to promote abstinence in cocaine
users, it was effective in cocaine users that also received
behavioral therapy in conjunction with aripiprazole (Kim and
Lawrence, 2014). Taken together, we believe aripiprazole is a
promising candidate for future extinction studies attempting
to discover effective pharmacological adjuncts to exposure
therapy.

Neural Correlates of Extinction in
Adolescence and Effects of Aripiprazole
In the present study, reduced freezing at test due to pre-extinction
injection of aripiprazole was accompanied by molecular changes
specific to the mPFC that were influenced by both drug and
extinction condition in brains examined post-test. Our data
showed that in the most rostral part of PrL, aripiprazole caused
increased activation of neurons, as well as an increase in the
proportion of activated neurons receiving dopaminergic input.
This is consistent with anterograde tracer studies in adult rats
which have shown that injections into rostral PrL lead to dense
labeling of neurons in the BLA, suggesting that connections from
this part of the PrL are important in mediating the expression of
extinguished fear responses (Sesack et al., 1989).

When we further explored the present findings, freezing levels
at test significantly correlated with Fos levels in the rostral
PrL (r = −0.54, p < 0.05), but not with % DARPP-DBL
levels (r = −0.38, p = 0.09) in the rostral PrL (Figure 5).
The significant negative correlation indicates that lower freezing
levels at test is associated with higher Fos expression in the
PrL, which is contrary to the dominant model of extinction
expression (Peters et al., 2009). Specifically, studies in adult
rodents have demonstrated that the function of PrL and IL are
dissociated (Sierra-Mercado et al., 2011), with the IL critical for
reducing fear expression, and the PrL critical for fear expression
(Milad and Quirk, 2002; Burgos-Robles et al., 2009; Sotres-Bayon
et al., 2012; Pattwell et al., 2016). However, the role of IL and
PrL in conditioned fear expression is still poorly understood
in adolescent rodents. Given that the prefrontal circuit is
undergoing rapid structural changes during this developmental
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FIGURE 4 | Mean (± standard error of the mean) of c-Fos and DARPP/Fos double labeled cells as a percentage of total DARPP staining

(%DARPP-DBL) across three individual rostrocaudal sections of the medial prefrontal cortex of rats perfused post-test. (A) Prelimbic region (PrL) c-Fos

staining, (B) PrL %DARPP co-labeled with Fos, (C) infralimbic region (IL) c-Fos staining, and (D) IL %DARPP co-labeled with Fos. Extinction–Aripiprazole n = 5;

Extinction–Vehicle n = 5; No Extinction–Aripiprazole n = 6; No Extinction–Vehicle n = 5; Naïve–Aripiprazole n = 4; Naïve–Vehicle n = 4. “*” Indicates a significant

effect of Drug for that section with post-hoc analysis (p < 0.05).

FIGURE 5 | Correlation analyses for percentage freezing at test with c-Fos staining and percentage of DARPP co-labeled with Fos staining in the

rostral section of prelimbic (PrL) cortex (A) and infralimbic (IL) cortex (B). “*” Indicates a significant negative correlation between freezing and Fos expression. All

rats that underwent testing were included, n = 21.

stage (Cunningham et al., 2002; Schubert et al., 2015), the roles
of IL and PrL in fear expression might not be as dissociated
during adolescence compared to adulthood. For example, when
we explored correlations between freezing levels at test and the
rostral IL from the present study, the results were similar to
PrL (c-Fos: r = −0.50, p < 0.05; %DARPP-DBL: r = −0.38,
p = 0.09; Figure 5). Figure 3 also shows that the pattern of
extinction-dependent Fos expression in PrL and IL are similar.
Further, in our original findings examining adolescent fear
extinction, PrL and IL showed similar patterns of phosphorylated
mitogen-activated protein kinase (pMAPK) that were related to
amounts of extinction received in adolescent rats (Kim et al.,
2011). Indeed, Giustino and Maren recently reviewed the role
of the mPFC in the extinction of fear and highlight evidence
to challenge the existing models of PrL and IL dissociation (see

Giustino and Maren, 2015 for review). They suggest that there
is some functional overlap between the two regions, which allows
one structure to compensate for the other structure under certain
conditions, and adolescence may be one such condition.

Notably, Pattwell and colleagues recently investigated the
prefrontal circuitry associated with persistent fear memories
during adolescence. They identified selective and dynamic
reorganization of synaptic spine circuitry with elevated synaptic
spine production within the PrL, but not in the IL, during a
developmental period which coincides with resistance to cue
extinction learning in adolescent mice (Pattwell et al., 2016).
They also observed a selective surge in BLA-PrL but not BLA-IL
connectivity during adolescence that correlates with resistance to
cued fear extinction (Pattwell et al., 2016). While it is currently
unknown which underlying molecular mechanisms drive a
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selective enhancement in connectivity between the PrL and BLA,
it may involve the dopaminergic system and modulation of this
system may affect expression of fear during adolescence.

Communication between the amygdala and prefrontal cortex
relies on the fine balance between excitatory and inhibitory
dopaminergic transmission (Jackson et al., 2001; Floresco and
Maric, 2007). During adolescence, there are dramatic changes
in dopamine receptor expression in the mPFC, with a transient
relative dominance of D1R against D2R activity (Andersen et al.,
2000; Kim et al., 2017). This is particularly relevant for the
emergence of anxiety disorders; computational models predict
PFC D1R signaling to be activated by CS conditioning whereas
PFCD2R signaling to be activated by CS extinction (Seamans and
Yang, 2004). Consequently, the imbalance of D1R/D2R signaling
during adolescence likely contributes to the development of
strong fear-associated cues that are inhibition-resistant due to
impaired top down control from prefrontal regions to limbic
regions. This may contribute to adolescents being more resistant
to treatments such as cue-exposure therapy. Interestingly, IL
infusion of both D1R and D2R antagonists before extinction have
been shown to impair long-term extinction retention in adult
rats (Hikind and Maroun, 2008; Mueller et al., 2010). It appears
that more studies are necessary to delineate the role of D1R and
D2R in fear extinction, especially considering that D1R and D2R
signaling has opposite modulation of the intracellular pathways
(Seamans and Yang, 2004).

Aripiprazole is thought to stabilize the dopaminergic
system by acting on both postsynaptic D2R and presynaptic
autoreceptors (DeLeon et al., 2004). In the present study,
administration of aripiprazole may have promoted activation
of a prefrontal pathway involving D2R that leads to enhanced
extinction memory consolidation and/or recall the next day
via a mechanism involving activation of prefrontal neurons
(Hemmings et al., 1984; Gould and Manji, 2005). Consistent
with this idea, aripiprazole has been shown to increase the
dopamine pool in the rat PFC (Ratajczak et al., 2016). Also, in
healthy adult humans oral administration of aripiprazole led to
enhanced dorsolateral PFC (DLPFC) activation associated with a
trend for improved discriminability and reaction times compared
with placebo (Murphy et al., 2016). Those researchers concluded
that aripiprazole has unique DLPFC actions attributed to its
prefrontal D2R agonist action. Aripiprazole may be working via
a similar mechanism in our study, whereby D2R agonism in
neurons of the mPFC, particularly the PrL, may enhance the
strength of the extinction memory in adolescent rodents. The
changes in prefrontal c-Fos expression observed at test suggest
that aripiprazole may affect extinction memory consolidation
leading to a better retrieval of extinction memory. Santini
and colleagues have shown that the mPFC is a critical site of
successful extinction memory consolidation and storage and this
is accompanied by increased c-Fos expression in the mPFC as a
result of extinction training (Santini et al., 2004).

It is important to note that the mechanism underlying the
effects of aripiprazole may not be limited to D2R and may
also involve the serotonergic system. While aripiprazole displays
robust preferential binding to D2R in both rats (Natesan et al.,
2006) and humans (Mamo et al., 2007), it also exhibits partial

agonist activity at the serotonin receptor 5HT1A and partial
antagonism at 5HT2A (Jordan et al., 2002; DeLeon et al., 2004).
In fact the partial antagonism by aripiprazole of the 5HT2A

receptor is thought tominimize excessive dopaminergic blockade
by increasing dopamine release (Millan, 2003; DeLeon et al.,
2004). Both 5HT1A and 5HT2A receptors have been implicated in
anxiety related behaviors (Stahl, 2000; Lanzenberger et al., 2007;
Fisher et al., 2009; Zhang et al., 2013). For example, Saito et al.
showed that the 5HT1A receptor agonist, tandospirone, facilitated
extinction retrieval, which was accompanied by changes in
synaptic function and increased cortical dopamine levels (Saito
et al., 2013). The serotonin system has also been shown
to strongly mediate prefrontal dopamine signaling and fiber
infiltration into the mPFC (Benes et al., 2000) and serotonergic
fibers interact with both dopamine afferents and gamma-
aminobutyric acidergic interneurons in the mPFC (Taylor and
Benes, 1996; Taylor et al., 1998). This is particularly relevant
during adolescence as dopaminergic and serotonergic inputs to
the PFC increase to peak levels above those seen later in life
(Kalsbeek et al., 1988).

Conclusions
There is currently a major “treatment gap” for adolescents
suffering from anxiety disorders. A recent study by Merikangas
et al. identified that half of adolescents with severely impairing
mental disorders have never received mental health treatment
for their symptoms (Merikangas et al., 2011). Barriers to
treatment include cost, shortages of mental health specialists for
youth and repeated access to services necessary for successful
treatments (Merikangas et al., 2011). It has been established
that cognitive behavioral therapy/exposure based therapies are
effective in helping adolescents overcome anxiety, however this
requires multiple therapy sessions which may take months or
years (Cartwright-Hatton et al., 2004). Reducing the number
of therapy sessions necessary with adjunctive pharmacotherapy
such as aripiprazole addresses these barriers to treatment,
and we encourage future studies to further examine the
potential for aripiprazole to promote extinction at various stages
of life.
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