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Hyper activation of the neuroimmune system is strongly related to the development
of neuropsychiatric disorders. Psychosocial stress has been postulated to play an
important role in triggering anxiety and major depression. In preclinical models, there
is mounting evidence that social defeat stress activates microglial cells in the central
nervous system. This type of stress could be one of the major factors in the development
of these psychopathologies. Here, we reviewed the most recent literature on social
defeat and the associated immunological reactions. We focused our attention on
microglial cells and kept the effect of social defeat over microglia separate from
the effect of this stressor on other immune cells and the influence of peripheral
immune components in priming central immune reactions. Furthermore, we considered
how social defeat stress affects microglial cells and the consequent development of
anxiety- and depressive-like states in preclinical studies. We highlighted evidence for
the negative impact of the over-activation of the neuroimmune system, especially by
the overproduction of pro-inflammatory mediators and cytotoxins. Overproduction of
these molecules may cause cellular damage and loss or decreased function of neuronal
activity by excessively pruning synaptic connections that ultimately contribute to the
development of anxiety- and depressive-like states.

Keywords: microglia, neuroimmunity, immune cells, psychosocial stress, neuropsychiatric disorders,
inflammatory processes

INTRODUCTION

Neuropsychiatric disorders, such as anxiety and major depression (MD), are highly prevalent and
contribute significantly to the worldwide burden of diseases (Ferrari et al., 2013; Whiteford et al.,
2013). As a major contributor to the development of affective and neuropsychiatric disorders in
humans, psychosocial stress has been reported to induce central and peripheral immune pathway
signaling by repeated activation of the neuroendocrine and neurovegetative systems (Glaser and
Kiecolt-Glaser, 2005; Lehmann et al., 2016). When the individual is repeatedly exposed to stress, the
brain homeostatic environment alters and may give rise to various cognitive and mood disorders
that impair everyday functioning and overall quality of life (McKim et al., 2016a). Within the central
nervous system (CNS) immunological defense, microglia are the key immune players and acquire a
reactive profile to cope with altered homeostasis (Hanisch and Kettenmann, 2007). When activated,
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these cells are supposed to trigger anxiety- and depressive-like
behaviors (Lehmann et al, 2016), mainly by increasing the
expression of pro-inflammatory mediators and neurotoxins in
stress-sensitive brain regions (Reader et al., 2015; Ramirez and
Sheridan, 2016), and can ultimately influence the overall cellular
functions and survival, from neurons to glial cells.

Brief and prolonged episodes of social defeat (SD) have
been correlated with anxiety- and depressive-like behaviors,
respectively. While brief episodes can increase self-grooming,
locomotion in novel environments, risk assessment and
binge-like cocaine self-administration, prolonged episodes
induce anhedonic behaviors such as reduced sweet solution
preference, reduced mounting in copulatory behavior, reduced
climbing in the forced swimming test (FST), lower general
activity and sociability and suppressed cocaine intake (Razzoli
et al., 2009; Miczek et al, 2011; Hollis and Kabbaj, 2014;
Vasconcelos et al., 2015). Despite the clear evidence of the role
of social stress triggering mood disorder-related behaviors,
to the best of our knowledge, the exclusive contribution of
SD to microglial over-activation has never been reviewed.
Here, we discuss the emerging field of social stress-induced
microglial over-activation, providing an overview of how
microglial reactions can lead to these mood disorders, and
briefly discuss some relevant translational significance of the
findings. We hypothesized that acute/repeated and chronic
social defeat (CSD) stress can induce microglial activation and
over-activation that can engender anxiety and depressive-like
states, respectively. The repeated social defeat (RSD) paradigm
reported in this review is characterized by the introduction of
an aggressive intruder male into the cages of established male
cohorts of mice for three or six consecutive nights, leading
to the establishment of dominance over the original colony
(Wohleb et al., 2014b). CSD varied from 14 to 20 days of a
24 h/day dyadic social housing, exposing the defeated animal
to continuous psychological stress via sensory interaction
with the aggressor, accompanied by a 5 min/day agonistic
encounter between the aggressor and the defeated animal
(Brachman et al., 2015; Lehmann et al, 2016; Tong et al,
2017).

Articles used in this mini-review were selected from the
PubMed, Embase and ScienceDirect databases between March
and April 2017. Search terms were “microglia” and “SD”,
without any time limitation. Of the 23 selected articles, 11 were
excluded for the following reasons: not an original article, no
clear effect of stress over microglia and the use of mixed stress
protocols.

MICROGLIA: THE FIRST DEFENCE OF THE
CNS

Microglia comprise about 10%-15% of all brain cells and are
crucial players in normal development through the regulation
of functional and structural processes, contributing to plasticity
from individual synapses to neural circuits and behavior
(Wake et al.,, 2013; Salter and Beggs, 2014; Verkhratsky et al.,
2015). Microglial cells originate from extra-embryonic yolk
sac progenitors, establish unique CNS cell populations and

are maintained throughout life by local proliferation (Ginhoux
et al., 2010, 2013). As tissue-resident macrophages in the CNS,
along with other mononuclear phagocytes, microglia are critical
effectors and regulators of changes in CNS homeostasis during
development, in health and disease (Hanisch and Kettenmann,
2007; Prinz and Priller, 2014).

Some evidence points to new and fundamental roles
for microglia in the control of neuronal proliferation and
differentiation, as well as in the formation of synaptic
connections (Kettenmann et al., 2011; Ginhoux et al., 2013).
These cells are distributed in the brain parenchyma, have small
delineated processes and actively screen the inter-neuronal space
for incoming threats, exhibiting immune regulatory functions,
from local surveillance to the removal of debris (Prinz and Priller,
2014). Microglial activation is the main neuroinflammatory
element in the CNS, providing the front line defense whenever
injury, disease or infection occurs (Lehnardt, 2010; Tang and Le,
2016).

Inflammatory processes are usually self-limited, culminating
with tissue repair; damage to the CNS occurs when the
system is over-activated for a long time, extending the
release of pro-inflammatory mediators and neurotoxins.
This process can worsen tissue damage and negatively impact
disease outcome, leading to anxiety- and depressive-like
states (Reader et al., 2015; Ramirez and Sheridan, 2016).
Increasing evidence points to a heterogeneous status of
microglial activation in the CNS. Although it is not a consensus,
some authors categorize microglia into two opposite activation
states, M1 and M2 phenotypes, which can produce either
cytotoxic or neuroprotective effects (Tang and Le, 2016).
M1-polarized microglia are associated with the production of
pro-inflammatory cytokines such as tumor necrosis factor-
o (TNF-a), interleukin-1f (IL-1f), interleukin-6 (IL-6),
superoxide, nitric oxide, reactive oxygen species and proteases
(Ajmone-Cat et al., 2013), whereas M2-polarized microglia
express cytokines and receptors that are implicated in the
inhibition of inflammation and restoration of homeostasis by
tissue repair and extracellular matrix reconstruction (Nakagawa
and Chiba, 2014; Tang and Le, 2016). Nevertheless, as this
nomenclature is not fully accepted and some authors consider
microglia polarization to have derived from studying peripheral
macrophages rather than microglia (Ransohoff, 2016), it is
important to carefully use and interpret these terms to avoid
misunderstandings.

THE SD PARADIGM AS A VALID
STRESSOR

Most stressors in human life arise from interactions within the
social environment. In fact, social stress encompasses various
types of significant life events, ranging from maternal separation
(Meaney, 2001; Nishi et al., 2014), brief episodes of social
confrontations in adolescence and adulthood, to continuous
subordination stress (Miczek et al., 2008). In preclinical studies,
some models of stress are often criticized as being artificial and
not representative of human stress (Bjorkqvist, 2001; Almeida
et al., 2002).
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The SD paradigm is recognized as an ethological valid
method to engender social stress in rodents (Vasconcelos et al.,
2015; Henriques-Alves and Queiroz, 2016; Koolhaas et al.,
2017). RSD is a stressor that recapitulates key physiological,
immunological and behavioral alterations observed in humans
exposed to chronic psychosocial stress (McKim et al., 2016a).
Models of psychosocial stress rely on innate social behavior
among pairs or groups of male rodents allowing the formation
of stable dominant-subordinate relationships (Krishnan and
Nestler, 2011). Another strong point of these models is the lack
of habituation; despite repeated exposures, animals continue
to generate emotional stress responses (Tidey and Miczek,
1997).

SD stress activates the hypothalamic-pituitary-adrenal
axis and sympathetic nervous system, increasing systemic
glucocorticoids that trigger the release of catecholamines and
pro-inflammatory cytokines (Avitsur et al., 2001; Herman et al.,
2016). Although there are distinct models of social stress, this
review will focus on the role of SD in the development of anxiety
and MD, tracking the contribution of the over-activation of the
main CNS immune component, microglia, in triggering these
psychiatric diseases.

EFFECTS OF SD STRESS ON MICROGLIAL
CELLS

One of the major advances in the field of the study of psychiatric
disorders came from the notion that the immune system
and inflammatory processes can be activated by psychosocial
stressors (Miller and Raison, 2015). Despite the well-established
evidence that the peripheral and central immune systems act in
concert to promote the stress reaction, greater attention has been
given to immune cells of the CNS, in particular, microglia. Social
stress may activate microglial cells in a way different from other
stressors (Glaser and Kiecolt-Glaser, 2005; Calcia et al., 2016) and
seems to exert a direct effect over microglia activity through the
activation of glucocorticoid and mineralocorticoid (Sierra et al.,
2008) and B-adrenergic receptors (Walker et al., 2013; Calcia
etal., 2016). Considering these factors, we directed our attention
to microglial reactions induced by SD; the evidence is presented
in Table 1.

Microglia present increased activation status after SD
(Wohleb et al.,, 2014b; Ramirez and Sheridan, 2016) and the
effects are mainly observed within brain regions associated
with fear, anxiety and threat appraisal (Wohleb et al., 2015).
From a ramified aspect found in the immunosurveillant state,
microglia change robustly to a de-ramified state with shorter
and thicker processes (Wohleb et al., 2011, 2012, 2013, 2014b),
leading to increased soma size after acute, RSD and CSD
(McKim et al., 2016a; Figure 1). Changes in soma and processes
are usually analyzed by increases in ionised calcium-binding
adapter molecule 1 (Iba-1) or cluster of differentiation 11b
(CD11b) immunoreactivity. However, although the vast majority
of studies report results similar to those described above,
decreases in microglial Iba-1, CD11b and consequently soma
areas were found by others in the dentate gyrus (DG), but
not in the medial prefrontal cortex, in a stress protocol that

consisted of 20 days of exposure to SD (Tong et al., 2017). These
controversial data could be attributed to differences in stress
chronicity.

One additional way to identify changes in microglia activity
is through the analysis of activation markers such as the
chemokine (C-C motif) ligand 2 (CCL;), toll-like receptor 4
(TLR-4) or the CX3 chemokine receptor 1 (CX3CR;) which
are expressed by microglial cells. SD induces an increase in
the gene expression of TLR-4, CCL, and CX3CR; (Ramirez
et al., 2015, 2016; Ramirez and Sheridan, 2016). However,
decreases in CX3CR; gene expression were also observed after
SD, although in enriched brain CD11b* cells (Wohleb et al.,
2014a). One of the most evident reactions to SD observed in
microglial cells is the rise in gene expression and mRNA levels
of the pro-inflammatory cytokines IL-1p, IL-6 and TNF-a and
expression of the surface activation marker CD14. Increases of
these inflammatory mediators were observed after acute, RSD
and CSD (Wohleb et al, 2011, 2012, 2014a; Brachman et al.,
2015; Ramirez et al., 2015, 2016; McKim et al., 2016a; Ramirez
and Sheridan, 2016), even 24 days after stress cessation (Ramirez
et al., 2015). The importance of these findings is reinforced
by the results obtained from either microglial cells analyzed
in fresh CNS tissue, isolated from socially defeated animals
(Wohleb et al, 2012) or in ex vivo SD-sensitized microglia
stimulated with lipopolysaccharide (LPS; Wohleb et al., 2011).
Additionally, reduced levels of glucocorticoid responsive genes
(GILZ and FKBP51) are evident after exposure to SD (Wohleb
et al, 2011). Chronically SD stress-activated microglial cells
increase their phagocytic activity. This effect is achieved by
increasing the expression of CD68M (a marker for phagocytic
activity; Lehmann et al., 2016). The increasing phagocytic activity
of microglia from CSD animals suggests that cellular debris
or cell damage or death may be a hallmark of chronic stress
effects on the brain. SD can also change microglial cell numbers;
while acute SD enhances the number of microglia (Lehmann
et al, 2016), CSD diminishes these cells (Tong et al., 2017),
mainly in the hippocampus. It seems that a crucial factor is
the intensity of activation of microglia by stress, which can
lead to different psychiatric disorder outcomes (Figure 1).
Taken together, these data highlight the broad spectrum of
effects that can be observed in microglial cells when activated
by SD.

THE LINK BETWEEN MICROGLIAL
ACTIVATION, ANXIETY- AND
DEPRESSIVE-LIKE BEHAVIORS

It is now well known that disturbances in microglial functioning
has an etiological role in mood disorders (Frick et al., 2013;
Kreisel et al., 2014). However, if the effect of social stress
on these deregulated behaviors can be mainly attributed to
microglial over-activation or if the participation of other
CNS immune cells and/or the peripheral immune system
plays a major role remains controversial. While researchers
have shown in some studies that SD stress-induced anxiety-
and depressive-like states are mediated by the activation of
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In the basal state microglia present normal
proliferation, small and delineated cell
processes. Function as modulator of synaptic
connections, promote local surveillance and
removal of cell debris.

In the activated state microglia present
higher rates of cell proliferation, shorter
and thicker cell processes characterized
by a de-ramified shape and increased
soma size. Release higher levels of
cytokines and alter cell responsivity to
glucocorticoids.

In the over-activated state
microglia present a decreased rate
of proliferation, increased soma
size with amoeboid and de-
ramified shape. Is characterized
by a higher phagocytic activity,
less removal of cell debris
contributing to CNS cell death.
Continue to produce high levels of
cytokines.

of the inter-neuronal space, altogether leading to depression.

STRESS DURATION

FIGURE 1 | Different stages of microglial activation caused by changes in the intensity and duration of social stressors that can maintain individuals in a healthy state
or contribute to both anxiety and depressive-like behaviors. In the basal state, microglia can be distinguished by normal levels of immunoreactivity to ionized
calcium-binding adapter molecule 1 (Iba-1) and CD11b. In this state, enable proper coping to stress situations. \When activated, microglia proliferate, release higher
levels of interleukin-1p (IL-18), interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a), present higher expression of toll-like receptor 4 (TLR-4), chemokine (C-C moitif)
ligand 2 (CCL»), CX3CR1) and decreased levels of glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein 51 (FKBP51). They can be distinguished
by higher immunoreactivity to Iba-1, CD11b, CD14 and CD68. During the activated state, the release of pro-inflammatory mediators and the altered response to
glucocorticoids may lead to anxiety. The activated state can also be protective by resuming stress effects. As a consequence, microglia return to their basal state.
Otherwise, persistent stress shifts microglia to an over-activated state. Overactive microglia continue to release pro-inflammatory mediators (IL-18 and IL-6). They
can be distinguished by higher immunoreactivity to CD68" and possibly lower levels of CX3CR; and iNOS antibodies. Along with the microglial phagocytic activity
occurs a higher rate of cell death, including microglia as well as neuronal and other glial cells. This effect reduces their capacity to remove cell debris and surveillance

microglia with the involvement of peripheral macrophages
and trafficking of monocytes to the brain (Wohleb et al., 2013,
2014b, 2015), other studies excluded the direct involvement
of peripheral monocytes triggering these behaviors (Lehmann
et al, 2016). Stress chronicity and/or peripheral wounds
(triggers of peripheral immune reactions), which can usually
be observed in defeated animals after confrontation with an
aggressor, could be major determinants. This is one of the
main reasons that led researchers to choose alternative stress
protocols, such as variable unpredictable stress and foot shocks
to study microglial activation in neuropsychiatric disorders,
even though these procedures present lower ethological
relevance.

Studies in humans have shown that microglial activation
is positively correlated with psychiatric disorders. For
example, individuals experiencing a major depressive episode
present enhanced positron emission topography labeling
of the translocator protein (TSPO), a putative marker of

neuroinflammation and microglia activation (Setiawan et al.,
2015). It has also been speculated that there is a causal link
between microglial activation and suicidal behavior (Schnieder
et al, 2014); neuroendocrine factors, cytokines and nitric
oxide, which are released from microglial cells and are known to
modulate noradrenergic or serotonergic neurotransmission, may
trigger suicidal behavior (Steiner et al., 2008). Pro-inflammatory
cytokines including IL-1p and TNF-a, can reduce the availability
of serotonin, dopamine and noradrenaline by increasing the
expression and function of reuptake transporters, reducing
synthesis or decreasing monoamine precursors (Miller and
Raison, 2015). Activated microglia can also act on the glutamate
pathway and together with astrocytes stimulate the increased
release of this neurotransmitter and decreased brain-derived
neurotrophic factor, which ultimately leads to excitotoxicity
(Steiner et al., 2012; Miller and Raison, 2015). Additionally, it
has been shown that elevated pro-inflammatory cytokine levels
caused by microglia activation associated with the recruitment
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of monocytes to the brain contribute to the development and
persistent anxiety-like behavior (Wohleb et al., 2014b, 2015).
Moreover, chronic microglial activation in particular can result
in neuronal apoptosis, neurogenesis inhibition, hippocampal
volume reduction, lower neurotransmitters synthesis and
cytotoxicity (Ascoli et al., 2016), which is ultimately related to
depressive behavior.

Although microglia are not the only effectors of the immune
system, it has been suggested that the anti-inflammatory
effect of antidepressants may have protective effects by
silencing RSD-induced priming and activation of microglia,
thus down-regulating the biosynthesis of high levels of
pro-inflammatory cytokines (Ramirez et al., 2015). Recently,
microglia have been recognized as important targets for
pharmaceutical research. Brain diseases, including depression
and anxiety, could potentially be treated with drugs that
are capable of inhibiting or restoring specific microglial
functions (Biber et al, 2016). Anti-inflammatory drugs such
as COX2 inhibitors or minocycline, aimed at inhibiting the
pro-inflammatory status of microglia, have been suggested
as therapeutics for inflammatory brain diseases (Biber et al,
2016). The CX3CRj, as an exclusive microglial marker, could
also be a potential target. Since the activation of microglia is
not consistent for all patients, it has been recently proposed
that anti-inflammatory treatment targeting microglial activation
could specifically be more effective in patients with increased
microglial activation, leading to the idea that microglial
activation may be a marker for severe and untreatable psychiatric
disorders (Mondelli et al., 2017).

Social stress can alter the number of microglial cells
(Lehmann et al.,, 2016; Tong et al., 2017), mainly dependent
on the duration of stress exposure. While acute, but not
CSD is supposed to increase microglial proliferation selectively
in telencephalic stress-related brain areas (Lehmann et al,
2016), a loss of hippocampal microglia was observed and is
supposed to promote the development of MD, indicating that
the restoration of microglial functions and/or numbers may
be beneficial for the therapy of MD (Tong et al., 2017). Since
pro-inflammatory cytokines can also modify neurogenesis in
the hippocampus (Koo and Duman, 2009), RSD has been
shown to induce anxiety-like behavior by impairing the neuronal
differentiation of neural progenitor cells in the hippocampus
that proliferated during stress exposure. These data were
positively correlated to an impairment in performance on
working and spatial memory in the Morris water maze (MWM)
and transiently disrupted short-term memory recall in the
Barnes maze (BM; McKim et al., 2016a). Overall, these data
highlight the magnitude of the microglial over-activation-
induced deficits in monoamine neurotransmission, cytotoxicity,
cellular loss and reduced neurogenesis, ultimately leading to
memory impairment and behaviors that are observed in both,
anxiety and depression.

CONCLUSION REMARKS

Exposure to SD induces microglial cells to assume an activated
state, which initially may be considered beneficial. RSD and

CSD can induce microglia to assume over-activated states that,
by persistently releasing pro-inflammatory mediators, cytotoxins
and reactive oxygen species, may cause cellular dystrophy
and a loss or decreased function of neuronal activity through
excessively pruned synaptic connections. All of these stress
effects over microglia worsen memory and behaviors that are
important factors in psychiatric disorders. The SD paradigm
is an important tool to induce anxiety- and depressive-like
states in laboratory animals for investigating stress-induced
immunological and behavioral alterations.

It seems that the development of anxiety and MD is, besides
microglial activation, dependent on peripheral monocyte
recruitment to the brain (McKim et al., 2016b), attaching
importance to the bidirectional communication between
the brain and peripheral immune system. However, since
the activation of microglia by psychosocial stress might be
different from that of physical injury (Glaser and Kiecolt-
Glaser, 2005), more attention must be given to peripheral
wounds when studying SD stress effects over central immune
reactions. SD protocols that allow physical injuries to the
defeated animal during confrontations with an opponent may
contribute to the participation of peripheral immune cells
in the final outcome. Alternatively, stress protocols that do
not involve physical injuries, such as chronic unpredictable
stress, can be used to overcome this issue. Contradictory
findings have shown that microglial over-activation, as
well as microglial dystrophy and loss, can mediate the
development of MD. Depression is considered to be a
disorder that is associated with microglial over-activation.
That leads to an interpretation that suppressed microglial
hyperactivity should be the focus to treat depressive symptoms
(Tong et al, 2017). However, since microglia in its basal
state is also critical for brain normal function, microglial
dystrophy and loss would also mediate the development of
this disorder (Kreisel et al., 2014; Tong et al., 2017). Therefore,
over-inhibition or over-down-regulation of microglial function
will inevitably produce detrimental effects as well. Focusing
on microglial cells as therapeutic targets for pharmacological
interventions, especially by restoring functions and/or basal
levels, may be a promising strategy for anxiety and depression
therapy.
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