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Working memory (WM) is a resource-limited memory system for temporary storage
and processing of brain information during the execution of cognitive tasks. Increased
WM load will increase the amount and difficulty of memory information. Several studies
have used electroencephalography (EEG) or functional magnetic resonance imaging
(fMRI) to explore load-dependent cognition processing according to the time courses of
electrophysiological activity or the spatial pattern of blood oxygen metabolic activity.
However, the relationships between these two activities and the underlying neural
mechanism are still unclear. In this study, using simultaneously collected EEG and fMRI
data under an n-back verbal WM task, we modeled the spectral perturbation of EEG
oscillation and fMRI activation through joint independent component analysis (JICA).
Multi-channel oscillation features were also introduced into the JICA model for further
analysis. The results showed that time-locked activity of theta and beta were modulated
by memory load in the early stimuli evaluation stage, corresponding to the enhanced
activation in the frontal and parietal lobe, which were involved in stimulus discrimination,
information encoding and delay-period activity. In the late response selection stage,
alpha and gamma activity changes dependent on the load correspond to enhanced
activation in the areas of frontal, temporal and parietal lobes, which played important
roles in attention, information extraction and memory retention. These findings suggest
that the increases in memory load not only affect the intensity and time course of the
EEG activities, but also lead to the enhanced activation of brain regions which plays
different roles during different time periods of cognitive process of WM.

Keywords: memory load, oscillation, fMRI, joint independent component analysis, event-related spectral
perturbation

INTRODUCTION

Working memory (WM) is a resource-limited memory system for temporary storage and
processing of brain information during the execution of cognitive tasks, and plays an important
role in complex cognitive activities (Baddeley, 1992). WM load refers to the ratio between the
amount of memory information and the WM capacity. WM load that exceeds the limits of the WM
capacity increases the complexity and difficulty of brain activities (Howard et al., 2003). Currently,
electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are widely used
to explore neural mechanism under different memory loads.

EEG studies on WM demonstrated that different oscillations react differently to an increase
in memory load. More specifically, the power of theta, beta and gamma bands show an
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increasing trend (Jensen and Tesche, 2002; Deiber et al., 2007;
Lundqvist et al., 2011) while the power of alpha presents a
decreasing trend. Further studies reported that these changes
in oscillatory activities have their unique temporal dynamics.
Pesonen et al. (2007) used event-related spectral perturbation
(ERSP) analysis to explore the time windows during which the
event related synchronization (ERS) responses or event related
desynchronization (ERD) of different bands were significantly
related with an increasing memory load. Their results revealed
that the time window of theta band (4–6 Hz) was at 0–1800 ms
after stimulation, while that of the alpha band (8–12 Hz)
was at 100–1600 ms. They also found that the beta band
(14–23 Hz) exhibited ERS response under low memory load
in 500–1800 ms post-stimulus and ERD response in 100 ms
post-stimulus under high load (Pesonen et al., 2007). Based on
these findings Palomäki et al. (2012) proved a steady increase
of theta power after stimulation, while the power of alpha and
beta (8–25 Hz) presented a continuous ERD response within
500–1800 ms under different memory loads. These studies
suggested that the continuous theta ERS response depicted
the mechanism underlying the information maintenance and
extraction in addition to the close relationship between the alpha
ERD response and cognitive process like memory requirements
and information processing (Pesonen et al., 2007). Furthermore,
changes in beta power are also associated with delay-period
activity and stimulus discrimination (Tallon-Baudry et al., 1999;
Varela et al., 2001). However, despite the available body of
literature on the temporal dynamics of oscillations, no consensus
has been reached regarding the range of time and frequency, or
the trend of change.

Imaging studies onWM have demonstrated that the cingulate
gyrus, inferior frontal gyrus (IFG), precentral gyrus, insula,
middle frontal gyrus (MFG), cerebellum, inferior parietal lobule
(IPL) and other brain regions play an important role in different
phases of WM (Durgerian et al., 2001; Manoach et al., 2003;
Kirschen et al., 2005). In a letter n-back experiment, Ragland
et al. (2002) found load-dependent activation in the insula,
IPL, MFG and some other brain regions, whereby a stronger
activation was detected under higher memory loads. These
brain areas play an important role in information maintenance
and manipulation. Similar results were also observed in the
superior parietal lobule (SPL) and cerebellum during the
information encoding phase in a Sternberg memory task
(Durgerian et al., 2001), and in the superior frontal gyrus
(SFG) and MFG during the memory information maintenance
phase (Jha and McCarthy, 2006). However, these previous
findings were focused on the distribution of load-dependent
fMRI activation and how they were affected by memory load,
but not on the temporal dynamics of the changes in spatial
activation.

The emergence of simultaneous EEG-fMRI provides a
promising solution for this problem by integrating the high
temporal resolution of EEG and the high spatial resolution
of fMRI. This technique enabled researchers to gain deeper
insights into the spatio-temporal characteristics of many classic
cognitive functions, such as face recognition (Wirsich et al.,
2014) and WM (Scheeringa et al., 2009; Michels et al., 2010;

Ahmad et al., 2016; Herweg et al., 2016). Most of the EEG-fMRI
studies on memory load were focused on the spatial distributions
of specific event-related potential (ERP) components (D’Arcy
et al., 2005; Sabri et al., 2014) and that of specific oscillatory
activities (Scheeringa et al., 2009; Michels et al., 2010). Michels
et al. (2010) used EEG-constrained fMRI analysis by introducing
power value of an oscillation into the general linear model
(GLM) as a covariate and identified the distribution patterns
corresponding to theta and alpha activities under different
loads. For theta power, these brain areas were mainly the
medial prefrontal cortex and posterior parietal cortex (PPC).
For alpha power, they were the dorsal lateral prefrontal cortex,
PPC and some other brain regions. In one of our previous
studies, we introduced ERP amplitudes into the GLM analysis
and found that the P3 amplitude was suppressed under high
memory load and that this suppression was correlated with
activation in the middle occipital gyrus, insula, lingual gyrus
and other brain regions (Zhang et al., 2017). Sabri et al. (2014)
used joint independent component analysis (JICA) to study the
association between ERP and fMRI in an auditory memory task.
They demonstrated that the primary activation related to the
N1 component occurred in the superior temporal gyrus and
MFG, which was enhanced by higher memory loads. These
studies proposed the spatial patterns of load-dependent ERP
components and oscillations. However, whether the memory-
load-dependent differences in temporal dynamics of oscillations
are related to the differences in spatial activation distribution
remains unclear.

In this study, we used JICA to explore the load-dependent
relationship between temporal dynamics of oscillations and
spatial activation distribution using simultaneous EEG-fMRI
data from 13 healthy participants in a verbal n-back WM task.
First, we used wavelet analysis to extract ERSP features from
the EEG data of all channels under different memory loads. The
ERSP features of an oscillation under the different memory loads
were calculated and the ERSP difference was extracted using
permutation test. The differential fMRI activation distribution
was also obtained using GLM and t-test. Subsequently, the
temporal ERSP difference and the spatial activation difference
were modeled by JICA. Considering the correlation between
adjacent channels, a multi-channel JICA (mJICA) model was
constructed at the same time. Finally, correlation analysis was
performed to investigate the relationship between the spatial
activation of oscillations and behavioral performances. We
suspected evidently load-effects oscillatory activities in the time
phases in which concurrent stronger activation in specific regions
of the frontal and parietal could be expected, and aimed to
explore the temporal-spectral dynamics of electrophysiological
activity and their spatial map of brain response to increasing
memory load from a new perspective.

MATERIALS AND METHODS

Participants and Experimental Procedure
Thirteen healthy right-handed participants (seven males and
six females, mean age 22.9 ± 1.8 years) with no history
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of psychiatric or neurological disorders participated in the
experiment after providing written statements of informed
consent. The study was approved by the Institutional Review
Board of the National Key Laboratory of Cognitive Neuroscience
and Learning at Beijing Normal University. Simultaneous
EEG-fMRI data were collected in the center for magnetic
resonance imaging, brain cognitive science and technology at
Beijing Normal University.

Our experiment used event-related design (Zhang et al., 2017)
and the classic n-back WM paradigm with two memory load
levels (n = 1, 3). The stimulations used were digits ranging from
0 to 9 which were presented in the center of a gray background.
A black screen of 350 ms was presented to indicate the beginning
of each trial. Subsequently, a fixation cross was presented at
the center of the screen for 350 ms to direct the participants
to focus on the target area. The stimulation then appeared at
the same location for 500 ms and was followed by the cross
appeared again for 2800 ms or 4800 ms, allowing the participants
to make a quick key-press response. The participants were asked
to compare the stimulus on the screen with the one that was
displayed n-backwards. If a number was the same as the previous
one (in 1-back task) or the third one backwards (in 3-back task),
the participant was instructed to press the button under the right
index finger. Otherwise, the participant was instructed to press
a different button, the one under the right middle finger. The
number of correct hits and the associated reaction time were
recorded for each participant.

EEG-fMRI Data Acquisition
The fMRI data were obtained using a 3T Siemens scanner at
the MRI Center at Beijing Normal University using a standard
echo-planar image (EPI) sequence (TR = 2000 ms, TE = 30 ms,
matrix = 64 × 64, in-plane resolution = 3.12 × 3.13 mm2, slice
thickness = 3.5 mm, slice gap = 0.8 mm, flip angle = 90◦).
Two-hundred images were collected at each stage. The whole
brain was scanned and the interval scanning was carried out to
obtain the axial images of the 33 layers parallel to the AC-PC
line.

The EEG data were recorded simultaneously with 64 channels,
using an MR-compatible amplifier (Brain Amp MR plus, Brain
Products, Munich, Germany). The FCz channel was chosen as
the reference electrode, and the sampling rate was set as 5000 Hz.
Extra series resistors were required by all the electrodes to avoid
saturation (5 kΩ for EEG and 15 kΩ for electrocardiography
(ECG)). The scalp impedance was set below 20 kΩ.

EEG Data Analysis
The preprocessing of the EEG data was conducted with
Brain Vision Analyzer 2.0 (Brainproducts, Germany1). First,
we removed the gradient and ballistocardiographic artifacts,
filtered data from 1 Hz to 40 Hz with a band-pass filter, and
down-sampled the data to 500 Hz. Subsequently, all EEG data
were segmented into separate epochs based on the onset of each
stimulus (200 ms pre-stimulus and 800 ms post-stimulus). All
epochs were corrected to the baseline, and trials that met the

1http://www.brainproducts.com

following three criteria were identified as ‘‘bad’’ trials: (i) the
trial was contaminated by excessive eye blink or motion artifacts;
(ii) the amplitude exceeded ±150 µV; and (iii) the difference
between the maximum and the minimum amplitude within
200 ms exceeded 200 µV.

Time-frequency (TF) analysis and statistical test were
performed using EEGLAB 12.0.2.2b toolbox and TF
representations were calculated using 2-cycle complex Morlet
wavelets for both 1-back and 3-back epochs. The ERSP (Makeig,
1993) distributions for 12 representative electrode locations (F3,
Fz, F4, P3, Pz, P4, C3, Cz, C4, O1, Oz, O2) were derived as a
function of time (0–1000 ms from stimulus onset) and frequency
(3–40Hz, linear increase). A nonparametric permutation test was
used to assess statistical differences between ERSP distributions
(1-back vs. 3-back) with a permutation number of 1000 and an
overall significance level of 0.01 (Maris and Oostenveld, 2007).
The electrodes and oscillations with significant differences of
ERSP between 1- and 3-back conditions were selected. The time
course of ERSP in the 1–3 contrast was extracted from the same
electrode for all participants.

fMRI Data Analysis and ERSP-Activation
Fusion
The fMRI data were preprocessed using SPM82. The steps
included slice timing, head motion correction, normalization
to the Montreal Neurological Institute (MNI) space, reslicing
into a resolution of 3 × 3 × 4 mm3, and spatial smoothing
using a Gaussian kernel with a full-width at half maximum
of 8 mm. The preprocessed fMRI data were modeled using
GLM and yielded individual-level activation maps after
parameter estimation and statistical test. One-sample t-
test was performed on the individual activation maps of
1-back and 3-back condition respectively to generate group-
level activation of each memory load and paired t-test was
performed to generate group level activation difference between
them.

The JICA (FITv2.0c3) was used to fuse EEG TF components
and fMRI images, which assumes joint temporal and spatial
independence constraints of these two modalities using the
following generative model for the data: XEEG = AsEEG and
XfMRI = AsfMRI . Here, X, s and A denote the observed signal,
the independent sources, and a shared mixing matrix for two
modalities data. In our study, for each contrasted oscillation,
the fused dataset consisted of individual ERSP differences at the
contrasted oscillations and individual contrasts of the activation
map. The independence between spatial activation and temporal
power perturbation was maximized using the fastICA algorithm,
and the components that co-varied with both modalities were
calculated and ranked by their contribution to the average ERSP
time course. The number of independent joint components
was determined using ICASSO (Himberg and Hyvarinen, 2003).
The fMRI component was scaled to z-scores at threshold
z > 2.0.

2http://www.fil.ion.ucl.ac.uk/spm
3http://mialab.mrn.org/software/fit/index.html
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FIGURE 1 | Group-level analysis of event-related spectral perturbation (ERSP). (A) ERSP distribution in 1-back condition. (B) ERSP distribution in 3-back condition.
(C) Group difference of ERSP between 1- and 3-back conditions (p < 0.01). Significant difference of theta ERSP was observed in P3, P4, Pz and O1. Significant
difference of beta ERSP was observed in F3 and C3. Significant difference of alpha ERSP was observed in P4. Significant difference of gamma ERSP was observed
in P3.
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FIGURE 2 | Brain topographic map and spectral perturbation differences between 1- and 3-back conditions at the specific electrode and time-frequency (TF)
ranges. The power of theta increased at 150–300 ms to the power before the stimulus in all memory load conditions, and such increase slowed down under high
memory load. For alpha oscillation in 700–800 ms post stimulus, the spectral perturbation showed an increasing tendency in low memory load and a decreasing
tendency in high load. When compared with the baseline power, significant difference was detected in both beta (250–400 ms) and gamma (700–800 ms) power,
which decreased under low memory load and increased under high load. ∗Paired t-test, p < 0.05.

Apart from the single channel JICA (sJICA), the mJICA
model was also used in our study that defined as below
Swinnen et al. (2014).

XEEG1 XfMRI
XEEG2 XfMRI
. . . . . .

XEEGn XfMRI

 = A ·
[
sEEGsfMRI

]

where, each row in XEEGi represents the EEG time-courses at the
ith channel for each participant.

Correlation Analysis with Behavioral
Performance
SPSS16.0 software was used to perform paired t-test on the
participant’s behavioral data, including accuracy and reaction
time. The fMRI component extracted by JICA was used as

a mask to define individual regions of interest (ROI) as
ROI(oscillation). For each ROI(oscillation), Pearson correlation of the
mean blood-oxygen-level dependent (BOLD) value in 1-back
with the behavioral data was conducted. In comparison, Pearson
correlation of the mean BOLD value in 3-back with the
behavioral data was also conducted to assess the influences
of increasing load. The correlation coefficients between the
activation difference and the behavioral difference according to
memory load contrast were also calculated.

RESULTS

Time-Frequency Activities from EEG
Compared with the power of baseline, the spectral perturbation
arose at different electrodes and TF range under different
memory loads after stimulus onset, which showed ERS
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(positive ERSP value) or ERD response (negative ERSP value;
Figure 1). For the specific electrode under specific TF range
with significant difference, the oscillations presented various
alterations in spectral perturbation across the whole brain
when the memory load increased (Figure 2). The spectral
perturbation of theta and alpha were anti-correlated with
memory load, while that of beta and gamma were positively
correlated. The time range with significant difference (namely
time-SD), in which the ERSP showed apparent differences
with various loads, was mainly observed at the early stage
(before 400 ms) and the late stage (after 700 ms) after stimulus
onset. The electrodes with notable changes in ERSP were
selected as F3, C3, P3, Pz, P4 and O1 for the next fusion
analysis.

Spatial Activation of ERSP Time-Courses
Figure 3 depicts the significantly enhanced activation under
high memory load, including the SFG, MFG, IFG, IPL and
insula. For each participant, the difference of activation together
with the difference of ERSP time-courses between 1-back and
3-back were put in the sJICA and mJICA model, respectively.
The z-score maps of fMRI components generated by JICA
were obtained after z-transform and were mapped to the
MNI template. The number of independent components in
the sJICA analysis was estimated to be 11 for theta-fMRI,
10 for alpha-fMRI, and nine for other-oscillations-fMRI. The
number of independent components in mJICA was estimated
to be nine. Among all the decomposed co-varied independent
components, the temporal independent component of oscillation
whose peaks changed significantly within the time-SD and
its corresponding fMRI spatial independent component were
selected (Figure 4).

Correlation with Behavioral Performances
As is shown in Figure 5, all participants performed well in
the behavioral test. The mean accuracy was 91.28 ± 8.36%
and 81.11 ± 17.03% for 1-back and 3-back conditions,
respectively. The mean reaction time was 774.7 ± 238.0 ms and
980.0± 357.7 ms for 1-back and 3-back conditions, respectively.
The differences in both the accuracy and the reaction time
between two loads were significant (F(1,12) = 2.57, p < 0.025;
F(1,12) =−4.23, p < 0.001).

The correlation between the theta spatial activation and the
accuracy in 1-back condition was more significant than that in
3-back condition. Meanwhile, the correlations between the alpha
activation and the accuracy, between the beta activation and
the reaction time, and between the gamma activation and the
accuracy, were more significant in the 3-back condition than in
the 1-back condition (Table 1).

DISCUSSION

In this study, based on an n-back verbal WM task, we used
JICA to bridge the differences of the EEG oscillatory activity
and the differences of fMRI spatial activation, thus exploring
the mechanism underlying the spatial-temporal processing of
memory load. The results indicated that ERS response of theta

FIGURE 3 | Group-level activation map in different memory load. (A) 1-back
condition. (B) 3-back condition. (C) Group difference in activation (3-back vs.
1-back).

was evoked in the early stage after stimulus onset by the increased
memory load, consequently leading to enhanced activation in the
SFG, IFG and MFG, which were involved in the memory delay-
period activity. Besides, ERD response of alpha was evoked by
high load in the late stage post-stimulus, leading to enhanced
activation in the SFG, MFG and MTG, which were recruited
in information extraction and memory retention. These results
suggested that not only the covariant relations between the
oscillatory activity and the activation of brain region, but also the
roles of functional brain region in different temporal phases of
the memory process.

In the early stage after stimulus onset, the changes in ERSP
by loads occurred mainly in the neural activities of theta and
beta (Figure 1). Unlike previous findings (Pesonen et al., 2007;
Palomäki et al., 2012), our results indicated that the theta
ERS response was negatively correlated with memory load.
Previous studies reported that higher memory loads weakened
the cognition control (Soutschek et al., 2013), while the ERS
response of theta was associated with memory information
encoding and retrieval (Jensen and Tesche, 2002). Based on this,
the decreased theta ERS activity in the early stage suggested
the manipulation of cognition control in the memory updating
phase. For the beta activity, in line with previous study (Deiber
et al., 2007), the ERSP and the ERS response increases during
250–400 ms post-stimulus under high load suggested that the
beta activity was in charge of the completion of memory
delay-period and memory encoding. In particular, the boost
in beta power of delay-period may have been to promote
stimulus recognition (Tallon-Baudry et al., 1999; Varela et al.,
2001).

In contrast to the oscillatory activity in the early stage after
stimulus onset, the late stage ERSP changes appeared mainly in
the alpha and gamma activities. The spectral activity of alpha
showed ERS response under lowmemory load but ERD response

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 October 2017 | Volume 11 | Article 215

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Zhao et al. Localized Fluctuant Oscillation of Loads

FIGURE 4 | Components co-varied with both spectral perturbation difference in different oscillations and spatial activation difference detected by single channel joint
independent component analysis (sJICA; left) and multi-channel JICA (mJICA; right). Both yellow line (left) and red line (right) represent the average time course of
ERSP differences across participants and channels at the specific oscillation, and both blue line (left) and green line (right) represent the time independent component
decomposed by JICA that most correlated with the average time course. (A) Theta oscillation of P4 channel. (B) Alpha oscillation of P4 channel. (C) Beta oscillation
of F3 channel. (D) Gamma oscillation of P3 channel. (E) Theta oscillation of P4-Pz channels. (F) Theta oscillation of P4-Pz-O1 channels. (G) Theta oscillation of
P4-Pz-P3-O1 channels. (H) Beta oscillation of F3-C3 channels.

under high load. It has been proved that the alpha activity is
engaged in information processing during the WMmaintenance
and is responsible for selective attention and semantic evaluation
(Gomarus et al., 2006). Klimesch demonstrated that the alpha
activity can actively inhibit the interference of irrelevant stimuli
during cognitive tasks (Klimesch, 2012). Hence, the appearance

FIGURE 5 | Different behavioral performances between 1- and 3-back
conditions. (A) Accuracy. (B) Reaction time. Significant difference in behavioral
performances was found between two loads. Error bar represents the
standard error. ∗p < 0.05.

of alpha ERD in the late post-stimulus stage under increased
task difficulty may reflect the enhanced inhibition of irrelevant
information during the stimulus evaluation. Similarly, due to
the decreased task difficulty under low load, there may be less
resource allocated to the inhibition of irrelevant stimuli. For
the gamma activity, within 700–800 ms post-stimulus, the ERD
response arose under low memory load, while the ERS response
appeared under high load. Studies reported that continuous
neural activities of gamma band are the physiological basis for
the maintenance of information representation in WM tasks
(Howard et al., 2003; Jokisch and Jensen, 2007), thus leading
to the increase of gamma activities in memory information
retention when the memory load increases (Howard et al.,
2003).

The influence of WM load was reflected not only in different
frequencies and different time windows, but also in the spatial
distribution of brain activities. Higher WM demands led to
stronger activation in the SFG, MFG, IFG, IPL and insula
(Figure 3). After linking the spatial activation difference with
the TF difference using sJICA (Figure 4A), the decreased theta
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TABLE 1 | The correlation coefficients and their significant levels (r, p) between the mean blood-oxygen-level dependent (BOLD) of components that were linked with the
event-related spectral perturbation (ERSP) of oscillation (ROI(oscillation)) and the behaviors.

ROI 1-back 3-back Difference
(1-back vs. 3-back)

Accuracy RT Accuracy RT Accuracy RT

Left IFG(θ) (0.53, 0.03)∗ (−0.15, 0.32) (0.43, 0.07) (0.18, 0.26) (−0.16, 0.31) (0.21, 0.22)
Left MFG(α) (0.44, 0.06) (−0.06, 0.43) (0.47, 0.05)∗ (0.17, 0.29) (−0.04, 0.44) (0.15, 0.31)
Right SPL(α) (0.32, 0.14) (−0.21, 0.24) (0.57, 0.02)∗ (−0.18, 0.28) (−0.22, 0.24) (0.19, 0.27)
MFG(β) (0.44, 0.07) (−0.23, 0.23) (0.29, 0.17) (0.48, 0.05)∗ (−0.01, 0.49) (0.18, 0.27)
Right SPL(γ) (0.08, 0.40) (0.08, 0.40) (0.49, 0.04)∗ (−0.04, 0.45) (−0.38, 0.10) (0.32, 0.15)

RT, reaction time. ∗p < 0.05.

activity in the early stimulus-response stage was co-varied with
enhanced activation in SFG, IFG and IPL, which were involved
in WM information encoding, recognition, and maintenance
(Courtney et al., 1997; Durgerian et al., 2001; Jha and McCarthy,
2006). This suggested that the increased load may result in
a weakened control over the cognitive activity, which will
increase the difficulty of information encoding andmaintenance.
A stronger activation corresponding to the increased spectral
perturbation of beta was observed in MFG, SPL and some
other brain regions (Figure 4C). Previous studies have reported
that activation in these brain areas reflected the memory load
effect on the delay-period activity and information recognition
(Varela et al., 2001; Manoach et al., 2003). In the late stimulus-
response stage, the reduced alpha activity was co-varied with
stronger activation in SFG, MFG and MTG (Figure 4B), which
were mostly associated with memory information extraction and
maintenance. This implies that, under high load, the increases
in the target stimulus extraction and maintenance reflected
the stronger suppression of irrelevant stimuli elicited by the
alpha activity. Moreover, the stronger activation corresponding
to the boost in gamma power was mainly observed in IPL
and SPL, which may be in charge of the storage of linguistic
information (Manoach et al., 2003; Figure 4D). These results
manifest that the enhanced activation in some regions played
various roles in different temporal phases of the memory
process.

Compared with sJICA, more theta-related spatial activation
was found in two-channel (Figure 4E) and three-channel
(Figure 4F) with mJICA, such as the partial activation
in the insula and the stronger activation in MFG. In
the two-channel condition, an additional activation that
corresponded to beta activity was detected in SFG and IFG.
Besides, a stronger activation in SPL was also detected with
mJICA (Figure 4H). However, when we further increased
the number of channels, the JICA components became
too scattered to form significant activations. One possible
explanation may be that, with the increasing amount of
channels, the reductions of correlation between the source
signals resulted in the shrinking or even disappearance of the
homologous space mode of these channel signals (Swinnen et al.,
2014).

Consistent with previous findings, our behavioral data
showed that with the increase of memory load, the reaction time
increased significantly, while accuracy decreased significantly
(Pesonen et al., 2007; Figure 5). However, no significant

correlation was found between the activation difference fused
by oscillatory activity and accuracy difference, or between the
activation difference and reaction time difference (Table 1),
implying that load-dependent changes in activation of
oscillations was independent of behavioral changes. Compared
with the 1-back condition, the correlation between the
behavioral performance and the activation of alpha, beta
and gamma significantly increased in the 3-back condition,
which suggested that high memory demands increased the
difficulty of the extraction, encoding, identification and
maintenance of target stimulus information. As a result,
the activation of corresponding brain areas in both the
frontal and parietal cortex became stronger, the rate of
correct responses decreased, and the reaction time became
longer.

In summary, through the shared mixture matrix of JICA,
a relationship between EEG temporal oscillatory activity and
fMRI spatial activation based on the memory load contrasts
was established. Limited by MR environment, EEG signals
acquired with fMRI are vulnerable to several different types of
artifacts, which make the signal-to-noise ratio (SNR) of EEG
data particularly lower and make the data collection particularly
difficult. However, EEG-fMRI simultaneous recording has the
potential to enable the monitoring and modulation of brain
activity over time using detailed brain spatial information.
The present study, together with our previous studies (Zhang
et al., 2017), aimed to reveal the possible brain mechanisms
underlying the cognition processing of WM load using
simultaneous EEG-fMRI technique from different point of
view. In the future, the measures of oscillatory synchrony and
BOLD-derived connectivity will be meaningful to further explore
the deep relationship between activities of neurophysiology and
neuroimaging, thus providing new insights on mental workload.
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