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Bats emit biosonar pulses in complex temporal patterns that change to accommodate
dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-
pulse intervals, sonar sound groups, and changes in individual signal parameters such
as duration or frequency. Here, the similarity in temporal structure between trains of
biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally
designed for neural activity pattern analysis, was applied to determine which features of
the environment influence temporal patterning of pulses emitted by flying big brown
bats, Eptesicus fuscus. In these laboratory experiments, bats flew down a flight corridor
through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape
(straight or curved). Using a relational point-process framework, SSIMS was able to
discriminate between echolocation call sequences recorded from flights in each of the
corridor widths. SSIMS was also able to tell the difference between pulse trains recorded
during flights where corridor shape through the obstacle array matched the previous
trials (fixed, or expected) as opposed to those recorded from flights with randomized
corridor shape (variable, or unexpected), but only for the flight path shape in which the
bats had previous training. The results show that experience influences the temporal
patterns with which bats emit their echolocation calls. It is demonstrated that obstacle
proximity to the bat affects call patterns more dramatically than flight path shape.

Keywords: echolocation, biosonar, big brown bat, temporal patterning, memory, clutter, sonar sound groups,
spike train similarity space (SSIMS)

INTRODUCTION

An echolocating bat emits high frequency biosonar pulses and listens for returning echoes. The
bat uses echo delay and spectra of reflections produced by objects in the environment as cues to
construct perceptual images of its surroundings (Moss and Surlykke, 2010; Simmons, 2012). In
response to different environmental challenges, the big brown bat (Eptesicus fuscus) dynamically
adapts its biosonar emissions (Griffin, 1958; Griffin and Grinnell, 1958; Simmons et al., 1998;
Surlykke and Moss, 2000). The most well-studied example of biosonar adaptability is prey capture
behavior. Bats decrease call duration and intensity, and increase the bandwidth of their broadcasts
as they approach prey (Griffin et al., 1960; Kalko and Schnitzler, 1998; Moss and Surlykke, 2001,
2010). Bats can adapt the duration, intensity, and frequency content of their echolocation calls to
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suit their particular needs at any moment. For example, bats
shift their call frequency away from that of conspecifics foraging
nearby – a strategy for sonar jamming avoidance (Bates et al.,
2008). However, the most important – and most flexible – call
parameter is the timing between calls. Whenever possible, bats
emit an echolocation call and then wait for the echoes to return
before emitting the next sound. However, this is not always
possible. Bats routinely forage in cluttered acoustic environments
where multiple objects might obstruct the flight path. In these
cases, bats must quickly emit more calls to update their perceptual
image of the scene rapidly enough to avoid colliding with
obstacles. See Figure 1 for an example echolocation call sequence,
waveform of a single call, and the distributon of IPIs.

To effectively navigate, hunt insect prey, and avoid collision
hazards in a cluttered environment, bats emit trains of pulses
at a higher rate than in an open environment (Surlykke and
Moss, 2000; Falk et al., 2014). The time duration between
individual pulses in a train is called the inter-pulse interval
(IPI). The big brown bat does not uniformly increase or
decrease IPIs between pulses. Instead, pulses are emitted in
groups, with shorter time intervals (∼20 ms) between pulses
in the same group and longer intervals (∼40 ms or longer)
between groups (Moss et al., 2006; Petrites et al., 2009;
Kothari et al., 2014). Sonar sound groups (also called “strobe
groups”) are thought to be an adaptive strategy for bats
echolocating in complex environments because an increase in
the difficulty of the task or the proximity and distribution
of objects in the surroundings is associated with increased
sound group emission (Surlykke and Moss, 2000; Petrites
et al., 2009; Kothari et al., 2014; Warnecke et al., 2015).
The bat’s familiarity with the scene may also impact sonar
sound patterning (Barchi et al., 2013; Kothari et al., 2014;
Knowles et al., 2015; Hom et al., 2016). It is unknown whether
expectation can influence biosonar pulse timing, partly because
it is difficult to quantify global temporal patterns of sonar sound
sequences across different experimental paradigms, and because
different laboratory groups use different metrics for defining
sonar sound groups. Temporal patterns in bat echolocation
sounds are partially responsible for their ability to fly in
cluttered environments with ease. Specifically, sonar sound
groups may be a strategy for avoiding pulse-echo ambiguity –
a classic sonar engineering problem where the receiver cannot
determine which echo resulted from which pulse when pulses
are repeated rapidly (Stimson, 1998; Denny, 2007; Wheeler et al.,
2016).

Here, we utilize a novel algorithm for quantifying and
comparing timing within sonar sound sequences. This
algorithm, spike train similarity space (SSIMS), was originally
formulated to compare the spiking patterns of neurons, in
motor cortex recordings from rhesus macaques (Macaca
mulatta) performing reaching and grasping tasks (Vargas-
Irwin et al., 2015a,b). It combines point-process distance
metrics and dimensionality reduction to compare spike
train patterns to one another. Treated as time-series point
processes, echolocation call sequences can be substituted
for neural spike trains. Then the cost of transforming
each biosonar sequence into each other sequence can be

FIGURE 1 | Bat echolocation calls. Bat echolocation calls are shown over a
500-millisecond time period (A), a single call waveform (B), and a histogram
showing the distribution of inter-pulse intervals, or IPIs (C). In this example,
microphone recordings of the bat’s echolocation signals are sampled at
192 kHz. The call shown in the middle panel is from the same recording as the
top panel over the 476–478 ms time frame. Note that both “call” and “pulse”
refer to the same type of echolocation vocalization. Notice the bimodal
distribution of IPIs. Long IPIs occur between sonar sound groups and are
30–50 ms long, while shorter IPIs occur within a sonar sound group, and are
approximately 15–25 ms long. Adapted with permission from Accomando
et al. (2017).

represented as the distance between the points on the SSIMS plot
(Figure 2).

We applied the SSIMS algorithm to biosonar pulse trains
emitted by bats flying through obstacle arrays. Mapping data into
a SSIMS projection is done without any information regarding
behavioral condition (unsupervised dimensionality reduction).
Instead, the method relies on the intrinsic properties of the
data and does not require an explicit model of the relationship
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FIGURE 2 | Spike train similarity (SSIMS) algorithm processing steps. The input of the algorithm is a series of pulse trains (A). A matrix pair-wise distances between
the pulse trains (B) are calculated using spike train metrics. The inset (adapted from Victor, 2005) shows an example of the series of operations taken to transform
one pulse train into another by deleting (red), shifting (small blue arrows), or adding (green) spikes. The sum of the cost assigned to each operation determines the
final cost estimate. The final step of the algorithm projects the pair-wise distance matrix into a low-dimensional similarity space (C). Light blue outlines show how an
individual pulse train is represented at each stage in the process. In the final output, the distance between the points represents the degree of similarity between the
pulse trains. Note that this schematic is for illustrative purposes and does not contain real data.

between echolocation behavior and external variables such as
the structure of the acoustic scene. One advantage of this
method is that IPIs from sequences of echolocation pulses
emitted by behaving bats can be compared without imposing
absolute limits on what constitutes a sonar sound group
(Kothari et al., 2014). This is essential because sonar sound
group parameters appear to be dependent on behavioral context
(Petrites et al., 2009; Falk et al., 2011; Kothari et al., 2014;
Sändig et al., 2014; Knowles et al., 2015; Warnecke et al.,
2015).

The first aim of this study was to test the effectiveness of
the SSIMS algorithm in predicting bat biosonar behavior in a
previously analyzed dataset (Wheeler et al., 2016). In this prior
study, referred to here as Experiment 1, bats flew down an open
corridor in the center of an obstacle array. This obstacle-free
flight corridor varied in width from 100 to 70 cm, and 40 cm. The
bats patterned their sounds differently depending on corridor
width, so we used this dataset to test the ability of SSIMS to cluster
call sequences made in each of the different corridor widths.

The second aim was to apply SSIMS to test the hypothesis
that pulse trains recorded from bats flying in predictable (fixed)
surroundings would be different from those recorded from
bats challenged with unpredictable (variable) surroundings. This
analysis was carried out using new, previously unpublished data.
In Experiment 2, bats flew down the 40 cm wide flight path,
which was manipulated into different shapes. When the flight
path shape was fixed, bats could expect what the next flight path
shape would be, but when the flight path shape was variable,
the next flight path was unknown to the bats a priori. Previous

studies have shown that over repeated exposure to the same flight
environment bats develop stereotyped flight patterns (Barchi
et al., 2013), but it is unknown how the structure of full-flight
call patterns varies in response to unexpected changes in the
environment.

MATERIALS AND METHODS

Echolocation calls were recorded from big brown bats (E. fuscus)
in two experiments. Both experiments required bats to navigate
through complex obstacle arrays that were expected to have some
effect on the timing of their biosonar emissions. Experiment 1
was conducted between September 20 and November 27, 2013.
Experiment 2 was conducted between April 4 and June 3, 2014.
Timing of emitted biosonar sounds was measured and used to
evaluate echolocation pulse trains with the SSIMS algorithm
(Figure 2).

Animal Subjects
Four adult male big brown bats (E. fuscus), naïve to the laboratory
flight room in Experiment 1, were trained to fly through an
obstacle array (Figure 3). The bats were wild-caught (collecting
permits #2012-34 and #2013-32, Rhode Island Department of
Environmental Management). Bats were housed in a colony
room (22–24◦C, and 60–75% relative humidity) set to a 12-
h/12-h reversed dark/light cycle in order to perform diurnal
experiments on nocturnal bats. Bats ate enough larval Tenebrio
molitor to maintain a mass between 15 and 18 g and had free
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FIGURE 3 | Experiment 1 and Experiment 2 methods. Flight room schematic
for Experiment 1 (A). The back of the room is at the top of each diagram, and
the front of the room where the experimenter released the bat is shown at the
bottom of each diagram. The active flight volume was filled with rows and
columns of chains except for an obstacle-free flight corridor in the center of
the chain array. In Experiment 1, the open room had no chains, or the corridor
was straight and 100 cm, 70 cm, or 40 cm wide [A, adapted from Wheeler
et al. (2016)]. Arrows point to the wall where the bat was trained to land.
A typical echolocation call pattern in the 70 cm corridor (B) shows pulse
patterns while the bat navigated the chain array, followed by the terminal
buzz – a stereotyped, very fast call pattern that bats emit when landing or
intercepting prey. Before pulse intervals were analyzed, the terminal buzz was
excluded. Bats typically flew for 1.5–2.5 s to traverse the obstacle array before
landing. In Experiment 2, (C), the corridor was 40 cm wide and curved into 1
of 9 different configurations. Configuration 1 was identical to the 40 cm
condition in Experiment 1 and was the starting point for all other
configurations. The two movable crossbar joints (light gray) maintained
consistent 40 cm spacing throughout the full corridor length and were moved
40 cm either to the right or to the left of center to create curved corridors of
varying shapes, numbered 1–9. Experiment 2 consisted of two distinct
phases: the fixed phase and the variable phase (D). In the fixed phase, trials,
or flights through the obstacle array, repeated the same corridor configuration
up to 10 times in the same day for multiple days. In the variable phase, trials
(flights) through the array varied pseudo-randomly each day. Actual trials are
shown for experimental days (not consecutive days) 3, 7, 25, and 27.
Adapted with permission from Accomando et al. (2017).

access to vitamin-supplemented water (Poly-Vi-Sol, Enfamil)
refreshed daily. The same four bats were flown in Experiments
1 and 2. The study was carried out in accordance with the

recommendations of the Brown University Institutional Animal
Care and Use Committee (IACUC). The protocol was approved
by the Brown University IACUC.

Flight Room Configuration
All experiments were conducted in a customized flight room
(Figure 3A) that was insulated acoustically and electrically
from outside noise. The flight room was covered in acoustic
foam (Sonex “One” panels, West General LLC, San Jose, CA,
United States) to absorb 20–25 dB of the sound energy from
echolocation calls. An infrared camera (Photon 320, FLIR,
Billerica, MA, United States) was positioned to view the bats
in flight so that experimenters in the adjacent electronic
control room could monitor in real time while controlling the
sound-recording system. The flight room measured about 8 m
long × 4 m wide × 3 m high, and the active flight area was 7 m
long. Rows of multiple black plastic chains (Petrites et al., 2009;
Barchi et al., 2013; Knowles et al., 2015) were hung from crossbars
near the ceiling of the flight volume to act as quantifiable
surrogates for vegetation-like acoustic reflectors (Petrites et al.,
2009; Yovel et al., 2009). These chains spanned nearly the entire
floor-to-ceiling distance, and acted as a dense obstacle matrix
through which the bats could not fly except for an open flight
corridor.

In Experiment 1, the chains were configured as shown in
Figure 3. Rows of chains were spaced 20 cm apart, and chains
within a row were spaced 30 cm apart. Rows of chains were
added to either side of the 100 cm central corridor to create a
70- and a 40-cm-wide corridor. In this experiment, flight paths
down the central corridors were straight. Detailed analysis of the
results from this experiment (Wheeler et al., 2016) shows that
the proximity of the nearest obstacles had a significant effect on
call timing as measured by IPI and the ratio of pulse intervals
following and preceding each call (post-IPI/pre-IPI ratio).

In Experiment 2, chains throughout most of the flight room
were spaced identically to the 40 cm configuration in Experiment
1. The chains forming the central corridor were hung from
flexible, 1/4′′ diameter PVC pipes, which were secured to the
ceiling to maintain a consistent corridor width of 40 cm. Two
movable joints in these pipes were spaced 1.8 m apart and 90 cm
from the midpoint of the chain corridor. The shape of this
corridor was manipulated by positioning each joint in one of
three positions (central, left, and right), allowing for a total of
nine curved corridor configurations (Figure 3). Stoppers were
placed 40 cm from the ends of each corridor edge so that the
central joints would slide only 40 cm to either side, and the central
position was marked such that the experimenter could move
both joints to any of the three positions quickly and accurately.
This allowed for a change in corridor configuration between
each trial/flight while avoiding intrusion from chains located in
neighboring rows.

Experimental Procedure
Bats were released at the front of the room (Figure 3A) through
an opening in a net and flew across the room to land on
the back wall. As a control, bats also flew in the open room
with no chains. Bats were rewarded with a mealworm for each
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successful flight. A successful flight was defined as when the bat
navigated the obstacle matrix in its entirety without deviating
from the corridor or crashing into or landing on one of the
chains. Each bat was allowed a maximum of 10 flights per day.
All flights were performed in the dark to exclude visual cues
from the bats’ perception. A single long-wavelength (> 650 nm)
red light allowed experimenters to find bats after each trial.
In Experiment 1, bats flew down a 100-, 70-, and 40-cm-wide
straight corridor in the flight room. Figure 3B shows a typical
echolocation call pattern from the 70-cm-wide corridor. Notice
that the time between echolocation calls (IPIs) decreases as the
bat traverses the obstacle array and approaches the wall. Since
the wall is the bat’s landing target, and the distance to the wall
decreases as the bat approaches it, pulse intervals long enough
to allow echoes to return from the far wall become shorter. The
amplitude of the calls shown in Figure 3B increases because the
bat is approaching the microphone used to record echolocation
sounds. Echolocation calls in this example are primarily grouped
into doublets, or sonar sound groups having two calls within a
group.

Experiment 2 used the same 40-cm-wide corridor from
Experiment 1, but the path shape varied (Figure 3C). Experiment
2 was conducted in two broad phases: the fixed phase and
the variable phase. Figure 3D shows example trials from both
phases of Experiment 2. This experiment was designed this
way in order to determine whether expectation could influence
the timing of biosonar calls emitted by the bats. In the fixed
phase, bats could expect the same corridor configuration from
trial to trial; but in the variable phase, bats could not predict
the next corridor configuration after each trial. The hypothesis
was that SSIMS could differentiate predictable, expected (fixed)
flights from unpredictable, unexpected (variable) flights based on
biosonar sound timing patterns.

In the fixed phase, the configuration of the corridor did not
change from trial to trial. Bats flew down the same configuration
for up to 10 successful trials per day. First, the corridor was
fixed at 40 cm wide, and bats flew down a straight corridor
(shape 1) for 5 days. Then, bats were trained to fly down a
partially curved corridor (shape 2) for 1 day before flying down a
maximally curved corridor (shape 3) for 3 days. Next, bats were
trained to fly in shape 5 for 1 day, then a full S-curve (shape
6) for several days. In each of these conditions, the corridor
did not change from trial to trial within a day. A total of 470
trials or flights were successfully completed in the fixed phase,
while 2.9% (n = 14) of all attempted flights (N = 484) were
unsuccessful.

In the variable phase, the corridor configurations changed
from trial to trial. In this phase, the bat was transferred from the
colony room into the flight room in an acoustically insulated box
so that the bat could not scan the room upon entering and before
being released for flight. In preparation for releasing the bat
into the chain array, the experimenter held the bat in one hand,
and with the other hand, held a large piece of acoustic foam in
front of the bat until the moment of release. This precaution was
taken to prevent the bat from gathering pre-flight information
about the configuration of the chains. The variable phase was
conducted in two parts. In the first part, the corridor conditions

were pseudo-randomly varied between configurations 1, 3, and
6. In the second part, the corridor configuration varied pseudo-
randomly between all nine possible shapes (Figure 3C). The
randomization did not allow more than one repeat of the same
configuration from flight to flight. Both parts of the variable
phase were combined for analysis. Fewer flights were conducted
in configurations 2, 4, 5, 7, 8, and 9 than the other configurations,
so no comparison was made for these configurations in the fixed
versus variable phases. Shapes 4, 5, 7, 8, and 9 were only presented
in the variable phase. All corridor configurations were new to
the bats in Experiment 2 with the exception of shape 1. The
flight path shapes were pseudo-randomly presented to decrease
the probability that bats could predict which configuration they
would be required to navigate. A total of 379 successful trials were
recorded, and 2.8% (n = 11) of all attempted flights (N = 390)
were unsuccessful.

Sound Recording
Two electret ultrasonic microphones (MEMS SPM0404UD5,
Knowles Electronics, Itasca, IL, United States) were mounted on
custom preamplifier and high-pass filter boards that were located
on the far wall directly in front of the corridor exit. To minimize
backscatter from the wall, behind each microphone-preamplifier
unit was a square, 20-cm foam baffle. These microphones
detected sounds emitted by bats during flight (gray diamonds,
Figure 2). Outputs of the 2 channels were digitized (one PCIe-
424 with two accompanying HD192, all from MOTU, Cambridge,
MA, United States) at a sampling rate of 192 kHz and stored
as 16-bit wav files. All electronic wiring from microphones and
the infrared camera were fed through a small opening to an
adjacent control room. Experimenters in the control room began
the sound recording when instructed by the experimenters in the
flight room, and stopped recording when the bat landed on the
far wall as visualized in real time by the infrared camera. Using
this procedure resulted in sound recordings that included some
echolocation calls from before the bat entered the chain array,
and after the bat exited the chain array.

Pulse Interval Analysis
Sounds recorded by the microphone that had the best consistency
of echolocation signal amplitude throughout each successful
flight were analyzed for IPIs. The single-channel recordings used
in these experiments were always from one of two microphones
located in the center of the far wall. The higher amplitude
recording was chosen from the two possible microphones.
All wav files were truncated to include only in-flight sounds
(Figure 3B), which removed the terminal buzz and any pre-flight
calls. A custom program (MATLAB, MathWorks, Cambridge,
MA, United States) identified and low-pass filtered frequencies
below 35 kHz to exclude communication sounds, and high-
pass filtered frequencies above 50 kHz to include only ultrasonic
echolocation calls. The envelope of each sound was computed
using the Hilbert transform. The program extracted IPIs from the
time between peak amplitudes for successive sounds. To exclude
any echoes or sounds emitted outside of the flight, only IPIs
between 12 and 100 milliseconds were included in subsequent
analysis.
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SSIMS Algorithm Implementation
Details of the original SSIMS algorithm can be found in
a previous publication (Vargas-Irwin et al., 2015a), but are
summarized in Figure 2. The SSIMS algorithm embeds point-
process data into a high-dimensional pair-wise similarity space,
and then projects the data into a more compact (low-
dimensional) representation, which facilitates statistical analysis
as well as data visualization while still capturing the relationship
between individual data points. Originally designed for neural
data analysis, SSIMS uses the spike train metric proposed by
Victor and Purpura (1996) to quantify similarity (Victor, 2005).
The method evaluates differences in spike trains based on how
spikes in one train have to be shifted, deleted, or inserted to
make it precisely match another train (Figures 2A,B). This
cost function is similar to the “edit distance” or “Levenshtein
distance” used to compare letter strings or genetic sequences.
The algorithm can be directly applied to bat biosonar pulses by
treating each pulse as an action potential. This is equivalent to
treating each bat as a single neuron, and each flight down the
corridor as a spike train recorded from a neuron in response to
a stimulus.

The use of spike train metrics makes it possible to analyze
long time periods (on the order of seconds) while preserving
the fine temporal structure of call patterns. Note that only
the timing of each pulse is considered and not the spectral
characteristics. The cost of shifting a pulse by 20 ms was
equivalent to inserting and deleting a pulse (1/q = 20 ms). This
value for 1/q was arrived empirically – SSIMS achieved optimal
classification performance when 1/q = 20 ms. Different values of
q resulted in qualitatively similar results, but with slightly lower
classification values (data not shown). The high-dimensional
space defined by pair-wise distances is projected into a low-
dimensional representation t-distributed stochastic neighbor
embedding (t-SNE) (Figures 2B,C) (van der Maaten and Hinton,
2008). This method is well suited to this type of analysis because
it is based on pair-wise similarity estimates and explicitly seeks to
preserve the structure within local neighborhoods – in this case,
clusters of flights with similar call patterns. A single point in the
resulting SSIMS projection represents the timing of echolocation
pulses recorded during a specific flight (Figure 2C). The distance
between points represents the degree of similarity between
the call patterns they represent. Two identical call patterns
correspond to the same point in this space; the more different
they are, the farther apart they lie in the SSIMS projection.
Projecting the data into a low-dimensional space makes it easy to
visualize the similarity between different experimental conditions
in a way that also displays information about each individual
flight. Dimensionality reduction also increases the density of
the data (relative to the dimensionality of the space), making
it easier to characterize data distributions and perform pattern
recognition (i.e., classification).

RESULTS

The SSIMS approach (Figure 2) categorized streams of bat
echolocation pulses (Figure 1) from individual flights in two

experiments (Figure 3). Both experiments were conducted in
a flight room with plastic chains acting as an obstacle array.
Experiment 1 used three different corridor widths to test the effect
of obstacle proximity on biosonar sound patterning. Experiment
2 tested the effect of the bats’ expectation on call patterns using
predictable (fixed) and unpredictable (variable) corridor shapes.
See Supplementary Infrared Video for an example flight down the
straight 40 cm corridor.

Experiment 1
In Experiment 1, SSIMS analyzed sequences of pulses from
individual flights, and the resulting SSIMS plots (Figures 2C, 4B)
allowed clusters of points (call sequences or flights) to be
classified as belonging to the open room, and the 100-, 70-
, and 40-cm-wide corridors in the obstacle array. Calls from
all bats were projected onto a single common similarity space
(dotted line in Figure 4B) such that the representation of each
call was calculated using similarity estimates across the entire set
of recordings. Raster plots in Figure 4A display data from one
example bat to illustrate that bats emitted more calls with shorter
IPIs (histograms on the right) as obstacle array clutter increased
and flight corridor width decreased. Histograms in Figure 4A
show that the distribution of IPIs shifted toward shorter time
intervals with decreasing corridor width, indicating that more
calls were made in groups.

We quantified the differences between call patterns using a
nearest-neighbor (NN) classifier implemented using leave-one-
out cross validation. The NN classifier was chosen because it is
designed to capture the local structure of complex data patterns,
making it well suited to interpret data processed using SSIMS
(which is designed to preserve exactly this kind of relationship).
Classification was performed using 10D SSIMS projections.
Asymptotic performance was achieved with between 2 and 6
dimensions for different bats (see Supplementary Figure 1). NN
classification correctly assigned flights (N = 839) with 70–89%
accuracy depending on the individual bat (Figure 4B).

In Experiment 1, all bats decreased the mean IPI as more
obstacles were added to the flight room (see Table 1). Comparing
the open room flights to the 40-cm-wide corridor flights, bats
decreased the length of the mean IPI by 29–62% (a decrease of
13–44 ms), depending on the bat.

Comparison of Experiment 1 SSIMS Analysis with
Previous Analysis
Previous analysis of the Experiment 1 dataset (Wheeler et al.,
2016) looked at IPI distributions, sonar sound grouping as
defined by Kothari et al. (2014), and the bimodal distribution of
IPI ratio, defined as the ratio of the interval of time following a
call to the interval of time before that same call (post-IPI/pre-IPI)
(Wheeler et al., 2016).

Experiment 1 previous IPI analysis compared to SSIMS
The IPIs between calls emitted by all four bats in the three
corridor widths were compared using a generalized linear
mixture model (GLMM). This analysis showed significant
differences between the 40 and 70 cm corridor (p < 0.0001) and
40 and 100 cm corridor (p < 0.0001). However, no significant
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FIGURE 4 | Similarity analysis reveals environment-dependent variation in call
patterns. Raster of all recorded echolocation calls (points) over all of Bat #3’s
flights (rows) (A, left panel). Inter-pulse interval (IPI) histograms (A, right panels)
for Bat #3 in four conditions: open room (black), 100 cm corridor (blue), 70 cm
corridor (green), and 40 cm corridor (orange). IPIs were shorter and more calls
were emitted with increasing clutter. Similarity plots separated by bat are
shown in (B). Each point represents a flight (over the same time interval
presented in A), and the distance in the 2D space represents the estimated
similarity between the call patterns. The similarity space was generated using
calls recorded from all bats from 839 flights total. Nearest-neighbor (NN)
classification results (10D similarity estimates) were calculated individually for
each bat using leave-one-out cross validation. In all cases, classification
exceeded expected chance levels (the upper limit of the 99% confidence
interval obtained empirically from 1000 random label permutations was 46%).
Dotted lines show that all bats are plotted in the same similarity space for
ease of comparison. Adapted with permission from Accomando et al. (2017).

differences were found between mean IPI in the 70 and 100 cm
conditions. The clustering of green points (70 cm) and blue
points (100 cm) in the SSIMS projections in Figure 4B shows
that using the entire timing pattern enhances the visibility of

TABLE 1 | Mean inter-pulse interval (IPI) in milliseconds for Experiment 1 flights.

Open room 100 cm 70 cm 40 cm

Bat 1 Mean (SD) 52 (41) 40 (18) 39 (17) 36 (17)

Bat 2 Mean (SD) 70 (44) 32 (15) 29 (13) 26 (13)

Bat 3 Mean (SD) 44 (52) 39 (21) 37 (16) 31 (12)

Bat 4 Mean (SD) 41 (70) 31 (16) 34 (12) 24 (11)

differences between these two conditions that the mean IPI
comparison does not capture. The GLMM revealed that the bats
decreased their IPIs as they approached the wall at different rates
depending on corridor width (p < 0.0001 for all comparisons),
and part of this dependence was the result of significantly
different IPIs from the beginning of the flight (p < 0.0001, 40 cm
compared to 100 and 70 cm) (Wheeler et al., 2016). These two
features of temporal differences between corridor widths were
likely captured by the SSIMS method.

Experiment 1 previous sonar sound group analysis
In the prior analysis of Experiment 1 data, sonar sound groups
[defined as having a stable within-group IPI, 5% tolerance, and
a between-group IPI at least 1.2 times greater than the within
group IPI (Kothari et al., 2014)] were compared across corridor
widths using a Chi-square analysis. Sonar sound group analysis
found singles, doublets (groups of 2 sounds), triplets (groups of 3
sounds), and quadruplets (groups of 4 sounds). No statistically
significant difference was found in the proportion of sounds
categorized into these groups depending on corridor width
(Wheeler et al., 2016). However, across bats, trends revealed an
increase in the percentage of singles, triplets, and quadruplets as
the corridor width narrowed. The percentage of doubles showed
the opposite trend – there was a decrease in the proportion of
doubles as the corridor width became narrower.

The sonar sound group analysis showed that in the 40 cm
corridor, bats used singles 44.6% of the time, doubles 37% of the
time, triplets 16% of the time, and quadruplets 2.4% of the time.
IPIs within sonar sound groups and between sonar sound groups
became shorter with decreasing corridor width. The increased
percentage of calls categorized as singles in the 40 cm corridor
was not expected because it is thought that bats increase sonar
sound grouping behavior in clutter, which logically would result
in a decrease in “single” calls – those separated by relatively
long time intervals before and after. However, this extremely
dense obstacle array with very close proximity obstacles may
have resulted in sound patterns that impeded the separation of
sonar sound groups using the Kothari et al.’s (2014) method, thus
resulting in the observed increase in singles.

Although the SSIMS method does not directly address the
question of how sonar sound group parameters vary in specific
circumstances, SSIMS uses the information contained in the
timing patterns therein to estimate call pattern similarity over the
entire flight time.

Experiment 1 previous IPI ratio analysis
To circumvent the problem of imposing absolute limits on what
defines a sonar sound group, our previous study used the ratio
of post-call IPI to pre-call IPI, or IPI ratio. The IPI ratio is a
simple metric that can quickly estimate whether a call is likely a
part of a sonar sound group. Previously, we used a finite mixture
model (FMM) to determine how IPI ratio depended on corridor
width. We found that the IPI ratio was a bimodal distribution
where one of the distributions depended on corridor width, and
the other did not (Wheeler et al., 2016). This suggests that some
calls functioned to avoid obstacles, whereas others had some
other function such as providing contextual information about
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the rest of the room, for example, the distance from the back
wall.

Summary of Experiment 1 Results
In summary, the GLMM of IPIs in Experiment 1 did not
show differences in mean IPI between the 70 and 100 cm
corridor, though SSIMS clearly plotted these flights into different
clusters (Figure 4B), and the NN method classified between
70 and 89% of flights into the corridor width accurately
depending on bat. The sonar sound group analysis did not
show significant differences between the proportions of singles,
doubles, triples, and quadruples as a function of corridor width.
The sound group analysis allowed us to determine that the
IPIs shortened both within and between sound groups as the
corridor width became narrower. SSIMS analysis did not provide
specific information about sonar sound groups, but they certainly
impacted the overall sound patterns that SSIMS plotted and the
NN analysis categorized. Finally, the IPI ratio analysis suggested
that the temporal pattern of biosonar sounds emitted by bats is
determined by the nearest obstacle proximity and other unknown
factors.

SSIMS Analysis of within and between
Bat Variability in Experiments 1 and 2
The recorded call sequences revealed that two pairs of bats –
Bats 1 and 3, and Bats 2 and 4 – were more alike than to
bats in the other pair (Figure 5). The differences in the call
patterns employed by different bats were evaluated by comparing
distributions of pair-wise SSIMS distances over all flights between
and within bats. Statistical significance was assessed using a
Kruskal–Wallis (KW) test, while the effect size was summarized
using a ratio of SSIMS distance medians (distance between
biosonar sound sequences – points – in similarity space) (B/W
ratio). For example, a B/W ratio equal to 2 indicates that
the normalized median distance between call patterns across
different bats was twice of that observed for call patterns for
the same bat. Figure 5 shows that across all bats, the B/W ratio
was 1.27 for Experiment 1 and 2.70 for Experiment 2. Although
both values are statistically significant (KW p < 0.0001), the
more than twofold difference in B/W ratio suggests an increase in
bat-specific call pattern differences with increasing task difficulty.

To test whether within bat variability and between bat
variability were significantly different between the two
experiments, we performed a KW test, and found that normalized
within bat distances for Experiment 2 were significantly smaller
than in Experiment 1 (KW p < 0.0001). This result suggested that
bats used more stereotyped call patterns in Experiment 2, which
is likely because of the consistent 40 cm corridor width in this
experiment. Additionally, the normalized between bat differences
were significantly greater for Experiment 2 (KW p < 0.0001).
This provided statistical support of our assertion that there were
increased bat-specific differences in Experiment 2.

Pairs of bats were also analyzed for individual similarities,
and only one pair was found not to be significantly different
(KW p > 0.05): bat 2 and bat 4 in Experiment 1, suggesting
that this pair of bats emitted very similar sound patterns for this
experiment. All other bat pairs showed statistically significant

FIGURE 5 | Effect of individual bat on temporal pattern similarity for
Experiments 1 and 2. Comparison of normalized flight-by-flight pair-wise
SSIMS distance within (black outline) and between (gray) bats for Experiment
1 (A) and Experiment 2 (B). Triangles indicate medians. Insets display the
SSIMS projections, colored by bat (red = Bat 1, green = Bat 2, blue = Bat 3,
and black = Bat 4). There was a significant difference in medians for between
and within bats comparisons in both experiments (KW p < 0.0001). The ratio
of between bats to within bats median SSIMS distance (B/W) is reported at
the top of each plot. The B/W ratio is a measure of the effect size. The effect
was more pronounced for Experiment 2: The ratio of between to within bat
call pattern distances was 2.70 for Experiment 2 compared to 1.27 for
Experiment 1. The normalized between-bat distances were significantly higher
(KW p < 0.0001) for Experiment 2 (comparing the two gray distributions in A
and B). Normalized within bat distances for Experiment 2 are significantly
smaller than in Experiment 1 (KW p < 0.0001). Adapted with permission from
Accomando et al. (2017).

differences for both Experiment 1 and Experiment 2 (KW
p < 0.0001) (see Supplementary Figure 2).

Comparison of Experiment 1 40 cm
Flights with Experiment 2 Flights
Tables 2–4 address the differences in mean IPI, mean number of
calls per second, and the average flight velocities in the 40-cm-
wide straight corridor during Experiment 1 versus the fixed and
variable phases of Experiment 2. The columns in Tables 2–4 are
organized from left to right in the chronological order in which
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the experiments were conducted. The trends show that bats
emitted calls having progressively longer mean IPIs (Table 2),
fewer calls per second (Table 3), and slower flight speeds (Table 4)
in the 40-cm-wide corridor as the experiments progressed.
Between the straight 40 cm corridor flights in Experiment 1 and
the variable phase of Experiment 2, bats decreased their average
flight velocities by 11–35% depending on the individual bat (see
Table 4). This could explain how bats navigated through more
complex, unpredictable path shapes using fewer calls per second
and longer mean IPIs. However, gross differences in mean IPI,
calls/sec, and flight velocity between the fixed and variable phases
of Experiment 2 were not readily apparent (see Tables 2–4).
It could therefore not be determined from these parameters
alone whether expectation had any effect on bat biosonar call
patterning.

SSIMS Analysis of the Effect of
Expectation on Biosonar Call Patterns
To evaluate whether expectation can impact the timing of active
sonar probing by bats, SSIMS was used to assess call patterning
in two phases of Experiment 2. In order to compensate for the

TABLE 2 | Mean inter-pulse interval (IPI) in milliseconds for 40 cm corridor flights.

Experiment 1 Experiment 2

40 cm wide
straight corridor

Fixed phase Variable phase

Bat 1 Mean (SD) 36 (17) 43 (22) 41 (21)

Bat 2 Mean (SD) 26 (13) 31 (12) 33 (12)

Bat 3 Mean (SD) 31 (12) 35 (14) 37 (14)

Bat 4 Mean (SD) 24 (11) 27 (10) 27 (10)

TABLE 3 | Mean number of calls per second in 40 cm corridor flights.

Experiment 1 Experiment 2

40 cm wide
straight corridor

Fixed phase Variable phase

Bat 1 Mean (SD) 26 (4) 24 (2) 25 (2)

Bat 2 Mean (SD) 40 (3) 33 (3) 30 (2)

Bat 3 Mean (SD) 32 (7) 30 (2) 27 (2)

Bat 4 Mean (SD) 42 (3) 39 (3) 38 (2)

TABLE 4 | Mean average flight velocity∗ in meters per second during 40 cm
corridor flights.

Experiment 1 Experiment 2

40 cm wide
straight corridor

Fixed phase Variable phase

Bat 1 Mean (SD) 3.8 (0.9) 3.1 (0.5) 3.0 (0.4)

Bat 2 Mean (SD) 3.7 (0.8) 2.6 (0.4) 2.4 (0.2)

Bat 3 Mean (SD) 3.4 (0.7) 3.3 (0.6) 3.0 (0.2)

Bat 4 Mean (SD) 3.7 (0.5) 3.2 (0.4) 3.2 (0.3)

∗Flight velocity was averaged across each entire flight, and then, the mean of all
flights in each condition is reported.

greater variability in call patterns across bats for Experiment 2,
(see Supplementary Figure 2) individual similarity spaces were
generated for each subject such that a call pattern was represented
in terms of the relationship to calls emitted by the same bat.
In this experiment, the same four bats from Experiment 1 flew
down 40-cm-wide corridors of varying shapes (Figure 3). In
the fixed phase of Experiment 2, the bats flew down corridors
having the same configuration from trial to trial. In the variable
phase of Experiment 2, the corridor configuration was pseudo-
randomly changed from trial to trial (see Figure 3D and see
section “Materials and Methods”).

To determine whether the bats’ expectation of the corridor
shape had any effect on echolocation behavior, the flights
down the straight and S-curved corridors (shapes 1, 3, and
6, see Figure 3C) in the fixed phase and variable phase were
compared. We evaluated differences between the fixed and
variable conditions using a NN classifier. Fixed versus variable
classification results were inconsistent for the S-curve shapes
(exceeding chance in only 2 out of 8 comparisons), but were
consistently above expected chance levels in the straight corridor
configuration for all bats. Figure 6 shows that (1) during fixed
straight (shape 1) flights bats produced stereotyped call patterns
different from the curved corridor flights; and (2) that flights
down the straight corridor during the variable phase were more
like curved corridor flights than fixed phase straight corridor
flights. In other words, unexpected straight flights were more like
curved flights than expected straight flights.

The absence of clustering for all variable flights from all fixed
flights (stars and dots, respectively, in Figure 6) suggests that
expectation, or the ability of the bat to predict the flight path
shape, did not determine overall temporal patterns emitted in the
chain array. Rather, SSIMS plotted clusters of straight flights in
the fixed phase apart from all other flights. Our results showed
that the bats altered their call patterns in a similar way to address
(1) more complex flight paths and (2) unpredictable flight paths.
This finding suggests that bats adopted a more conservative
(careful) strategy whenever a more challenging or unknown
situation was presented.

IPI Ratio Distribution Analysis
To identify which features the SSIMS analysis may have detected
to discriminate fixed versus variable straight flights but not fixed
versus variable curved flights, the post-IPI to pre-IPI ratios and
IPI distributions were plotted (Figure 7). In the straight corridor
configuration (red), bats emitted a greater proportion of calls
having a post-IPI/pre-IPI ratio between 1.5 and 2. Arrows in
Figure 7B show where this is visible on the histograms. This
ratio value indicates that the interval of time following these
calls was roughly 1.5–2 times longer than the interval preceding
the calls, which means that they likely represent the last call
in a sonar sound group (Kothari et al., 2014; Wheeler et al.,
2016). Figure 7 indicates that the bats in this experiment used
more sonar sound groups in unpredictable learned surroundings
(variable, straight path) than predictable learned surroundings
(fixed, straight path). The inability of SSIMS to reliably categorize
fixed versus variable curved flights (Figure 6), and the absence of
visible differences in the IPI ratios for these flights (Figures 7C,D)
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FIGURE 6 | Effect of bat expectation on echolocation behavior. (A–D) Each star or dot represents a flight where the corridor configuration was straight (orange)
(Configuration 1 in Figure 2), an S-curve (gray) (Configuration 6), or a reverse-S-curve (white with black outline) (Configuration 3). Dots represent flights from the fixed
phase of Experiment 2, where the bats (A = Bat #1, B = Bat #2, C = Bat #3, D = Bat #4) each flew down the same corridor for 10 trials per day for several days.
Stars represent flights that occurred in the variable phase of Experiment 2, where the corridor configuration was variable (i.e., unexpected) and changed
pseudo-randomly from trial to trial. Flights in the unexpected straight-corridor (orange stars) had echolocation pulse trains that were classified as more similar to
flights in the curved corridors than expected flights in the straight corridor (orange dots). (E) Histogram showing nearest-neighbor (NN) percent correct classification
for each configuration and each bat (performed on 10D similarity estimates using leave-one-out cross validation). Dotted line represents the upper 95% confidence
limit of the chance distribution (obtained empirically from 10,000 random label permutations). Histogram bars that cross the dotted line represent successful
categorization of whether the flight occurred in the fixed or variable phase of Experiment 2. Adapted with permission from Accomando et al. (2017).
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FIGURE 7 | Higher probability of sonar sound grouping in unexpected straight
flights. Without imposing limits on what constitutes a sonar sound group, one
can look at the probable grouping of sounds by calculating the IPI ratio, or the
pre-call time interval divided by the post-call time interval
(Ratio = pre-IPI/post-IPI) (A) (Wheeler et al., 2016). Histograms in B–D show
the proportions of IPI ratios for the same flights as in Figure 6. The fixed
phase or expected flights are plotted in the left panels while the variable phase
unexpected flights are plotted on the right. Straight corridor (shape 1) flights
are in red (B), the reverse-S-curve flights (shape 6) are plotted in white, and
the S-curve flights (shape 3) are plotted in gray (D). In the straight corridor
configuration (B), bats emitted a greater proportion of calls having a
post-IPI/pre-IPI ratio of 1.5–2 (arrows). The interval of time following these
calls is roughly 1.5 times longer than the interval preceding these calls, which
suggests that these calls represent the last call in a sonar sound group. The
increase in proportion of these calls from the fixed to the variable phase
indicates that bats use more sonar sound groups in unpredictable
surroundings.

provides evidence that memory plays a more important role than
expectation in biosonar sound patterns emitted by big brown
bats.

The SSIMS method ignores sonar sound groups entirely, and
provides a clear visualization of the magnitude of the difference
between call patterning in the fixed and variable flights as
compared to the IPI ratio histograms (compare Figures 6, 7).

DISCUSSION

The results of the SSIMS analysis (1) confirm that the bat’s
echolocation call sequences are influenced by the proximity
of obstacles in the surrounding environment (Petrites et al.,
2009; Wheeler et al., 2016), (2) demonstrate that individual bats’
strategies for navigating become more distinct as the difficulty of
the task increases, and (3) demonstrate that previous training in
the flight path influences temporal patterning of bat echolocation
calls.

Figure 4 shows that the SSIMS algorithm was able to use
intrinsic information of the echolocation call patterns from
individual flights in the first experiment (Experiment 1, Figure 3)
to predict in which of the three conditions the bats were flying.
These results are consistent with previous findings that bats
change echolocation pulse timing in response to obstacles or
environmental clutter (Petrites et al., 2009; Moss and Surlykke,
2010; Falk et al., 2014; Kothari et al., 2014; Wheeler et al.,
2016). Furthermore, this work provides confirmation that the
overall temporal patterning of flights in close-proximity clutter is
dependent upon the distance to the obstacles (Petrites et al., 2009;
Kothari et al., 2014; Wheeler et al., 2016). The SSIMS method and
subsequent NN classification showed differences between the 70
and 100 cm corridor flights, while a GLMM of the mean IPIs was
unable to do so (Wheeler et al., 2016).

Significant differences between individual bats were found in
both experiments. Figure 5 shows the difference between mean
normalized SSIMS distance between bats was significantly greater
than within bats for both tasks. However, this distance more than
doubled for Experiment 2. Since this experiment required more
complex aerial maneuvering through curved flight corridors of
only a 40 cm width, we conclude that the increase in between-bat
SSIMS distance reflects increased bat-specific differences with a
rise in task complexity or difficulty.

Figure 6 shows that previous experience in the flight path
influenced biosonar timing in Experiment 2. In the fixed phase of
Experiment 2, call patterns emitted by bats flying in the curved
corridors clustered apart from those emitted in the straight
corridor. In the variable phase, unexpected straight corridor
flights clustered more closely with expected curved corridor
flights than expected straight corridor flights. This suggests
that, although flights down the straight corridor were identical,
navigating them was more difficult for the bats when they were
not predictable or expected. Call patterning was influenced both
by the shape of the corridor (curved or straight) and by the
opportunity the bats had to predict their environment before
flights. This is consistent with a previous finding that big brown
bats change their echolocation emission patterns in response to
a randomly positioned barrier earlier when the presence of the
barrier was unexpected than when it was expected (Knowles
et al., 2015). Past research has also shown that bats tracking a
moving target while sitting stationary on a platform exhibited
distinctive call pattern changes when tracking a target that moved
unpredictably compared to predictably (Kothari et al., 2014).
The absence of reliable SSIMS clustering for expected versus
unexpected flights in the curved corridor shapes, shown in
Figure 6, combined with the fact that bats were not trained
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as extensively in these path shapes, suggests that memory or
experience was more important than expectation as a cognitive
factor. If expectation alone caused the differences seen in
the variable versus fixed straight corridor condition, then this
effect would also be present for curved corridor flights; but
it was not consistently observable for those path shapes (see
Figure 6).

Together, these studies show that big brown bats anticipate
the challenges of a familiar environment and adapt their
echolocation pulse patterning to accommodate unexpected
changes. The reliability of SSIMS in detecting differences in the
echolocation pulse patterns by corridor width (Figure 4), and
the comparatively less reliable classification of pulse patterns by
expectation (Figure 6) showed that the proximity of the nearest
obstacles – or physical nature of the environment – was more
predictive of pulse patterning than cognitive state.

Advantages and Limitations of the
SSIMS Method
The advantage of using SSIMS to analyze temporal patterning
of bat echolocation sounds across a flight is that the effect of
an environment on the timing of vocalizations can be visualized
easily. The major limitations of this method for such analyses
are as follows: (1) other aspects of the echolocation signal
such as duration, frequency spectra, and beamform are not
incorporated into the similarity estimates; and (2) finer temporal
details about sonar sound group production, while included in
the analysis, are not explicitly reported on the SSIMS space
projection.

SSIMS representations are useful in determining the degree
to which echolocation call sequences are similar or different.
However, SSIMS alone cannot pinpoint individual timing
features such as sonar sound groups, flight velocity, IPIs, and IPI
ratios. SSIMS analysis also ignores all other adaptable features of
biosonar pulses, including frequency and amplitude.

SSIMS can provide a valuable initial screening such that
further examination of individual features that may contribute
to SSIMS distances is more directed. The outline of the previous
analysis of Experiment 1 (see section “Results”) exemplifies the
arduous process of finding meaningful pulse timing differences
using other methods. Using SSIMS, biosonar sound sequences
from an entire flight event can be represented in a single
point, and easily compared to other flights on the same plot.
This ease of visualization is advantageous because it reveals
which comparisons of individual timing features might be most
interesting.

Comparison with Other Analysis
Methods
The advantage of SSIMS over other methods such as linear mixed
effects models (Falk et al., 2015; Wheeler et al., 2016), Markov
Chain analysis (Petrites et al., 2009; Kloepper et al., 2014), and
others, that it requires no boundaries or binning and very few
assumptions. It preserves fine temporal structures (millisecond
scale) even over relatively long time scales (second or minute
scale).

Perhaps the greatest advantage of SSIMS is that the resulting
scatter plots in SSIMS space are easy to interpret visually. For
example, the SSIMS plot in Figure 6 clearly shows that expected
straight corridor flights are different from unexpected flights in
the same path. The Figure 7B histogram shows that the post-
to pre-IPI ratio between 1.5 and 2 increases when the straight
corridor flights are unexpected. Figure 7B does not illustrate
differences in IPI ratio distributions for the curved flight paths.
While Figure 7 shows an example of what types of differences
SSIMS is detecting, the degree to which pulse patterning changes
is more easily visualized in the similarity plot.

Past research has diligently characterized individual
echolocation sound parameters (duration, mean IPI, repetition
rate, starting and ending FM sweep frequencies, etc.,) that
adapt to obstacle avoidance or target-detection conditions.
Take, for example, sonar sound groups. Sonar sound groups,
or strobe groups, are loosely described as a group of sounds
having short time intervals between calls within the group, and
longer time intervals delineating the group (Moss et al., 2011;
Kothari et al., 2014). More specifically, these groups have been
mathematically defined as having at least a 20% longer interval
between groups (“island criterion”), and no more than 5%
within-group variability (“stability criterion”) (Kothari et al.,
2014). While useful for some classification purposes, these
limitations are arbitrary, and have made it difficult to compare
pulse interval patterning across experiments. This is partly
because IPI values alternate between long and short to define
sound groups, and these absolute time measurements appear to
be scaled proportionally to the environment (Moss et al., 2006,
2011; Petrites et al., 2009; Aytekin et al., 2010; Kothari et al.,
2014; Wheeler et al., 2016). This proportionality extends over a
wide enough range in big brown bats that the interval categories
of short versus long overlap. Thus, using set time interval sizes or
too narrow a range of size ratios to define sound groups does not
fully capture the bat’s behavior. In contrast, SSIMS can determine
whether a particular environment or condition resulted in an
observed change in echolocation call timing, without a priori
restrictions.

CONCLUSIONS AND FUTURE
DIRECTIONS

The research presented here (1) demonstrates the utility of SSIMS
for analyzing echolocation sound sequences, and (2) implements
SSIMS to evaluate changes in biosonar patterns due to changing
environmental complexity, and as a result of the bats’ expectation
of the flight path through the obstacle array. The SSIMS
method streamlines efforts to quantify biosonar behavior because
it provides simple visualization and flexible quantification of
temporal pattern differences. The SSIMS method was developed
to analyze neural spike timing patterns, and it is a powerful,
unbiased approach for comparing neural data (Vargas-Irwin
et al., 2015a). In fact, the SSIMS method is a general technique
widely applicable to all kinds of time-series data.

No direct quantitative comparisons between SSIMS and other
classification methods were made in this study. Most other
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classification methods used to categorize biosonar sounds in
bats first extract individual call parameters, such as call duration
and frequency content, from high quality sound recordings.
Future experiments might analyze a wide array of echolocation
recordings (such as pulse trains recorded from different bat
species) to compare SSIMS classification performance against
other methods that require more information than timing
patterns alone. For example, researchers have used discriminant
function analysis (DFA) and artificial neural-network analyses
to classify echolocation calls based on individual call parameters
(duration, frequency, sweep rate, repetition rate, etc.,) (Parsons
and Jones, 2000; Luís et al., 2016). Future work might compare
SSIMS classification with DFA.

Expanding the cost function to include other parameters
(spectral components, for example) could potentially improve
SSIMS classification. Comparing the results obtained using
different cost function metrics could then be used to assess
the relative importance of different signal properties. SSIMS
might also be employed to compare selected segments of
longer echolocation pulse sequences. For example, although
the current study analyzed flights as a whole, the stereotyped
search, approach, and terminal phases of insect hunting
(see section “Introduction”) (Griffin et al., 1960) can be
delineated and selectively compared using this method. SSIMS
may be an especially beneficial tool when applied to field
recordings.

There has been particular interest in the terminal buzz emitted
by echolocating bats (Figure 3B) (Geberl et al., 2015; Hulgard
and Ratcliffe, 2016), and pulse-packets or burst-pulses emitted
by dolphins (Finneran, 2013; Finneran et al., 2014; Luís et al.,
2016). These behaviors are related to prey capture and long-
distance target detection, respectively. It would be interesting to
test whether SSIMS is predictive of behavioral outcomes, or can
identify different species. For example, SSIMS could be used to
discriminate terminal buzzes recorded from successful captures
with unsuccessful ones, and an estimate of the number of prey
eaten could be obtained without the need for video confirmation.
In a study with wild echolocating dolphins, researchers found

that the repetition rate was a reliable indicator of signal type
for call classification analysis (Luís et al., 2016). Repetition rate
averages out the fine temporal information that is present in these
complex call patterns, and SSIMS may be an even more powerful
tool for predicting behaviors of animal recorded vocalizing in
the field. Since SSIMS used only the timing information between
calls, high-quality recordings of the sound spectrum would not
be required for classification purposes. This could lead to an
increased ability of field bio-acousticians to characterize even
crude sound recordings in the absence of concurrent visual data.
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