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Ineffective reduction of functional connectivity between the default mode network (DMN)
and frontoparietal network (FPN) during cognitive control can interfere with performance
in healthy individuals—a phenomenon present in psychiatric disorders, such as
depression. Here, this mechanism is studied in healthy adolescents by examining
gender differences in task-regressed functional connectivity using functional magnetic
resonance imaging (MRI) and a novel task designed to place the DMN—supporting
self-referential processing (SRP)—and FPN—supporting cognitive control—into conflict.
Compared to boys, girls showed stronger functional connectivity between DMN and
FPN during cognitive control in an SRP context (n = 40; boys = 20), a context that also
elicited more errors of omission in girls. The gender difference in errors of omission
was mediated by higher self-reported co-rumination—the extensive and repetitive
discussion of problems and focus on negative feelings with a same-gender peer—by
girls, compared to boys. These findings indicate that placing internal and external
attentional demands in conflict lead to persistent functional connectivity between FPN
and DMN in girls, but not boys; however, deficits in performance during this context
were explained by co-rumination, such that youth with higher co-rumination displayed
the largest performance deficits. Previous research shows that co-rumination predicts
depressive symptoms during adolescence; thus, gender differences in the mechanisms
involved with transitioning from internal to external processing may be relevant for
understanding heightened vulnerability for depression in adolescent girls.
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INTRODUCTION

The adolescent period is characterized by pronounced
maturation of social, cognitive and biological processes that lead
to distinct developmental outcomes for girls and boys. These
outcomes include normative, as well as psychopathological
gender differences, like higher rates of depression in adolescent
girls compared to boys. Understanding normative developmental
gender differences provides a context through which gender
differences in psychopathology may be interpreted. A changing
social landscape informs the development of adolescent
self-referential processing (SRP), or the act of relating
information to the self, to re-shape self-identity (Coleman
and Hendry, 1990). Gender differences in the types of social
experiences boys and girls will encounter (Rose and Rudolph,
2006) may lead to gender differences in SRP that differentially
inform self-identity. Moreover, increasing autonomy and
academic demands help shape maturation of adolescent
cognitive control (Luna, 2009). Although gender differences
in cognitive control performance appear to be minimal (Gur
et al., 2012; Satterthwaite et al., 2015), there are significant
gender differences in neural activation during cognitive control
functioning (Mueller, 2011). Importantly, the interaction
between neural networks that support SRP (i.e., default mode
network, DMN) and cognitive control (i.e., frontoparietal
network, FPN) are disrupted in certain psychiatric disorders,
including major depressive disorder (MDD; Wagner et al., 2006,
2015; Bartova et al., 2015), which disproportionately affects
girls and young women (Hedden et al., 2015). The intersection
of SRP and cognitive control during healthy adolescence has
not been studied but is relevant for comprehending normative
developmental baselines and uncovering potential neural
mechanisms that function as gender-specific vulnerability
factors for MDD.

A developmental increase in valuation of peers and social
feedback during adolescence informs self-identity formation
(Nelson et al., 2005; Steinberg, 2005). Compared to boys,
girls place a higher value on social goals, report stronger
same-gender peer attachments and are rated as more prosocial
(Rose and Rudolph, 2006). Studies of healthy development
indicate that adolescent social behavior and self-identity are
shaped by peer feedback (Harter et al., 1998; Harter, 1999;
Berzonsky and Adams, 2003; Pfeifer et al., 2009). Indeed,
neuroimaging research suggests that adolescents may reflexively
incorporate perceived opinions of others into their direct
evaluation of self, as indicated by activation of perspective-
taking brain regions during SRP (Pfeifer et al., 2009). SRP
is typically characterized by activation of medial prefrontal
cortex (mPFC) and posterior cingulate cortex (PCC; Gusnard
et al., 2001; Kelley et al., 2002), key nodes of the DMN
(Raichle, 2015). Moreover, perceived social evaluations of
close peers during SRP elicits robust activation of the ventral
striatum, in addition to the mPFC (Jankowski et al., 2014).
Although adolescent girls are more prosocially oriented than
boys (Rose and Rudolph, 2006), they also display more
social-evaluative concern (Rudolph and Conley, 2005), which
may be reflected in their self-evaluations, as they reflexively

incorporate perceived opinions of their peers. Therefore, not
only it is important to assess prosocial orientation when
studying gender differences in adolescent SRP, but also to
understand potentially maladaptive patterns of engaging with
peers and how adolescents perceive themselves (see ‘‘Participant
Characterization’’ section).

In addition to the development of social cognition and
self-identity formation, cognitive control processes undergo
substantial maturation during adolescence, in part due to the
protracted rates of development of parietal and prefrontal
cortices (Tamnes et al., 2017) that likely reflect synaptic
pruning and neuronal specialization (Selemon, 2013), as
well as intracortical myelination (Seldon, 2007). The frontal
and parietal cortices, which make up the FPN, are the most
consistently reported cortical regions supporting cognitive
control (Cole and Schneider, 2007; Dosenbach et al., 2008).
Although previous work suggests a lack of gender difference in
cognitive control performance (Gur et al., 2012; Satterthwaite
et al., 2015), studies report gender differences in neural
activation during affectively laden cognitive control tasks.
For example, studies examining brain activation during
cognitive control in negative affective contexts have found
that adolescent and adult males display stronger activation
in the FPN than females (Koch et al., 2007; Cservenka et al.,
2015). Therefore, gender differences in cognitive control
brain response may only emerge in affective and/or salient
contexts.

The interaction of SRP and cognitive control has not been
studied in healthy adolescents; however, the interaction of
the networks that support SRP and cognitive control are well
described. The DMN and FPN are neural networks that support
distinct functions of the brain, characterized by inwardly- and
outwardly-directed attention, respectively (Greicius et al., 2003;
Fox et al., 2005; Fransson, 2005; De Luca et al., 2006). During
effortful cognitive control, these networks become segregated, or
anti-correlated, in order to shift cognitive resources from DMN-
to FPN-supported functions (Kelly et al., 2008; Hampson et al.,
2010; Keller et al., 2015). In healthy adults, the DMN fails to
deactivate during cognitive control trials that are preceded by an
SRP condition; in fact, activation of the DMN is more robust in
individuals with higher depression scores (Wagner et al., 2013).
Adolescence is a prime developmental period to investigate this
mechanism given the dynamic maturation of both SRP and
cognitive control during this time frame.

A growing number of studies suggest that baseline or
spontaneous neural activity continues during tasks and that
task-related activation represents a combination of spontaneous
activity and responses to task stimuli (Arfanakis et al., 2000;
Fox et al., 2006; Fair et al., 2007; Gavrilescu et al., 2008;
Zhang and Li, 2010, 2012). Thus, by regressing task signal
from a time course, the spontaneous activity remains. However,
the resulting functional connectivity patterns of task-regressed
and resting state time courses are not identical, which may
reflect ‘‘contamination’’ of task-regressed signal by task processes
(Arfanakis et al., 2000), or nonlinear effects of a task that are not
removed with linear regression (Fair et al., 2007). Alternatively,
it is possible that task engagement acutely and persistently alters
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functional connectivity (Lowe et al., 2000; Hampson et al., 2004;
Fransson, 2006; Fair et al., 2007), which is what will be measured
in the current study. Specifically, we will measure the alterations
in the functional connectivity of the underlying spontaneous
activity following regression of task-related activity. The current
study examined this mechanism bymeasuring gender differences
in functional connectivity of the networks that support SRP
and cognitive control—DMN and FPN, respectively—during
cognitive control trials in SRP (vs. Control) conditions. We
hypothesized that based on literature suggesting that adolescent
girls demonstrate a stronger prosocial orientation and social-
evaluative concern than boys (Rudolph and Conley, 2005; Rose
and Rudolph, 2006), and that adolescents reflexively incorporate
perceived peer opinions into their self-identity (Pfeifer et al.,
2009), girls would: (1) report higher prosocial orientation, more
negative self-perceptions and more maladaptive patterns of peer
engagement (see ‘‘Participant Characterization’’). Furthermore,
based on studies suggesting that gender differences in cognitive
control brain response may only emerge in affective contexts
(Koch et al., 2007; Cservenka et al., 2015) and that cognitive
control function is maximized when FPN and DMN are
anti-correlated (Kelly et al., 2008; Hampson et al., 2010; Keller
et al., 2015), we hypothesized that girls would: (2) stronger
functional connectivity between FPN and DMN and worse
performance during cognitive control trials in SRP (but not
Control) conditions, compared to boys.

MATERIALS AND METHODS

Healthy adolescents were recruited through fliers distributed in
the local community. Based on the current aims, only adolescents
between the ages of 15 and 18 years who were enrolled in high
school were targeted. Youth assent/consent and parent consent
(for minors) was obtained for all participants. All procedures
were approved by the Oregon Health & Science University
Institutional Review Board andwere in accordance with the Code
of Ethics of the World Medical Association. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. Youth and parents were compensated $110 and
$60, respectively, for their participation. Data were collected on
49 adolescents (girls = 25). Boys and girls did not differ based
on age, pubertal development, IQ, socioeconomic status (SES)
or racial distribution (Table 1). Behavioral data are reported for
48 adolescents (see ‘‘Behavioral Responding During SRP and
Control Trials’’ section), while functional connectivity results
represent data from 40 youth (see ‘‘Functional Connectivity’’
section).

Exclusionary Criteria
The Diagnostic Interview for Children Predictive Scales (DPS)
was administered to the youth and their parent to exclude
for the presence of current psychiatric disorders in youth
based on Diagnostic Statistical Manual-IV criteria (Lucas et al.,
2001). Youth who reported >3 lifetime alcohol binge occasions
(≥4 drinks per occasion for females and ≥5 drinks per
occasion for males), any alcohol binge occasion in the past
6 months, >20 lifetime uses of marijuana, any marijuana use

in the past 6 months, smoking >4 cigarettes per day, or
any other drug use were excluded from the study. Additional
exclusionary criteria included Tanner pubertal stage ≤3;
current home-schooling; DSM-IV Axis I psychotic disorder
in either biological parent (e.g., bipolar I or schizophrenia);
parent-reported prenatal exposure to alcohol/drugs; serious
medical condition(s), including significant head trauma (loss of
consciousness ≥2 min); learning disability; inability of parent to
provide family history information; current use of psychotropic
medications; premature birth (<36 weeks); uncorrected vision
problems; magnetic resonance imaging (MRI) contraindications
(e.g., braces or claustrophobia); left-handedness (Oldfield, 1971);
and pregnancy.

Participant Characterization
To obtain an estimate of intelligence, youth completed
the 2-subtest version of the Wechsler Abbreviated Scale of
Intelligence (WASI; Marini et al., 2016). Pubertal development
was estimated with the modified line drawing version of Tanner’s
Sexual Maturation Scale (Taylor et al., 2001). To measure
self-reported depression and anxiety symptoms, participants
completed the Children’s Depression Inventory (CDI; Kovacs,
1985) and the state anxiety component of the Spielberger State-
Trait Anxiety (STAI) for Children (Spielberger et al., 1983),
respectively. Parents completed the Hollingshead Index of Social
Position (Hollingshead, 1975) to estimate the SES of the family.

To assess prosocial orientation, youth completed the Shame-
proneness and Guilt-proneness subscales of the Test of
Self-Conscious Affect for Adolescents (TOSCA-A), which inhibit
and promote prosocial behavior, respectively (Tangney et al.,
1991) and the Prosocial Tendencies Measure (PTM), which
provided information about the contexts that elicit prosocial
behaviors (Carlo and Randall, 2002). The Social Competence,
Close Friendships and Global Self Worth sub-scales of the
Self-Perception Profile for Adolescents (SPP-A; Harter et al.,
1998) quantified social self-perceptions. The Co-Rumination
Questionnaire (CRQ), which assessed the degree to which an
individual engages in repetitive and compulsive conversations
that have a negative focus with a same-gender peer (Rose, 2002)
was used to quantify potentially maladaptive patterns of peer
engagement.

Self-Referential Processing (SRP)-Flanker
Task
The SRP-Flanker task used a mixed block/event-related design
and combined a version of a previously published self-referential
task (Jankowski et al., 2014) and a version of the Eriksen flanker
task (Eriksen and Eriksen, 1974) that utilizes arrows (Casey
et al., 2000; Bunge et al., 2002; Fan et al., 2002; Kelly et al.,
2008). Two types of blocks were presented that either consisted
of: (1) SRP trials immediately followed by Flanker trials; or
(2) Control trials immediately followed by Flanker trials. Blocks
contained six SRP or Control trials (4 s each), immediately
followed by presentation of five Flanker trials (0.8 s each). Blocks
(four SRP and four Control) were presented for approximately
38 s and separated by 12 s of fixation. Presentation of SRP
and Control blocks alternated and was counterbalanced across
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TABLE 1 | Participant characteristics.

Girls (n = 25) Boys (n = 24) All (N = 49) Statistic p-value

Age (Mean ± SD) 16.3 ± 0.9 16.7 ± 0.9 16.5 ± 0.9 t(47) = −1.54 0.13
Tanner stage (4/5) 7/18 5/19 12/37 χ2

(1) = 0.34 0.56
IQ (Mean ± SD)a 111.3 ± 9.7 113.9 ± 10.1 112.6 ± 9.9 t(47) = 0.36 0.36
SES (Mean ± SD)b 27.2 ± 14.5 25.6 ± 12.8 26.4 ± 13.6 t(47) = 0.40 0.69
White (%)c 88 92 90 χ2

(2) = 0.98 0.61

aWechsler Abbreviated Scale of Intelligence (WASI; 2-subtest version); bHollingshead Index of Social Position; lower values indicate higher socioeconomic status (SES);
means for girls and boys correspond to upper middle class; cRace was coded as 1 = “American Indian/Alaska Native,” 2 = “Asian,” 3 = “Native Hawaiian/Other Pacific
Islander,” 4 = “Black or African American,” 5 = “White,” 6 = “Multiple,” and 7 = “Spanish/Hispanic/Latino;” however, only codes 4, 5 and 6 represented the current sample;
SD = standard deviation.

participants for which type of block was first presented. The
onset of SRP, Control and Flanker trials was preceded by a 2 s
cue: ‘‘DOES THIS DESCRIBE YOU?’’, ‘‘CAN THIS CHANGE?’’,
and ‘‘CENTER ARROW,’’ respectively (Figure 1). The task
was presented with E-Prime 2.0 software (Psychology Software
Tools, Pittsburgh, PA, USA) and responses were recorded for
all trials. Prior to scanning, youth were provided with a brief
demonstration of the task and allowed to practice.

SRP and Control blocks contained the same stimuli, but
participants were instructed to respond differently based on the
condition. Participants viewed positively and negatively valenced
trait phrases representing academic, physical and social domains
(Jankowski et al., 2014). During SRP trials, participants were
instructed to respond based on whether a given phrase described
them (Jankowski et al., 2014). In contrast, in the Control
trials, participants were instructed to make evaluations based
on the malleability of the same traits with respect to people
in general and not themselves (Jankowski et al., 2014). Stimuli
were presented in a randomized order, regardless of valence and
domain, and each stimulus was presented once per condition. In
the scanner, participants were presented with a stimulus in the
center of the screen for 1.5 s then the words ‘‘YES’’ and ‘‘NO’’
were presented below the stimulus phrase for 2.5 s during which
participants made a button-box response. ‘‘YES’’ was always
presented in the bottom left corner of the screen and ‘‘NO’’
was always presented in the bottom right corner of the screen.
Presentation of SRP and Control trials was jittered (mean = 2.5 s);
participants viewed a fixation cross at the center of the screen
between trials.

During Flanker trials, participants viewed a row of five arrows
pointing right or left. The four flanking arrows all pointed
the same direction (left or right); however, the center arrow
pointed in a congruent direction (40%) or incongruent direction
(60%). Flanker trials were jittered (mean = 2.5 s) with fixation
between trials (Figure 1). Congruent and incongruent trials were
presented randomly within blocks. Participants were instructed
to make a response to indicate whether the center arrow was
pointing left or right, regardless of where the flanking arrows
were pointing. They were asked to respond as quickly and as
accurately as possible during the 0.8 s display of the arrows.
Flanker trials were presented rapidly to increase attentional
demands and decrease the likelihood of self-referential thoughts
during these trials. As a reminder, the goal of this study was not
to examine task-related activation per se, but rather to examine
functional connectivity (following task regression) of DMN and

FPN regions of interest during Flanker trials that followed SRP
vs. control conditions.

Image Data Acquisition
A 3T Siemens Magnetom Tim Trio (Siemens Medical
Solutions, Erlangen, Germany) and 12-channel head coil
were used to collect imaging data. First, a whole-brain,
high-resolution T1-weighted MPRAGE sequence was
collected in the sagittal plane (TR = 2300 ms, TE = 3.58 ms,
TI = 900 ms, matrix = 240 × 126, FOV = 240 mm, flip
angle = 10◦, 160 contiguous slices, resolution 1 × 1 × 1.1 mm,
176 repetitions, 9:14 min) for co-registration to functional data.
Functional data were collected in one run using high-angular
resolution T2∗-weighted echo-planar blood-oxygen-level
dependent (BOLD) sequences in the axial plane oblique to the
anterior-posterior commissure with the following parameters:
TR = 2000 ms, TE = 30 ms, matrix = 240× 176, FOV = 256 mm,
flip angle = 90◦, 33 contiguous slices, resolution = 3.8 mm3,
282 repetitions, 9:30 min.

Single-Subject Analysis
Image Preprocessing
Given that the goal of this study was not to examine task-related
activity during either the SRP or flanker task trials, but rather
to examine task-regressed functional connectivity of DMN and
FPN regions of interest following SRP and control conditions, the
data underwent a standard processing pipeline that is commonly
used in task activation processing, followed by regression
of the task signal and additional processing of the residual
data commonly used in resting state functional connectivity
processing.

Data were processed using in-house software that
implemented 4dfp tools developed at Washington University
and previously published (Fair et al., 2012; Alarcón et al., 2015).
Functional data processing steps included slice-time correction,
image debanding, volume registration, including a 6-parameter
rigid body motion realignment, normalization to a mode value
of 1000 and co-registration to the anatomical file. The first four
frames of functional data were excluded to allow BOLD signal
to reach steady state, and the remaining data were modeled
in native space. A general linear model (GLM) using a mixed
block/event-related design was implemented to analyze the
functional task data. SRP and Control blocks were modeled
with boxcar functions, while SRP, Control and Flanker events
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FIGURE 1 | Self-referential processing (SRP)-Flanker Task. The last of six consecutive SRP (top) and Control (bottom) trials (separated by jittered fixation; mean 2.5 s)
is presented next to the first of five consecutive Flanker trials (separated by jittered fixation; mean 2.5 s) during an SRP (top) and Control (bottom) block. SRP and
Control blocks included a 2-s cue, followed by 4-s stimulus with the options “YES” and “NO” during the last 2.5 s. During SRP blocks, participants indicated with a
button press whether the stimulus phrase described them (yes or no; top). In the case of Control trials, participants indicated whether the stimulus phrase can
change in other people (yes or no; bottom). A 50-ms fixation separated the last SRP and Control trials from the first Flanker trial of SRP and Control blocks,
respectively. Flanker trials began with a 2-s cue, followed by a 0.8-s stimulus presentation of an incongruent or congruent (not shown) condition, during which
participants indicated the direction the center arrow was pointing (left or right).

were modeled without an assumed response shape. Flanker
congruent and incongruent trials were modeled separately, as
were error trials, task instruction trials and start cues for SRP
and Control blocks. Next, data were transformed to Talairach
standard space and resampled to a 3 mm3 resolution. Residual
files were created from the GLM by removing all modeled
effects, including linear trends and the baseline. Residual files
underwent additional processing, including image detrending,
multiple regression of whole-brain signal, white matter signal,
cerebrospinal fluid signal and their derivatives, as well as
24 motion-related regressors (Friston et al., 1996) and band-pass
filtering (0.009–0.08 Hz; Figure 2). Regressing the 24 motion
parameters from the residual files, despite having previously

regressed the six rigid-body motion parameters in the GLM
analysis, was performed due to previous findings that functional
connectivity analyses are particularly sensitive to in-scanner
micro-movements, particularly in developmental samples
(Satterthwaite et al., 2012).

Two vectors, each representing frames of data during SRP
Flanker and Control Flanker trials, were created for each
subject. A different, motion censoring vector representing usable
frames of data, based on a strict motion criterion of frame-to-
frame displacement (FD), was also created per subject. The FD
method indexes head movement relative to adjacent volumes
(Power et al., 2012). Frames were excluded from analysis if they
exceeded a threshold of 0.5 mm, and uncensored segments of
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FIGURE 2 | Data preprocessing and analysis pipeline. The diagram includes the steps for image preprocessing, first-level analysis and function connectivity analysis
(top), as well as a schematic of a general linear model being applied to the raw imaging data and residual time courses undergoing additional preprocessing, motion
censoring and grouping into epochs that represent SRP and Control Flanker blocks (bottom). Averages of similar epochs were used to create functional connectivity
maps.

data with fewer than five contiguous frames were subsequently
censored as well. This threshold was determined based on
research showing that motion scrubbing thresholds for task fMRI
data are most effective within the range 0.5–1.1 mm (Siegel et al.,
2014); to err on the conservative side, a 0.5 mm threshold was
selected. The SRP Flanker vector and the Control Flanker vector
were multiplied with the motion-censoring vector. The products
of these vectors included: (1) frames of data withminimal motion
from SRP Flanker trials; and (2) frames of data with minimal
motion from Control Flanker trials. An FD remaining mean
variable was calculated for every individual, representing the
degree of micro-movement (in the range of millimeters) of this
remaining motion-censored data (Figure 2).

Creating Functional Connectivity Maps
Bilateral dorsolateral prefrontal cortex (DLPFC) is a key node
of the FPN (Cole and Schneider, 2007), while medial prefrontal
cortex represents a hub of the DMN. Representative coordinates
were selected from a functionally-defined set of ROIs based
on several meta-analyses of task fMRI data and functional
connectivity mapping (Cohen et al., 2008; Power et al., 2010,
2012), where ROIs are modeled as 10 mm diameter spheres
centered upon ROI coordinates (Power et al., 2011). FPN and
DMN coordinates that most closely matched those reported in
FPN (Cole and Schneider, 2007) and DMN in the context of
SRP (Northoff et al., 2006) were selected and their functional
associations were confirmed on neurosynth.org. Refer to Table 2
for final selection of seed regions. Time courses from every

seed region per condition (SRP Flanker and Control Flanker)
were extracted and correlated with every voxel in the brain,
generating correlation coefficients that underwent a Fisher’s z
transformation to improve data normality (Figure 2).

Group-Level Analysis
Participant Characterization
Statistical analyses were carried out with IBM SPSS Statistics 24
(Armonk, NY: IBM Corp). Gender differences in demographic
variables were examined with independent samples t-tests,
Mann-Whitney U analysis or Chi-square analysis, as appropriate.
Gender differences in FD remaining mean were assessed with
independent samples t-tests. Reaction time (RT), errors of
omission and accuracy on Flanker trials were analyzed with
repeated measures analysis of variance (ANOVA; congruent
vs. incongruent). Gender difference in responding during
SRP and Control trials was also examined with repeated

TABLE 2 | Functional connectivity analysis seed regions.

Peak
Brodmann area

Peak
Talairach coordinates

(X, Y, Z)

Dorsolateral prefrontal cortex
Left 46 −41, 33, 24
Right 8 37, 13, 42

Medial prefrontal cortex
Left 9 −8, 42, 27
Right 10 8, 48, 9
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measures ANOVA (Positive Academic vs. Negative Academic
vs. Positive Social vs. Negative Social vs. Positive Physical vs.
Negative Physical). Greenhouse-Geisser correction was applied
as appropriate, and post hoc analyses were controlled for multiple
comparisons using Šidák correction. Spearman correlations
between self-reported measures, SRP and Control Flanker
performance and significant functional connectivity findings
were conducted. Multiple comparisons correction for correlation
tests was accomplished with the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995) and reported as ‘‘corrected,’’
unless otherwise noted.

Functional Connectivity Analyses
Whole-brain, task-regressed functional connectivity analyses
were conducted with Analysis of Functional NeuroImages
(AFNI; version 16.2.07; Cox, 1996) using 2 (SRP vs. Control)× 2
(girls vs. boys) ANOVAs for each FPN and DMN seed
region. Congruent and Incongruent trials of the Flanker task
were collapsed within SRP and Control conditions to preserve
detection power. Importantly, we found that patterns of task
activation of Flanker congruent and incongruent trials did not
differ significantly (data not shown). Furthermore, because we
used a 3:2 ratio for incongruent and congruent trials—compared
to larger ratios (e.g., 4:1 or 3:1)—the differences in activation are
minimized and reflective of more proactive attentional control,
rather than reactive attentional control, which additionally
engages frontal and inferior temporoparietal cortices (Marini
et al., 2016). A voxel-wise threshold of p< 0.01 and a cluster-wise
threshold of p< 0.05 was implemented using AFNI’s 3dClustSim
(-NN 1, 2-sided) after estimating data noise smoothness values
with 3dFWHMx, leading to a minimum cluster size of 44 voxels.
Functional connectivity values from significant clusters were
extracted to test post hoc effects plotted in figures; multiple
comparisons correction was completed with Šidák correction.

Confirmation of Task Effects Modeling
To confirm that the effects of the task were successfully modeled
and removed for task-regressed functional connectivity analyses,
residualized files were submitted to a whole-brain voxel-wise
two-way ANOVA (within: SRP vs. Control, between: female vs.
male) in AFNI. A minimum cluster size was determined using
the same procedure implemented in functional connectivity
analyses, with a voxel-wise threshold of p < 0.05 and a
cluster-wise threshold of α < 0.05 (minimum cluster size
≥10 voxels). Residualized files contained less noise than task
activation files; therefore, resulting in smaller smoothness
estimates and a smaller minimum cluster size to reach statistical
significance.

RESULTS

Participant Characterization
Mann-Whitney U analyses indicated that girls reported higher
mean co-rumination scores than boys (Girls = 3.0 ± 0.8;
Boys = 2.1 ± 0.8; U = 117.0, p = 0.007, corrected); however,
significant gender differences in other social measures did
not emerge (p > 0.05, corrected). Independent samples t-tests

indicated that depression sub-scale and total T-Scores and state
anxiety scores were not different by sex (p> 0.05, corrected).

Behavioral Responding During SRP and
Control Trials
Behavioral data from SRP and Control trials were missing
from one (female) individual due to a technical problem.
For SRP trials, there was a significant main effect of domain
(F(3.77,169.67) = 22.93, p< 0.001, Greenhouse-Geisser correction),
but no significant main effect of gender (F(1,45) = 0.87, p = 0.36)
or interaction of domain and gender (F(3.77,169.67) = 1.43, p = 0.23,
Greenhouse-Geisser correction). Post hoc analysis indicated that
youth believed Positive Academic traits described them more
than Negative Academic, Negative Social, Positive Physical
and Negative Physical traits (all p ≤ 0.0004, Šidák). Further,
youth agreed that Positive Social traits described them more
than Negative Academic, Negative Social, Positive Physical and
Negative Physical traits (all p ≤ 0.02, Šidák). Lastly, Positive
Physical traits were endorsed more than Negative Physical traits
(p = 0.007, Šidák). Thus, overall youth agreed that positive traits
described them more than negative traits.

Similarly, a repeated measures ANOVA indicated a main
effect of domain in the Control condition (F(5,225) = 14.32,
p < 0.001). The main effect of domain was driven by an overall
difference in Positive Academic traits, such that youth believed
Positive Academic traits were the least malleable, compared to
all other traits (all p < 0.0001, Šidák). The main effect of gender
(F(1,45) = 0.14, p = 0.71) and the interaction of domain and gender
(F(5,225) = 1.16, p = 0.33) were not significant.

Behavioral Responding During Flanker
Trials
Behavioral data were missing from one (female) individual due
to a technical problem. Repeated measures ANOVAs showed
significant main effects of trial type for RT (F(3,138) = 56.32,
p < 0.001), accuracy (F(2.06,94.73) = 8.59, p < 0.001, Greenhouse-
Geisser correction) and errors of omission (F(3,138) = 6.46,
p < 0.001). Overall, participants were slower to respond during
Incongruent vs. Congruent trials, regardless of SRP or Control
condition (Figure 3). A significant main effect of gender emerged
for RT (F(1,46) = 4.69, p = 0.04) and errors of omission
(F(1,46) = 6.84, p = 0.01), but not accuracy (F(1,46) = 0.74,
p = 0.40). In support of our hypothesis, girls were slower to
respond regardless of trial type and committed more errors
of omission during SRP Incongruent trials than boys, but not
the remaining trial types (p < 0.05, Šidák; Figure 3). Finally,
interactions between gender and trial type for RT (F(3,138) = 0.19,
p = 0.91), accuracy (F(2.06,94.73) = 0.89, p = 0.42, Greenhouse-
Geisser correction) and errors of omission (F(3,138) = 1.03,
p = 0.38) were not significant.

Spearman correlations indicated that errors of omission
during SRP Incongruent trials were positively correlated with
co-rumination scores (ρ = 0.56, p = 0.006, corrected). When
examined by sex, co-rumination was positively correlated with
errors of omission in boys (ρ = 0.57, p = 0.004), but not girls
(ρ = 0.37, p = 0.07); however, the correlation coefficients were not
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FIGURE 3 | Flanker task performance (mean ± standard error of the mean; N = 49). Reaction time (RT) was slower (A) and more incorrect responses (B) and errors
of omission (C) were made during incongruent vs. congruent trials, regardless of condition, as indicated by significant main effects of condition. Main effects of
gender on RT and errors of omission were also observed, such that girls were slower to respond and made more errors than boys. Co-rumination fully mediated the
effect of gender on SRP Incongruent errors of omission (D). ∗Compared to SRP Congruent and Control Congruent trials, p < 0.05, Šidák. #Compared to SRP
Congruent trials, p < 0.05, Šidák. ∧Girls compared to boys, p < 0.05, Šidák. SRP, self-referential processing; Con, Congruent; Incon, Incongruent.

significantly different by sex (z = 0.86, p = 0.19, one-tailed). Given
gender differences in co-rumination mean scores, a mediation
analysis was pursued to examine whether co-rumination
mediated gender differences in SRP Incongruent omissions.
Mediation was performed with the PROCESS macro (Hayes,
2013) in SPSS, with gender as the independent measure, SRP
Incongruent omission errors as the dependent measure and a
co-rumination as the mediator. Bias corrected bootstrapped 95%
confidence intervals were determined with 5000 bootstrapped
samples. The direct effect of gender on omissions became
non-significant once co-rumination was included in the model,
while the indirect pathway was statistically significant, indicating
that co-rumination fully mediated the effect of gender on SRP
Incongruent omissions (Figure 3).

Functional Connectivity
Based on the strict motion censoring criteria, 9 of 49 participants
had zero frames of data and could not be included in functional
connectivity analyses. These nine participants did not differ from
the rest of the sample on any demographic, clinical or behavioral
variables (all p > 0.05). Independent samples t-tests indicated
that the number of frames of data used in the imaging analysis

was not significantly different by gender for either the SRP
(Girls = 25.00 ± 7.84 [range: 7–33]; Boys = 23.11 ± 9.93 [range:
7–34]; t(38) = 0.82, p = 0.42) or Control (Girls = 25.25 ± 8.62
[range: 7–33]; Boys = 22.79 ± 10.19 [range: 7–34]; t(38) = 0.80,
p = 0.43) conditions out of 40 possible frames for each condition.
On average, the same number of frames was analyzed in
SRP vs. Control conditions per subject (SRP = 24.12 ± 8.77;
Control = 23.95 ± 9.17; t(39) = 0.04, p = 0.97). Boys and girls
did not differ on mean FD of the remaining frames for SRP
(Girls = 0.10 ± 0.04; Boys = 0.11 ± 0.03; t(38) = 0.52, p = 0.61)
or Control (Girls = 0.10 ± 0.03; Boys = 0.12 ± 0.04; t(38) = 1.66,
p = 0.11) conditions.

Frontoparietal Network (FPN)
A two-way ANOVA of DLPFC functional connectivity yielded
significant effects with the left DLPFC seed region only.
Specifically, significant interactions between gender and
condition emerged in left ventral/dorsal striatum and right
precuneus (region of the DMN), such that girls showed stronger
functional connectivity between these regions and the left
DLPFC during SRP, compared to boys. Post hoc analysis revealed
that girls had stronger functional connectivity between left

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 April 2018 | Volume 12 | Article 73

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Alarcón et al. Gender Differences in Network Connectivity

DLPFC and both striatum and precuneus during SRP Flanker
trials (p < 0.05, Šidák), but not Control Flanker trials (p > 0.05,
Šidák), compared to boys (Table 3; Figure 4).

Default Mode Network (DMN)
A two-way ANOVA of left mPFC functional connectivity
indicated a significant main effect of gender with right posterior
cerebellum, with girls showing stronger functional connectivity
than boys. Moreover, in the right mPFC seed analysis, a
significant interaction between gender and condition was found
with right DLPFC functional connectivity, as indicated by
two-way ANOVA. Girls had stronger functional connectivity
between mPFC and right DLPFC during the SRP Flanker
condition (p < 0.05, Šidák), but not Control Flanker condition
(p> 0.05, Šidák), compared to boys (Figure 5; Table 3).

Correlations
Spearman correlations indicated that mean co-rumination scores
were not significantly correlated to functional connectivity values

across the sample or by gender (p > 0.05, corrected). Likewise,
SRP and Control Flanker performance was not significantly
correlated with functional connectivity values across the sample
or by gender (p> 0.05, corrected).

Confirmation of Task Effects Modeling
Following analysis with two-way ANOVA, there were no
significant main effects of sex or condition (SRP vs. Control)
or significant interactions between sex and task condition using
residualized task files, indicating that the task was effectively
modeled and the task-regressed residual files used in functional
connectivity analyses represent underlying signal fluctuations
that have been influenced by task conditions.

DISCUSSION

The primary aims of this study were to examine gender
differences in performance and functional connectivity between
DMN and FPN during conditions that placed internal (i.e., SRP)

TABLE 3 | Functional connectivity results (n = 40).

Seed region Functionally coupled region BA Voxel number Peak Talairach coordinates (X, Y, Z) Cohen’s da

Main effect of gender
L Medial prefrontal cortex L Posterior cerebellum 65 32, −84, −27 0.48
Condition-by-gender interaction
L Dorsolateral prefrontal cortex L Ventral/Dorsal striatum 49 −10, 9, −6 0.39

R Precuneus 7 46 8, −75, 39 0.40
R Medial prefrontal cortex R Dorsolateral prefrontal cortex 9/10 70 38, 36, 18 0.38

aCohen’s d effect sizes range from small (d = 0.2), medium (d = 0.5) and large (d = 0.8); BA, Brodmann Area; L, left; R, right.

FIGURE 4 | Girls showed stronger functional connectivity during SRP Flanker trials (mean ± standard error of the mean; n = 40). Left dorsolateral prefrontal cortex
(DLPFC) was more strongly functionally connected to left striatum (top) and right precuneus (bottom), a region of the default mode network (DMN), during SRP
Flanker vs. Control Flanker conditions in girls, compared to boys. Functional connectivity during Control Flanker trials was not different by gender. ∗p < 0.05, Šidák.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 9 April 2018 | Volume 12 | Article 73

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Alarcón et al. Gender Differences in Network Connectivity

FIGURE 5 | Girls showed stronger functional connectivity during SRP Flanker trials (mean ± standard error of the mean; n = 40). Right medial prefrontal cortex
(mPFC) was more strongly functionally connected to right DLPFC, a region of the frontoparietal network (FPN), during SRP Flanker trials vs. Control Flanker trials in
girls, compared to boys. Functional connectivity during Control Flanker trials was not different by gender. ∗p < 0.05, Šidák.

and external (i.e., cognitive control) attentional demands in
conflict. In partial support of our hypotheses, compared to
boys, girls demonstrated more interference on cognitive control
performance in the SRP context, as reflected by more errors of
omission during SRP Incongruent trials. As hypothesized, girls
displayed stronger functional connectivity of FPN and DMN
during SRP Flanker trials relative to boys. Finally, co-rumination,
which was the only self-reported measure that differentiated
boys and girls, mediated cognitive control performance during
SRP Incongruent conditions. The outcomes of this study suggest
that placing SRP and cognitive control processes in conflict
is reflected by stronger functional connectivity of DMN and
FPN, as well as poorer cognitive control performance in girls,
compared to boys; however, co-rumination (or possibly other
related, but unmeasured aspects of prosocial behavior) may
explain a larger portion of cognitive control performance than
functional connectivity.

Cognitive Control Performance
Performance on the Flanker trials reflected that of previous
studies, where participants were slower to respond during
incongruent relative to congruent trials (Casey et al., 2000;
Bunge et al., 2002; Fan et al., 2002; Wager et al., 2005; Kelly
et al., 2008; Mennes et al., 2011). This pattern was observed
within both SRP and Control conditions. SRP and Control
Incongruent trials were the most difficult, as reflected by
slower RT, than all congruent trials. However, there were no
differences in difficulty between the two types of incongruent
trials, nor the two types of congruent trials. Similar patterns
were observed with accuracy, which also reflects task difficulty,
and omissions, which more closely represent lapses in attention
(Matthews et al., 2000). These findings may indicate that,
for the most part the SRP manipulation did not increase
the difficulty of these trials. However, girls responded more
slowly than boys across all conditions, perhaps because they
perceived the entire task as more difficult, or perhaps because
they were more deliberate in their responding. The design of

this study does not provide a means to differentiate between
response strategies; thus, future studies may consider parametric
modulation of task difficulty or retrospective self-report as
ways to address this question. Importantly, post hoc analysis
of significant main effects of gender revealed a condition-
specific gender difference in performance, as indexed by
errors of omission, such that girls made more errors than
boys during SRP Incongruent Flanker trials. Therefore, there
is some evidence that the higher rates of omission errors
in girls are due to SRP interfering with performance of
the most difficult type of Flanker trial (i.e., incongruent),
perhaps by increasing executive load (Luciana, 2016). It is
also possible that the effect of SRP on cognitive control
performance was more pervasive for girls and persisted across
all conditions, contributing to their slower RTs and higher rates
of omission errors overall. The design of this study permitted
a temporal dissociation of SRP and Control conditions of
approximately 1 min; however, that may not have been sufficient
time for the influence of SRP to dissipate, particularly for
girls.

Functional Connectivity
In accordance with the hypotheses of this study, healthy
adolescent girls demonstrated stronger functional connectivity
between DMN and FPN during cognitive control trials
in SRP conditions, as compared to boys. These findings
indicate that the experimental manipulation was effective at
differentiating boys’ and girls’ neural responses; however, as
stated in ‘‘Cognitive Control Performance’’ section, Flanker task
performance outcomes provide mixed support on this front.
Notably, functional connectivity was not correlated with Flanker
performance or co-rumination, indicating that functional
connectivity may not play as large of a role in moderating
gender differences in Flanker performance during trials that are
presumed to be most difficult (i.e., SRP Incongruent).

Stronger DMN—FPN functional connectivity during
SRP Flanker trials was reflected by DLPFC—precuneus and
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mPFC—DLPFC functional connectivity. As a node of the
DMN, the precuneus is involved in episodic memory and
self-reflection (Cavanna and Trimble, 2006). Moreover,
functional connectivity between precuneus and DLPFC, as
well as mPFC and DLPFC, has been shown to be positively
linked with self-related sharing (Meshi et al., 2016), which
may indicate that girls’ self information brought online during
SRP trials remained in working memory and competed for
resources with cognitive demands of the Flanker trials, leading
to poorer performance. A few brain regions outside of FPN
and DMN were also identified in functional connectivity
analyses. Compared to boys, girls showed stronger functional
connectivity between left mPFC and the right posterior
cerebellum. This particular region of the cerebellum has
been repeatedly implicated in theory of mind and higher-
order social cognition (Carrington and Bailey, 2009; Spunt
and Adolphs, 2014; Van Overwalle et al., 2014), suggesting
that its connectivity with mPFC, a key region for SRP, may
support integration of social information with self-identity—a
mechanism that may be more streamlined in girls compared
to boys. In addition, girls displayed stronger frontostriatal
connectivity (left DLPFC—dorsal/ventral striatum) during
SRP, but not Control Flanker trials compared to boys, perhaps
as a means to compensate for the ineffective reduction in
functional connectivity of DMN and FPN nodes. Indeed, the
DLPFC—striatal circuit, in particular, is crucial for intact
executive functioning (Alexander et al., 1990; Hampshire et al.,
2012).

SRP Behavior and Co-rumination
Adolescents in this study were more likely to endorse positive
than negative qualities about themselves, in agreement with
previous studies in early adulthood (Watson et al., 2007;
Zhang et al., 2013; Chen et al., 2014; Yang et al., 2014).
Gender differences in responding were not observed, indicating
that boys and girls did not differ in their self-perceptions
about emotionally-salient traits across domains of life
that are relevant to adolescents (i.e., academic, social and
physical). This conclusion is supported by the lack of sex
differences in self-perception as measured by the SPP-A Social
Competence and Global Self-Worth sub-scales. Despite a lack
of gender differences in self-perception, girls reported more
co-rumination than boys, which mediated the effect of gender
on SRP Incongruent Flanker omissions. During adolescence,
co-rumination predicts increases in depressive symptoms by
way of increasing rumination (Stone and Gibb, 2015), as well
as mediates the effect of gender on depressive symptoms (Rose,
2002). Thus, not only does co-rumination reflect a pattern
of peer engagement that is potentially maladaptive, but it
also indicates the presence of negative cognitive style that
increases vulnerability for depression. Given that adolescent
girls experience more social-evaluative concern (Rudolph and
Conley, 2005), being asked to reflect on their self-identity,
which reflexively incorporates the perceptions of peers,
likely leads to a more pervasive sustainment of internally-
focused attention in girls compared to boys. In the current
study, youth who tended to engage in more co-rumination

(i.e., girls) may have been more likely to perseverate on SRP
processes, which may function to increase cognitive load
during Flanker trials and decrease performance. Notably,
co-rumination was not correlated with DMN—FPN functional
connectivity, suggesting that any potential effects on cognitive
load would be unique from connectivity of these specific
networks.

Strengths, Limitations and Alternative
Interpretations
Strengths of this study include a well-characterized sample
and rigorous data processing that included motion scrubbing.
Girls and boys were well matched on various demographic and
developmental variables, which served to eliminate potential
confounds that could explain the current findings. However,
one limitation of this work was the relatively small sample size,
which was especially relevant given that functional connectivity
analyses only includes frames of data from Flanker trials that
did not exceed the motion threshold (SRP average = 24.12;
Control average = 23.95) This analytical approach greatly
reduced the amount of data used for analysis, albeit, to a similar
degree in males and females. However, gender differences in
functional connectivity were observed with medium effect sizes,
indicating that there was sufficient power to detect meaningful
effects.

It is notable that results were obtained for left DLPFC for
the FPN analyses and that connectivity with mPFC was found
with right DLPFC for the DMN analyses. The lateralization of
DLPFC findings may be due to the fact that DLPFC seed regions
were not centered around the exact ipsilateral coordinates.
DLPFC seed regions were part of the FPN network (Power
et al., 2011) and we confirmed that they were associated with
cognitive control processing through neurosynth.org. There is
support for this interpretation, given that degree of functional
connectivity between DLPFC and mPFC seed regions and their
corresponding networks, FPN and DMN, respectively, appears
to vary based on hemisphere (neurosynth.org). In the case of
DLPFC, the left DLPFC seed region qualitatively appears to
be better integrated with the FPN than the right DLPFC seed
region. In the case of mPFC, the right seed region qualitatively
appears to be better integrated with the DMN than the left mPFC
seed region. Thus, we believe, lateralized effects are a result of
seed region definition that may be overcome with larger sample
sizes.

As a limitation, the design of the current study did not permit
analysis of SRP functional connectivity based on the domains
and/or valence of the SRP statements. In every SRP and Control
block, statements were presented randomly and consecutively
in order to sustain an SRP effect that would carry over to the
subsequent set of Flanker trials. Thus, the effects of domain and
valence across SRP trials represent averages and their unique
effects cannot be measured. It is possible that either valence or
domain of the SRP phrases may have differentially influenced
SRP functional connectivity and its sustained effect on Flanker
trials. Given that the majority of adolescents in the present
study reported identifying with positive vs. negative phrases, it
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is possible we did not capture the effects of negative SRP. Future
studies may consider personalizing statements to reflect negative
self-relevant thoughts of each individual (Carew et al., 2013) or
separating positive, negative and/or non-affective SRP conditions
to examine their unique effects.

In spite of numerous gender differences in functional
connectivity, the number of behavioral gender differences in
the current study was very sparse. Indeed, a group difference
in omissions during SRP Incongruent Flanker trials was the
only finding where boys and girls differed in their responding
in a context specific to SRP. Notably, this finding, which was
pursued due to a priori hypotheses, was detected post hoc despite
a lack of a significant interaction between gender and task
condition. Therefore, this particular finding must be interpreted
with caution. It is possible that gender differences in Flanker
performance are not as robust as gender differences in functional
connectivity. Indeed, this may be the case given that the current
sample was generally healthy, and gender differences in cognitive
control performance are not commonly found in healthy youth
despite gender differences in brain activation (Weiss et al., 2003;
Schweinsburg et al., 2005; Christakou et al., 2009; Li et al., 2010;
Rubia et al., 2010, 2013; Alarcón et al., 2014; Hjelmervik et al.,
2014; White et al., 2014; Cservenka et al., 2015).

Functional connectivity, specifically during resting states, is
generally considered a relatively stable measure (Braun et al.,
2012; Chou et al., 2012; Guo et al., 2012; Song et al., 2012;
Franco et al., 2013; Rzucidlo et al., 2013; Hjelmervik et al.,
2014; Zuo and Xing, 2014; Chen et al., 2015; Du et al., 2015;
Shah et al., 2016) across participants and mental states (Calhoun
et al., 2008; Smith et al., 2009; Cole et al., 2014; Krienen et al.,
2014), which has made it possible to examine its relationship
to behavioral correlates (Fulwiler et al., 2012; Baur et al., 2013;
Takeuchi et al., 2013; Modi et al., 2015; Pan et al., 2016).
However, recent work demonstrates that there is an appreciable
difference in network functional connectivity between task and
resting states, such that task-dependent functional connectivity
effects explain as much or more of the variance in inter-
individual connectivity than resting state effects (Geerligs et al.,
2015). Moreover, differences in functional connectivity between
individuals are not static, but greatly depend on the mental state
during which these measurements are obtained. The results of
the present study support this assertion by demonstrating that
gender differences in functional connectivity occurred across
task conditions. This suggests that consideration must be given
to the participant’s mental state when determining under what
context the functional connectivity architecture of an individual
provides the most meaningful association to the behavioral
correlate being studied.

There are a variety of analytic approaches used to measure
task-related functional connectivity, including removal of
linear task effects with regression (Fair et al., 2007), removal
of task-induced variance with independent component analysis
(Arfanakis et al., 2000) and psychophysiological interaction
(O’Reilly et al., 2012), with the latter options being most effective
for block designs. Linear regression of task effects is not restricted
by the experimental design as long as task effects are effectively
modeled and removed. Indeed, previous work has shown that

this approach may not remove all task-related signal (Fair et al.,
2007); however, this very signal may represent altered functional
connectivity due to task engagement (Lowe et al., 2000; Hampson
et al., 2004; Fransson, 2006; Fair et al., 2007; Zhang and Li, 2010,
2012). Even so, the possibility that nonlinear task effects remain
and alter correlation coefficients cannot be ruled out.

CONCLUSION

Healthy male and female adolescents demonstrated a differential
impact of SRP on cognitive control task performance that was
paralleled by DMN-FPN functional connectivity. Specifically,
induction of an SRP state interfered with the expected pattern
of anti-correlation between DMN and FPN, particularly in girls.
Importantly, gender differences in this pattern of connectivity
were absent in Control conditions, indicating that these effects
were due to the SRP induction. Although behavioral effects were
small, results indicated that girls’ performance (i.e., errors of
omission) suffered more than boys’ during cognitive control
trials within an SRP context. Importantly, co-rumination, which
was endorsed to a larger degree by girls than boys, mediated
the effect of gender on SRP Incongruent Flanker omissions.
Thus, placing internal (i.e., SRP) and external (i.e., cognitive
control) attentional demands in conflict was reflected by weaker
anti-correlation of DMN and FPN. Engaging in co-rumination
may be one mechanism through which cognitive control
performance declines in situations where adolescents must
regulate internal vs. external attentional demands. Future studies
must determine the relevance of this mechanism for predicting
depression using similar experimental paradigms longitudinally
and with adolescents who are at risk for MDD.
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