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Perinatal brain injury (PBI) leads to neurological disabilities throughout life, from motor
deficits, cognitive limitations to severe cerebral palsy. Yet, perinatal brain damage has
limited therapeutic outcomes. Besides, the immature brain of premature children is
at increased risk of hypoxic/ischemic (HI) injury, with males being more susceptible
to it and less responsive to protective/therapeutical interventions. Here, we model in
male and female C57BL/6 mice, the impact of neonatal HI and the protective effects
of neonatal handling (NH), an early life tactile and proprioceptive sensory stimulation.
From postnatal day 1 (PND1, modeling pre-term) to PND21 randomized litters received
either NH or left undisturbed. HI brain damage occurred by permanent left carotid
occlusion followed by hypoxia at PND7 (modeling full-term) in half of the animals. The
behavioral and functional screening of the pups at weaning (PND23) and their long-term
outcomes (adulthood, PND70) were evaluated in a longitudinal study, as follows:
somatic development (weight), sensorimotor functions (reflexes, rods and hanger
tests), exploration [activity (ACT) and open-field (OF) test], emotional and anxiety-like
behaviors [corner, open-field and dark-light box (DLB) tests], learning and memory [T-
maze (TM) and Morris Water-Maze (MWM)]. HI induced similar brain damage in both
sexes but affected motor development, sensorimotor functions, induced hyperactivity
at weaning, and anxiety-like behaviors and cognitive deficits at adulthood, in a sex-
and age-dependent manner. Thus, during ontogeny, HI affected equilibrium especially
in females and prehensility in males, but only reflexes at adulthood. Hyperactivity of
HI males was normalized at adulthood. HI increased neophobia and other anxiety-like
behaviors in males but emotionality in females. Both sexes showed worse short/long-
term learning, but memory was more affected in males. Striking neuroprotective
effects of NH were found, with significantly lower injury scores, mostly in HI males.
At the functional level, NH reversed the impaired reflex responses and improved
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memory performances in hippocampal-dependent spatial-learning tasks, especially
in males. Finally, neuropathological correlates referred to atrophy, neuronal densities
and cellularity in the affected areas [hippocampal-CA, caudate/putamen, thalamus,
neocortex and corpus callosum (CC)] point out distinct neuronal substrates underlying
the sex- and age- functional impacts of these risk/protection interventions on
sensorimotor, behavioral and cognitive outcomes from ontogeny to adulthood.

Keywords: neonatal hypoxic ischemic injury, neonatal handling, sensory stimulation, animal model, sex, gender
medicine, behavior, cognition

INTRODUCTION

Perinatal brain injury (PBI) due to hypoxia-ischemia (HI) is
such a devastating early insult that it is considered to be a
major contributor to perinatal morbidity and mortality. The
prevalence of neonatal HI encephalopathy (HIE) due to an
oxygen and glucose deprivation during birth is 1.5–3 and
up to 6 per 1,000 livebirths in developed and developing
countries, respectively (Kurinczuk et al., 2010). The perinatal
brain is highly susceptible to damage due to the prevailing
development processes. The most vulnerable regions to injury
are the ones with greatest metabolic demands (sensorimotor
cortex and basal ganglia, thalamus, cerebellum and brainstem;
Thorngren-Jerneck et al., 2001). Consequently, PBI can lead
to long-term neurologic disability in both children and
adults, including cognitive limitations, learning difficulties,
attention or motor deficits (van Handel et al., 2007) and
even cerebral palsy, and seizures (Platt et al., 2007). Despite
the improvements in neonatal care, brain damage in term
newborn infants still remains a clinical problem, with research
constrained by obvious ethical limitations. Most importantly,
the immature brain of premature children is at increased risk
of hypoxic ischemic injury (Vannucci and Hagberg, 2004) with
males born prematurely being reported as most susceptible
to it and with worse developmental and adult outcomes
(Elsmén et al., 2004; Peacock et al., 2012; Månsson et al.,
2015).

It is considered that the experimental model of HI-induced
neonatal injury initially described by Vannucci and Vannucci
(1997) for the rat (Rice et al., 1981), and also adapted to the
mouse in several laboratories (Sheldon et al., 1998; Hagberg
et al., 2002; Northington, 2006) is a useful translational technique
to better understand the effects of HI injury in human brain.
Moreover, this technique at postnatal day (PND) 7–10 is
equivalent to a term human infant (Semple et al., 2013; Mallard
and Vexler, 2015). Although many experimental studies, mostly
in rats, report morphological, biophysical and biochemical
changes following HI brain insult (Towfighi et al., 1991; Huang
and Castillo, 2008; Shrivastava et al., 2012), there is a scarcity
of data to understand the consequential behavioral changes.
However, some reports do suggest that injured animals exhibited
sensorimotor deficits (i.e., Jansen and Low, 1996; Bona et al.,
1997) and suffered certain learning disabilities (i.e., Young et al.,
1986; Balduini et al., 2000; Ikeda et al., 2001; McAuliffe et al.,
2006). Sex differences regarding the final outcome after an

adult stroke or after neonatal HI had been documented (Bona
et al., 1998; Hagberg et al., 2004; Hurn et al., 2005; Smith
et al., 2014; Netto et al., 2017). These differences are justified
by the presence of sex-specific hormones that may influence the
consequences of early HI brain injury (Hill and Fitch, 2012)
but also to socio-economic and neonatal variables (Månsson
et al., 2015). In spite of these sex differences, most studies
involving HI still demonstrate usage of male and female animals
indistinctly (i.e., Chou et al., 2001; Ten et al., 2003; Lubics
et al., 2005; Spandou et al., 2005; Ikeda et al., 2006; Pazos et al.,
2012).

On the other hand, developmental psychobiology and
neuroscience have pointed out ontogeny as a singular window
of brain vulnerability but also plasticity, where early-life
paradigms involving exposure to distinct stimuli during the
1st weeks of life are shown to be critical for short- and
long-lasting modeling of the brain structure and function
(Levine, 1957; Levine and Broadhurst, 1963; Levine et al.,
1967). In rodents, early postnatal stimulation [neonatal handling
(NH) in its most frequent form] consisting of brief maternal
separation with/without tactile stimulation, prompts profound
and long-lasting effects of anxiety and stress responses, novelty-
seeking, learning and memory through different epigenetic
neurobiological mechanisms (revised by Fernández-Teruel et al.,
2002). More importantly, compelling effects of this intervention
also include the rescue of perinatal brain insults due to stress,
malnutrition or alcohol exposure (revised by Raineki et al.,
2014). In the case of brain injury induced by HI, prevention of
hippocampal damage (Rodrigues et al., 2004) and improvement
of learning (Chou et al., 2001) were elicited in rats by maternal
separation and tactile stimulation starting at PND8. Beneficial
effects of tactile sensory stimulation have been attributed to the
fact that neural pathways from skin to the CNS mature before
other sensory systems (Montagu, 1953).

Therefore, the aim of the current research work was to
do a longitudinal study of the behavioral and functional
impact of HI brain injury in male and female mice, at
weaning and at adulthood. We also aimed to assess the effects
of NH used as a protective sensory intervention. For this
purpose, we evaluated the short- and long-term effects of a
neonatal HI insult in the behavioral profile of gold-standard
C57BL/6 mice strain at PND7, an age modeling full-term
babies. At the same time, a group of animals was used to
assess the potential preventive effects of NH administered
during the ontogenic development of the pups, from PND1 to
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weaning (PND21), mimicking an intervention started in
pre-term babies and lasting all through their childhood. For
the behavioral and functional screening of the pups at weaning
(PND23) and their long-term outcomes (adulthood, PND70)
we used a series of tests to evaluate four dimensional areas:
somatic development and sensorimotor integration, exploratory
behavior, emotionality and anxiety-like behaviors, and cognition.
Finally brain pathology was measured by means of brain injury
score to evaluate the neurologic impact of the risk/protection
events in different neuroanatomical regions at 90 days of
age (PND90). This will allow us to find the functional
correlates.

MATERIALS AND METHODS

Animals
Sixty-six C57BL/6 mice were bred and maintained in macrolon
cages (35 cm × 35 cm × 25 cm) under standard laboratory
conditions (food and water ad libitum, 22◦C ± 2◦C, 50%–70%
relative humidity, 12 h light:dark cycle, lights on at 08:00 h).

Experimental Design
A longitudinal study with factorial design HI × NH × S was
made to evaluate the functional impact of HI, the effects of
NH in sham and HI animals, and the factors sex and age.
Age factor was studied to evaluate the long-term effects, from
weaning at PND23 to adulthood (PND70), of the risk/protective
interventions studied. The total 66 mice came from 12 L
with an average of 5.50 + 0.45 pups. Litters were randomly
distributed by treatments and gender in 8 different experimental
groups (n = 7–11, Figure 1A). Two animals (1 male/sham,
1 female/hypoxia) died from PND23 to PND90, and were
therefore excluded of the statistical analysis.

Hypoxia/Ischemia
HI brain damage occurred at PND7 by permanent left carotid
occlusion and exposure to hypoxia as previously described
(Sheldon et al., 2001). Briefly, a midline ventral skin incision
was made under isoflurane anesthesia (4.5% v/v for induction
and 2.5% v/v for maintenance, and 0.6 L/min of O2); the left
carotid artery was exposed and sutured with a 8/0 silk surgical
suture. After surgery, pups were returned to their dam for at least
1.5 h to recover. Later, litters were placed for 55 min in a hypoxic
chamber containing 8% of oxygen balanced with nitrogen, with
controlled humidity and temperature maintained at 37◦C.

Handling
NH was administered from PNDs 1 to 21 (Fernández-Teruel
et al., 1991). The first daily session, administered in the morning
(9:30 a.m.), consisted of first removing the mother from the
litter, and then weighing the pups and placing them gently and
individually in plastic cages (35 cm × 15 cm × 25 cm) lined
with soft article towel. After 4 min in this situation, each pup
was individually (and gently) handled and stroked thrice with
the thumb on the dorsal surface (rostro-caudal direction) for
3–4 s and returned to the same cage for the remaining 4 min.
At the end of the 8-min period, each pup was gently handled

for another 3–4 s, stroked again and then returned to its home
cage. When all the pups from 1 L were back in their home cage,
the mother was returned to it. The same procedure (without
weighing the animals) was conducted in the afternoon (2nd
time; approximately at 4:30 p.m.). NH finished at PND 21.
Weaning was done at PND 21, after finishing the last NH session.
Non-handled groups were left undisturbed, except for regular
cage cleaning once a week, until weaning.

Behavioral and Functional Assessments
Animals were assessed in a longitudinal design, at weaning
(PND23) and adulthood (PND70 or 70-days-old) as summarized
in the time line shown in Figure 1. A three-stage protocol
(Figure 1B) for behavioral and functional phenotype assessment
(Giménez-Llort et al., 2002) evaluated the somatic development
(primary screening), sensorimotor functions and motor activity
(secondary screening) as well as non-cognitive and cognitive
functions (tertiary screening). The tests used were as follows:
somatic development (weight), sensorimotor functions [visual
and hind limb reflexes, rod test and hanger test, cylinder test
(CYT)], locomotor [activity (ACT) and open-field (OF) test]
as well as non-cognitive and cognitive functions-emotional and
anxiety-like behaviors [corner, OF and dark-light box tests
(DLB)]; learning and memory (TM test and MWM). All the
apparatus were thoroughly cleaned, with 5% ethanol, and dried
between trials/animals.

Body Weight (BW)
Body Weight (BW) was monitored at weaning (PND23),
adulthood (PND70) and at the end point (PND90).

Sensorimotor Functions (SMT)
The physical condition of the mice was evaluated by their BW
and performance in sensorimotor tasks. Visual reflex and hind
limbs extension reflex were measured three times by holding the
animal by its tail and slowly lowering it toward a black surface.
Complete extension of the forelimbs towards the surface (visual
reflex) or the extension of hind limbs were considered a positive
response. Motor coordination and equilibrium were assessed
twice (20-s trials) in two consecutive rod tasks of increasing
difficulty. The distance covered and the latency to fall off a 1.3 cm
wide wooden wire rod and a 1 cm diameter metal wire rod (both,
1 m long) were recorded. The hanger test was used to measure
prehensility or grasping and motor coordination by the distance
covered and the number of elements of support and the latency
to fall. The animal was allowed to cling with its forepaws from
the middle of a horizontal wire (2 mm diameter, 40 cm length,
divided into eight 5 cm segments) for two trials of 5 s. A third
trial of 60 s was used to complement these measures with that of
muscle strength or resistance. All the apparatus were suspended
40 cm above a padded table.

Cylinder Test (CYT)
The CYT was used to assess forelimb asymmetry (Schallert
et al., 2000). Animals were individually placed in a Plexiglas
transparent cylinder (10 cmdiameter, 12 cmheight). Each animal
was video-recorded for 5 min. Initial forepaw (left/right/both)
placement of each weight-bearing full rear was recorded.
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FIGURE 1 | (A) Time line of the experimental schedule. (B) Behavioral and functional phenotype assessment: a three-stage protocol for behavioral and functional
phenotype assessment evaluated the somatic development (primary screening), sensorimotor functions and motor activity (secondary screening) as well as
non-cognitive and cognitive functions (tertiary screening). The tests used were the following: somatic development (weight), sensorimotor functions (visual and hind
limb reflexes, rod test and hanger test), locomotor [activity test (ACT) and open-field (OF) test] as well as non-cognitive and cognitive functions-emotional and
anxiety-like behaviors [corner, OF and dark-light box (DLB) tests]; learning and memory [T-maze test (TM) and Morris Water Maze (MWM)]. The behavioral
assessment was performed at weaning and/or adulthood.

The asymmetry score that reflected the preference of the
unimpaired (left) limb was calculated according to the following
formula:[(number of left contacts + 1

2 both contacts)/number
of (left + right + both contacts)]×100; where 50% indicates
an animal that explores symmetrically with both limbs, higher
scores (>50%) indicate a greater reliance on the ipsilateral limb,
and lower scores (<50%) indicate a greater reliance on the
contralateral limb. We also measured the number and the total
amount of grooming time, the latency of ‘‘hoppy’’ or ‘‘pop-corn
behavior’’ described by Wahlsten (1974) as vigorous jumping
shown in pups, and the number of full rears performed in the
5 min.

Spontaneous Motor Activity Test (ACT)
The mice were individually tested in a multicage activity
meter system (four home cages −35 cm × 35 cm

× 25 cm—simultaneously, Sensor Unit PANLAB 0603, Panlab,
S.L., Barcelona, Spain) set to measure horizontal and vertical
spontaneous motor activity during 30 min. Animals were
individually tested in a standard (but novel and clean) home cage
containing a small amount of clean sawdust on the floor.

Corner Test (CT) and Open Field Test (OF)
Neophobia was assessed in the corner test (CT) for 30 s. Animals
were individually placed in the center of a clean standard
home cage, filled with wood save bedding. Latency of the first
rearing, number of corners visited and of vertical displacements
(rearings) were recorded. Immediately after, exploratory and
anxiety-like behaviors were measured during 5 min in a white
open-field (homemade, wooden, 55× 55× 25 cm) under 20 lux
light conditions. Mice were individually placed in the center
of the arena. Horizontal (crossings, 10 × 10 cm) and vertical
(rearings) activities were recorded for each minute of the test.
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Dark–Light Box Test (DLB)
Anxiety and risk assessment were measured for 5 min after
introducing the animals into the dark compartment of the DLB
(Panlab, S.L., Barcelona, Spain). The apparatus consisted of
two compartments (black, 27 cm × 18 cm × 27 cm, white,
27 cm × 27 cm × 27 cm illuminated by a red 20 W bulb)
connected by an opening (7 cm × 7 cm). The experimental
room was kept in darkness (without illumination). Mice were
introduced into the black compartment and observed for 5 min.
Total number of entries (all four paws), and time spent in the
white-illuminated compartment were recorded. Latency to enter,
time spent and number of entries into the lit compartment,
the number of stretch attendances and self-groomings were
recorded.

T-Maze Test (TM)
Exploratory activity, anxiety, working and short-term memory
were assessed in an enclosed TM (woodwork; short arm:
40 × 15 × 30; goal arms: 30 × 15 × 30 cm), three trials 15 min
apart, in a day. Each trial involved one forced and one free choice.
Mice were placed inside the short arm of the maze and the
latency to reach the intersection and the time elapsed until mice
completed 20 s in the forced arm were recorded. Fifteen seconds
later, mice were allowed to explore the maze in a free choice trial
where both arms were accessible. The arm chosen was recorded
and considered an error if it was not different of that in the forced
choice.

Morris Water Maze (MWM)
Animals were tested for spatial learning and memory in three
paradigms in the MWM test consisting of 1 day of cue learning
and 4 days of place learning for spatial reference memory,
followed by one probe trial. Mice were trained to locate a hidden
platform (7 cm diameter, 1 cm below the water surface) in a
circular pool for mice (Intex Recreation Corp., Long Beach, CA,
USA; 91 cm diameter, 40 cm height, 25◦C opaque water), located
in a completely black painted 6 m2 test room. Mice failing to find
the platform were placed on it for 10 s, the same period as the
successful animals. The protocol (Giménez-Llort et al., 2007) was
used as follows: 1 day of cue learning, 4 days of place learning
followed by a probe trial.

Cue Learning With a Visible Platform
On the first day, the animals were tested for the cue learning
of a visual platform consisting of four trials in 1 day. In each
trial, the mouse was gently released (facing the wall) from one
randomly selected starting point (E or W) and allowed to swim
until it escaped onto the platform, elevated 1 cm above the water
level in the N position and indicated by a visible striped flag
(5.3 × 8.3 × 15 cm). Extra maze cues were absent in the black
painted walls of the room.

Place Learning With a Hidden Platform
On the following day, the place learning task consisted of three
trial sessions per day for 4 days with trials spaced 30 min
apart. The mouse was gently released (facing the wall) from one
randomly selected starting point (E orW, as these are equidistant
from the target) and allowed to swim until escaped onto the

hidden platform, which was now located in the middle of the S
quadrant. Mice that failed to find the platform within 60 s were
placed on it for 10 s, the same period as was allowed for the
successful animals. White geometric figures, one hung on each
wall of the room, were used as external visual clues.

Removal
Two hours after the last trial of the place learning task, the
platform was removed from the maze and the mice performed
a probe trial of 60 s to evaluate their spatial memory for the
platform position.

Analyses
Behavior was evaluated by both direct observation and
analysis of videotape-recorded images. Variables of time (escape
latency, quadrant preference), distance covered, and swimming
speed were analyzed in all the trials of the tasks. The
escape latency was readily measured with a stopwatch by an
observer who was unaware of the experimental group, and
was confirmed during the subsequent video-tracking analysis.
A video camera placed above the water maze recorded
the animal’s behavior and thereafter an automated system
(Smart, Panlab S.L., Barcelona, Spain) enabled computerized
measurement of the distance traveled by the animal during
the trials. The swimming speed (cm/s) of the mice during
each trial was calculated. In the probe trial, the time
spent in each of the four quadrants, the distance traveled
along them, and the number of crossings over the removed
platform position (annulus crossings) were also measured
retrospectively by means of the automated video-tracking
analysis.

Neuropathological Analysis
Brain damage was analyzed by histological analysis at
PND90 (Shrivastava et al., 2012). Mice were i.p. anesthetized
(ketamine and xylazine 80/10mg/Kg) and perfused using
4% paraformaldehyde in phosphate buffer (PB, pH 7.4).
Subsequently, brains were postfixed for 4 h in the same
fixative, cryoprotected in 30% sucrose, frozen with dry CO2,
and finally stored at −80◦C until use. Brains were serially
cut in a cryostat (Leica CM3050 S) in 30µm thick sections
and stored in −20◦C mounted on Flex IHC slides (Dako).
To determine the injury score, slides were processed for Nissl
staining. One series of parallel sections from each animal
(6–10 mice/survival time) was air dried at room temperature
for an hour, rinsed and incubated with Nissl solution (0.1%
toluidine blue in walpole buffer 0.2M and pH 4.5) at room
temperature for 3 min and washed with distilled water. Sections
were dehydrated, cleared in xylene, and coverslipped with
DPX.

Statistics
Results are expressed as means ± SEM. Repeated measures
ANOVA (RMA) with a 2× 2× 2 HI×NH× S factorial analysis
with HI, NH and S (sex) as main factors and within subjects A
(Age) or T (Time course) analysis was used followed by post hoc
tests. Two independent measures were analyzed with Student’s
t-test, while those obtained for the same animals at PND23 and
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PND70 were analyzed with paired t-test. Behavioral correlations
with brain damage were analyzed with Pearson’s correlation.
P < 0.05 was considered statistically significant.

RESULTS

Short and Long Effects of HI and Their
Counteraction by Handling
Neuropathological Analysis
HI and NH effects and HI × NH interaction were found
in the neuropathological analysis (Figure 2). No sex effects
were detected at the level of brain injury induced, as shown

by the injury scores and histological appearance (only males
shown). HI animals presented high injury scores as compared
to null values in the two control groups, sham and handled.
HI + NH animals were not exempt of injury (vs. sham
or handling, all F(1,65) > 7.9463, P < 0.009), but the total
score and that at the different neuroanatomical areas was
significantly decreased as compared to HI animals. When we
measured the injury scores in the different brain regions,
we observed that HI + NH males were different from
HI in most regions; however, in females, the significant
differences only appeared when we measured neocortex
and the corpus callosum (CC) atrophy (Student’s t-test, all
P < 0.04).

FIGURE 2 | Neuropathological analysis after hypoxic/ischemic (HI). (A) Drawing modified in Adobe Photoshop CS showing brain areas analyzed for quantification of
brain damage in the ipsilateral side. CX, cortex; CC, corpus callosum; H, hippocampus. (B) Nissl staining showing HI effects on the cortex, hippocampus and CC of
the contralateral (right side of the panel) and ipsilateral (left side of the panel) hemisphere 90 days after hypoxia. (C) Graphs show the changes in the total injury score
along with the injury score in different regions analyzed. HI males and females presented higher injury scores than sham and HI + NH mice when we analyzed total
injury score, the last ones were also different from sham. When we measured the injury scores in the different brain regions, we observed that HI + NH males were
different from HI in most regions; however, in females, the significant differences only appeared when we measured the CC atrophy. Results are presented as
mean ± SEM. Statistics: repeated measures analyses of variance (RMA), two-way ANOVA: “HI” Hypoxia effect; “NH” handling effect; “S” sex effect; “A” age effect
∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. Student t-test. ∗P < 0.05 vs. sham of the same sex; #P < 0.05 vs. handling of the same sex; §P < 0.05 vs. hypoxia of the
same sex.
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Somatic Development (Primary Screening)
Body Weight (BW) PND23–PND70–PND90
HI resulted in slower weight gain (Figure 3A) that was
sex-dependent and worsened with age (both P < 0.001). Less
weight gain was apparent in males since PND70, while in female
the differences were observed later, at PND90 (S×A, P < 0.001).
Handling was not able to reverse this HI effect.

Sensorimotor Functions and Motor Activity
(Secondary Screening)
Sensorimotor Functions (SMT)-PND23-PND70
At the sensorimotor level (Figure 3B), HI females showed
impairment of visual and hind limb extension reflexes, even
at PND23 and worsening at PND70, which was the same for
males of this age (all, P < 0.05). Prehensility, equilibrium and
coordination measured in the wire rod and hanger tests were
also found to be impaired and were in this order of severity
(P < 0.001, P < 0.01 and P < 0.05, respectively). Handling
was able to modulate the HI-induced impairment in reflex

responses and HI × NH interaction effects were observed in the
coordination and equilibrium. However prehensility (elements
of supports when holding from a hanger) was not improved by
handling.

Cylinder Test (CYT)—PND23
In the CYT (Figure 4) HI increased the incidence of unimpaired
paw preference in both males and females, (P < 0.001) and
handling was able to reserve this effect, but only in males
(P < 0.05). However, the detailed analysis of the use of the
paws (used alone, alternatively, both at a time and the total
number of vertical rearings) indicated that NH exerted beneficial
effects also in females, as they showed an increased number
of rearings using the impaired right arm, and were able to
alternate both arms (F’s(1,65) > 3.168, P < 0.05). Latency of
first self-grooming behavior showed a clear sex-dependent effect,
with females being faster in the expression of this emotivity-
related behavior. All the other groups, showed fast elicitation
of it, too. However, in the male sex, the total number of
episodes made a difference between HI-animals and those with
NH or HI+NH. It is also important to note the appearance of

FIGURE 3 | (A) Somatic development [postnatal day (PND)23–PND90] and (B) sensorimotor functions (PND23–PND70). Short- and long-effects of HI in males and
females C57BL6 and effects of neonatal handling (NH). Results are presented as mean ± SEM. HI animals presented slower weight gain, with male being more
sensitive than female; handling could not reverse the hypoxia’s effect. At sensorimotor level, HI impaired visual and hindlimb reflexes, which were first shown in
females (PND23). Equilibrium, prehensility and coordination were also affected. Handling modulated the impaired reflex responses and an interaction with HI was also
seen in other sensorimotor functions. Statistics: RMA, two-way ANOVA: “HI” Hypoxia effect; “NH” handling effect; “S” sex effect; “A” age effect ∗P < 0.05,
∗∗P < 0.01, and ∗∗∗P < 0.001, followed by Duncan’s post hoc test. ∗P < 0.05 vs. sham of the same sex; #P < 0.05 vs. handling of the same sex; §P < 0.05 vs.
hypoxia of the same sex; sP < 0.05 female vs. male of the same treatment. Paired t-test comparison day 23 vs. day 70, aP < 0.05.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 February 2019 | Volume 13 | Article 7

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Muntsant et al. Handling Protects Perinatal Brain Injury

FIGURE 4 | Cylinder Test (CYT): short- and long-effects of HI in males and females C57BL6 and effects of NH. HI of both genders and HI + NH females presented
higher paw preference scores (>50%) which indicate a greater reliance on the ipsilesional limb. Moreover, these groups presented a greater number of left rearings
and H + NH female also presented more alternate left and right contacts. When we measured the total rearings performed, handling and HI + NH males presented
the higher scores. Latency of first self-grooming behavior showed a clear sex-dependent effect, with females being faster in the expression of this emotivity-related
behavior. All the other groups, showed fast elicitation of it, too. However, in the male sex, the total number of episodes made a difference between HI-animals and
those with handling or HI+NH. Latency of pop-corn behavior was shorter in groups with handling, reaching statistical significance in handled males. Statistics: RMA,
two-way ANOVA: “HI” Hypoxia effect; “NH” handling effect; “S” sex effect; “A” age effect ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001, followed by Duncan’s post hoc
test. ∗P < 0.05 vs. sham of the same sex; #p < 0.05 vs. handling of the same sex; §P < 0.05 vs. hypoxia of the same sex; sP < 0.05 female vs. male of the same
treatment.

burst, attempts to initiate the self-grooming, as a characteristic
of HI-males, that was restored to normal levels in HI+NH
(F’s(1,65) > 2.37, P < 0.05). Latency of pop-corn behavior was
shorter in groups withNH, reaching statistical significance inNH
males (P < 0.05).

Spontaneous Motor Activity Test (ACT)–PND23
At PND23 in the spontaneous motor ACT, the time course
and total motor activity counts recorded in a 30 min period
indicate that HI increased the horizontal component of activity in
males (vs. sham, P < 0.05) and that NH counteracted this effect

(Figure 5). However, HI+NH females presented an increased
activity. Like in the CYT, NH males presented a significant
increase in rearings in comparison to sham, HI female and
HI+NHmale (P < 0.05).

Non-Cognitive and Cognitive Functions
(Tertiary Screening)–PND70–PND90
Corner Test (CT) and Open Field (OF)
Significant effects of HI, NH and S were found in the CT
(Figure 6A). Horizontal activity measured by numbers of
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FIGURE 5 | Spontaneous motor ACT: short- and long-effects of HI in males and females C57BL6 and effects of NH. Motor activity (PND23). Horizontal activity in
ACT was increased in HI males and HI + NH females; however, the vertical activity was higher in handling males. Statistics: RMA, two-way ANOVA: “HI” Hypoxia
effect; “NH” handling effect; “S” sex effect; “A” age effect ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001, followed by Duncan’s post hoc test. ∗P < 0.05 vs. sham of the
same sex; #P < 0.05 vs. handling of the same sex; §P < 0.05 vs. hypoxia of the same sex; sP < 0.05 female vs. male of the same treatment.

corners visited was reduced in HI and HI + NH mice. Vertical
activity was also influenced by hypoxia and handling, with
these animals showing higher latencies to perform a first
rearing and a reduction in the total number of rearings (all
F’s(1,65) > 5.457, P < 0.05). HI males were more neophobic
than sham and HI females; NH and HI+NH animals of
both genders were also more neophobic than their respective
shams.

In the OF Test, the ethogram (sequence of behavioral events)
was faster in sham, handled males and females and only in
HI and HI+NH females reaching the statistical significance in
most of the latencies studied (all P < 0.05). Accordingly, the
1st minute of test was the most sensitive showing HI, NH
and G differences with HI × NH, HI × S and NH × S
interactions (F’s(1,65) > 5.038, P < 0.05), especially in vertical
activity. Regarding the locomotor activity, HI effects with
NH × S and HI × NH × S interactions were showed
when we study the total vertical activity (F’s(1,65) > 7.401,
P < 0.05). HI males performed less rearings than sham,
HI+NH males and HI females while HI+NH females performed
lesser rearings than sham, HI and NH females (P < 0.05).
Moreover, in total horizontal activity, HI males performed
lower number of crossing than HI females (P < 0.05)

No differences in self-grooming or defecation were recorded
(Figure 6B).

Dark-Light Box Test (DLB)
HI effect was observed when we measured the number of
entrances into the lit area (Figure 6C), where HI males and
HI+NH females exhibited reduced number of entries. Stretch
attendance activity reflected HIxS and HIxNHxS interactions (all
F’s(1,65) > 4.154, P < 0.05). HI males also presented a reduced
number of stretch attendance in comparison with sham and HI
females. No more significant anxiety changes were detected in
the other variables.

T-Maze Test (TM)
No changes in working memory were apparent in the TM.
Differences in the first latency to reach the intersection
(Figure 6D) were found with significant HI effect and NHxS
interactions (all F’s(1,65) = 5.326, P < 0.05). The highest latency to
reach the intersection point of the TM was observed in HI+NH
females as compared to other counterparts. Moreover, HI males
presented a higher first T-latency in comparison with sham,
although there is no significant difference. HI male also spent
more time reaching the intersection.
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FIGURE 6 | Corner test (CT). OF. DLB. TM: short- and long-effects of HI in males and females C57BL6 and effects of NH. Non-cognitive functions were evaluated
during PND70–PND90. Results are presented as mean ± SEM. (A) The neophobia in the CT was increased in hypoxia males and in both handling and HI + NH
males and females. HI induced anxiety-like behavior in the OF (B) that lead to reduced exploratory activity with males being mostly affected. The anxious profile could
be also observed in several variables measured by DL (C) were HI males and HI + NH females performed fewer entrances into the lit area. Moreover, HI males
presented also fewer number of stretch attendance. Finally, in the TM (D) the highest values in the first T-latency were spent by HI + NH female, although there’s no
significant difference, HI male also spent more time to reach the intersection. Statistics: RMA, two-way ANOVA: “HI” Hypoxia effect; “NH” handling effect; “S” sex
effect; “A” age effect ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001, followed by Duncan’s post hoc test. ∗P < 0.05 vs. sham of the same sex; #P < 0.05 vs. handling of
the same sex; §P < 0.05 vs. hypoxia of the same sex; sP < 0.05 female vs. male of the same treatment.

Morris Water Maze (MWM)
Figure 7A illustrates the ‘‘day-by-day’’ (left panel) and ‘‘trial-
by-trial’’ (right panel) acquisition curves. All days presented the
temporal effect (all F’s(1,65) = 9.319, P< 0.001), especially in place

task learning, when the cue was removed and the platform was
hidden, animals exhibited different acquisition curve. The HI
and HI + NH animals found the hidden platform slower along
the 4 days of the test as showed by a longer distance covered
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FIGURE 7 | MWM: short- and long-effects of HI in males and females C57BL/6 and effects of NH. Cognitive functions were evaluated during PND70–PND90.
Results are presented as mean ± SEM. Mean distance to reach the platform in the cue and place tasks for spatial learning. All days presented time effect. (A)
Cognitive deficits were observed in the MWM in both sexes with reduced total learning capacities (acquisition of the task) and worse short and long-term learning. In
HI mice a reduction of the mean distance covered to find the platform could be recorded in both “trial-by-trial” and “day-by-day”, especially in place tasks learning
and were mainly important in HI males. Memory in HI males was more clearly affected than females in the MWM, however it was modulated by handling (B) In the
probe trial for short-term memory, hypoxia males did not distinguish between the trained quadrant (P) and the adjacent (Ar, Al) or the opposed one (O) presenting a
random swimming while handling (male and female) and HI + NH male presented a scanning swimming. Finally sham (male and female), HI and HI + NH female
presented a focal searching swimming due they distinguish between the trained quadrant and the rest of the quadrants. The number of annulus crossings was also
fewer in HI and HI + NH males. Statistics: Duncan’s post hoc test. ∗P < 0.05 vs. sham of the same sex; #P < 0.05 vs. handling of the same sex; §P < 0.05 vs.
hypoxia of the same sex; sP < 0.05 female vs. male of the same treatment. Preference for the trained quadrant (P) as compared to adjacent right (Ar) and left (Al) or
Opposite (O) quadrants in the probe trial. ANOVA, “Q” preference for trained quadrant. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001; followed by Duncan’s post hoc test
∗P < 0.05 vs. P quadrant, oP < 0.05 vs. O quadrant. n.s. non-significant statistical differencs is found.

to find the platform in comparison to sham mice (HI and S
effects; HI × NH, HI × S and HI × NH × S interactions,
F(1,65) > 3.908, P < 0.05). Memory in HI males was more
clearly affected than females in the probe trial of the MWM
(Figure 7B) for short-termmemory. HImales did not distinguish
between the trained quadrant (P) and the adjacent (Ar, Al) or the

opposed ones (O) presenting a random swimming. In contrast
handled (male and females) and HI+NH males presented a
scanning swimming. Finally, sham (male and female), HI and
HI+NH females presented a focal searching swimming as they
distinguished between the trained quadrant and the rest of the
quadrants (Lang et al., 2003; all P < 0.05). Although we observed
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FIGURE 8 | Neuroanatomical correlates of short- and long-term behavioral effects of HI in males and females C57BL/6 and those of NH. The graphical abstract
summarizes the strongest neuroanatomical-behavioral correlations (P < 0.01) found in males (55 variables) and females (17 variables). This distribution, indicates that
in spite of similar injury score, the NH was more effective restoring functions in males and that they were those related to the cognitive domains. In contrast, the
domain of non-cognitive function was the more benefited in HI + NH females.

FIGURE 9 | Graphical abstract of sex- age- and task-dependent behavior impact of HI brain injury and its modulation by handling.

that this memory effect in males was modulated by handling, HI
and HI + NH males presented a worse performance when we
analyzed the annulus crossing in comparison to sham (HI effect
F(1,65) = 17.047, P < 0.001, post hoc Duncan’s test, all P < 0.05).

Correlations Analysis
In a matrix of 175 × 9 (behavioral × injuries score) variables
studied, we performed a meaningful correlation analysis (see

Figure 8) between those variables where HI showed a deleterious
effect and/or handling an effect (see Figure 9). Neonatal handled
and sham animals were excluded from this analysis, since
injury score was null. As detailed in Figure 8, the strongest
correlations (P < 0.01) were found in 55 cases in male variables
as compared to 17 cases in females. This distribution indicates
that in spite of a similar injury score, the NH was more
effective in restoring functions in males and within those
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related to the cognitive domains. In contrast, the domain
of non-cognitive function was improved more in HI + NH
females.

DISCUSSION

The present work addresses the short and long-term behavioral
and functional impact of neonatal HI brain injury in a term
(PND7) mice model using a longitudinal approach and
taking into consideration sexual dimorphism. It also provides
evidence of a remarkable neuropathological protection elicited
by NH. This tactile and proprioceptive sensory stimulation
was administered to mice from PND1, a temporal frame
modeling premature children, when the human immature
brain is at increased risk of HI injury, mostly in males.
NH not only ameliorated the behavioral outcomes and
functional capacities but also showed differences in a sex-
age- and task-selective manner. Several levels of study were
considered from behavior to neuropathology, including key
areas of clinical interest such as BW, sensorimotor function,
physical/motor activity, emotionality, cognitive function
and finally brain pathology in different neuroanatomical
regions. The evaluation of these risk/protective events studied
at weaning and adulthood indicates that benefits observed
in the developmental outcome also result in long-term
sustained effects, which contributes to their translational
interest. Besides, the results indicate that even with similar
HI-induced brain injury scores, interaction effects with
sex are important to be taken into consideration when
assessing the outcome of preventive and/or therapeutic
strategies.

In contrast to most studies describing detailed
neuropathological changes in the rat model, here we provide
the neuropathological tissue damage at 90 days, and the
neuroanatomical distribution in both male and female
C57BL/6 mice strains. In agreement with a devastating
early PBI insult, the histopathological analysis of HI brains
provided evidence of the severity of the experimentally
induced brain injury, and the histopathological protection
conferred by NH intervention. PBI is considered as one of
the major contributors to perinatal morbidity and mortality.
Here, the mean index of postnatal mouse mortality due to
surgery or hypoxia was 19.31%, with 18.46% for males and
20.00% for females, showing no statistical differences between
sexes.

High variability in size and severity of the infarct between
animals is a significant drawback of the HI experimental model
(Vannucci and Vannucci, 2005; Millar et al., 2017). It seems that
sex, severity, time of injury or even the brain lateralization of
the lesion can significantly affect the outcome of Rice-Vannuci
model (Lubics et al., 2005; Sanches et al., 2013b, 2015). In this
regard, it is noticeable that, in the present work, theHI-procedure
induced homogeneous total injury scores and neuroanatomical
distribution in both sexes. Most importantly, this allowed us
to highlight the capacity of NH to reduce the injury score in
most of the areas, albeit not all of them reached statistical
significance.

In contrast to other early life interventions studied in the
literature, we unveil for the first time a relevant sex-dependent
improvement of NH on HI, with HI + NH males being
more responsive than females. This is important to note
since sex differences have been considered in recent years. It
has been reported that male infants are more vulnerable to
perinatal insult than female infants, and they also suffer more
long-term cognitive deficits. Males showed increased risk of
development disorders, including speech and language, autism,
learning disabilities and cerebral palsy compared to females
(Donders and Hoffman, 2002; Rutter et al., 2003; Marlow
et al., 2005; Tioseco et al., 2006; Hill and Fitch, 2012). Some
authors also refer that being ‘‘male’’ has been identified as a
universal risk factor for the incidence of neonatal stroke as
well as developmental delays (Elsmén et al., 2004; Peacock
et al., 2012; Månsson et al., 2015). Moreover, after pediatric
traumatic brain injury, girls demonstrate a significantly better
outcome in tests of learning and memory (Donders and
Hoffman, 2002; Hurn et al., 2005). In our present work, HI
males showed a worse performance in the memory test as
compared to HI females and the improvement induced by NH
in HI males was supported by better levels of hippocampal
preservation.

Behavioral and functional phenotype assessment was
performed using a three-stage protocol (Giménez-Llort et al.,
2002). The somatic development was evaluated as primary
screening, and BW was used for that. Feeding dysfunction and
nutritional problems has been associated with poor growth and
health status in children with cerebral palsy and neurological
impairment (i.e., Reilly et al., 1996; Sullivan et al., 2000;
Fung et al., 2002). Experimentally, the few number of studies
addressing this issue has shown lower daily weights in HI rats
(Andiné et al., 1990; Balduini et al., 2001; Lubics et al., 2005;
Girard et al., 2012). Here we found differences in growth rate
of HI mice that worsened with age and were long-lasting. The
results also indicate that in males sex BW was more sensitive to
the impact of HI than in females, who exhibited lower weight
later in adulthood. This was in agreement with the sex-dependent
vulnerability that we found in the behavioral outcome.

The secondary screening evaluated the sensorimotor
functions and motor activity. Strength, motor coordination
and several reflex responses (righting, geotaxis, gait and cliff
aversion) were reported as impaired after HI insult in rats and
mice (Ten et al., 2003; Fan et al., 2005; Lubics et al., 2005;
Karalis et al., 2011). Here, other sensorimotor tasks such as
the visual and extension reflexes, prehensility or grasping,
equilibrium and coordination were found also impaired by HI.
Again, for the first time, we show the relevance of ‘‘sex and
age’’ factorial interaction as well as the comparative degree
of functional severity. Spontaneous functional recovery in
motor coordination and righting, geotaxis and gait reflexes
were found in some of those previous works (Lubics et al.,
2005; Karalis et al., 2011). In our case, in spite of the high
maturation of motor systems in adults, these tasks were more
demanding for them, due to increased body size vs. the rods
widths. This could explain that functional motor recovery was
only seen for HI-induced hyperactivity in males. Thus, HI-males
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spontaneously returned to the normal values shown by sham
animals, but deficient reflexes were still evident at 70 days of
age.

On the other hand, this persistence of sensorimotor
impairments until adulthoodmakes the beneficial effects induced
by NH more remarkable, mostly in the reflex responses. This
early life tactile and proprioceptive sensory stimulation reversed
not only the impairment in reflexes but also exerted beneficial
effects on coordination and equilibrium. Senses of touch,
balance and proprioception are the first of the seven sensory
systems developed during ontogeny. Thus, in the present work,
the improvement of the vestibular system can be considered
a notorious effect of NH, as compared to sensory outputs
achieved in other studies (Paolucci et al., 2015). It is likely
that the handling protocol, that involves the animals being
held by the experimenter and the pups individually resting
in the cage, may constitute a scenario where the vestibular
system is challenged, trained and reinforced. In fact, early
tactile and vestibular stimulations were postulated as crucial
for motor behavior development (i.e., Labarba et al., 1974;
Clark et al., 1977) with the maturation rate of inhibitory
systems (Oakley and Plotkin, 1975) as a hypothesis to explain
hyperexcitability stages, such as the pop-corn behavior shown
by mice (Wahlsten, 1974) and as also observed here, in terms of
emotional behaviors, which can be modulated by sensorimotor
training (Caston and Lateurte, 1997). In agreement with the
pyramid of learning postulated by Taylor and Trott, 1991 (as
cited in Williams and Shellenberger, 1994), an improvement
in the sensory integration dysfunction induced by HI, mostly
in males, should also facilitate the improvement in learning
capacities, as shown by our results. In the histological analysis,
the injury score of the underlying neuroanatomical areas was
reduced, but further experiments with detailed evaluation of
these areas will provide clues about this sensory integration
hypothesis.

Regarding the motor development, although some authors
have described no impairment in the CYT (Sanches et al., 2013a),
most of them reported that HI causes a preference to use the
unimpaired forepaw (Grow et al., 2003; Chang et al., 2005; Jones
et al., 2008; Kim et al., 2008; Lee et al., 2010; van Velthoven
et al., 2010; van der Kooij et al., 2010; Pazos et al., 2012), as
was also shown in the present work. In agreement with literature
(Fan et al., 2011, 2013), no differences between male and female
were observed. The poorer motor skills in children with neonatal
encephalopathy compared to control could be related with the
size of the CC (Van Kooij et al., 2008). This is important to note,
since in the present work the CC is the area that shows, in both
sexes, a statistical significant reduction of injury score in mice
receiving NH.

The tertiary screening assessed locomotor activity and
non-cognitive functions. It is well established that hippocampal
areas are highly vulnerable to HI, and that hippocampal injury
leads to hyperactivity (Shen et al., 1991). Most of the studies
report that HI mice present hyperactivity in spontaneous ACTs
or in the OF test (Balduini et al., 2000, 2001; Ten et al.,
2004; McAuliffe et al., 2006; Arteni et al., 2010; Schlager et al.,
2011; Rojas et al., 2013). Lubics et al. (2005) also detected

that although HI were more active; when locomotion requires
a higher level of coordination, mice can be hypoactive. Short
test duration (Chou et al., 2001) and assessment in the light
period (Antier et al., 1998) can also elicit reduced activity in HI
rodents, probably because under these conditions they reflect an
anxiogenic response. Thus, in the present work we show that
the expression of neophobia and anxiety-like behaviors depend
on the anxiogenic conditions of the test. In mild anxiogenic
conditions the animals were found hyperactive, exhibiting a
hyperexcitability stage, while with higher illumination they
showed reduced exploratory activity. This was consistent with
the behavioral responses shown in the other tests (the DLB
and the performance in the long arm of the TM) and is
also in agreement with other works (Girard et al., 2009, 2012;
Carletti et al., 2012; Sanches et al., 2013a,b; Soares et al.,
2013).

Academic performance and intellectual abilities are important
aspects in children with neonatal encephalopathy (Robertson and
Finer, 1988, 1993; Moster et al., 2002; van Handel et al., 2007).
At a translational level, cognitive impairment has been reported
many times, especially in the MWM. Learning impairments
(Young et al., 1986; Ikeda et al., 2001; Ten et al., 2003; de Paula
et al., 2009; Arteni et al., 2010) related to a longer time to escape
in ischemic group (Balduini et al., 2001; Chou et al., 2001; Ten
et al., 2004; Ikeda et al., 2006; Huang et al., 2009) and memory
dysfunction in the probe trial (Ten et al., 2003, 2004; Huang et al.,
2009). Like us, no impairments in swimming ability or speed
have been observed in injured animals (Ikeda et al., 2001, 2006;
Arteni et al., 2003). Arteni et al. (2010) described lateralized and
sex-dependent behavioral and morphological effects of unilateral
neonatal cerebral HI in the rat. In other works (Ikeda et al., 2001;
Arteni et al., 2003) only animals that suffered a right HI injury
performed worse in the working memory tasks. This lateralized
effect could explain why, in our case, working memory is not
affected in HI animals.

To the best of our knowledge, there are no reports
regarding sex differences in the functional recovery following
HI in neonatal handled animals. Nesting environment (Mason
et al., 2018), rehabilitative training (Tsuji et al., 2010)
or early-life interventions based on environmental rearing
conditions (Pereira et al., 2007, 2008; Fan et al., 2011; Rojas
et al., 2013, 2015; Nie et al., 2016; Schuch et al., 2016) that
share mechanisms of action with NH (Fernández-Teruel et al.,
2002), also show sex-specific neuroprotection patterns. In these
works, the sex differences analyzed in the recovery of HI after
environmental enrichment or rehabilitative training in rats,
described partial recovery in working memory in adolescent
rats (Pereira et al., 2008) and improved swimming time and
length in females but not in males after rehabilitative training
(Tsuji et al., 2010). Thus, it is remarkable to note that the
above mentioned studies showed sex-specific neuroprotection
patterns, but with female sex as the most resilient, while males
seemed to be less responsive to the interventions. On the
other hand, different protocols for maternal separation lead to
distinct behavioral outputs, from behavioral protection without
morphological changes (Chou et al., 2001) or reduction of
hippocampal CA volume (Lehmann et al., 2002) to worsening
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of the effects of neonatal HI (Tata et al., 2015). In other
experimental models of aging, neurological and psychiatric
diseases, NH has also demonstrated positive effects in behavior,
such as a reduction of anxiety-like behavior or an improvement
in learning and memory (Levine and Otis, 1958; Alasmi et al.,
1997; Gschanes et al., 1998; Raineki et al., 2014). Also, we have
previously shown that NH has long-term effects on reducing
the impact of N-Methyl-D-aspartate (NMDA) excitotoxicity,
reducing the incidence of seizures, their number and severity
in rats psychogenetically selected for high- and low-avoidance
(Fernández-Teruel et al., 2002). Furthermore, we have proved
that the behavioral outcome in brain damage related to
Alzheimer’s disease can be modulated by NH, in both males
and females at adulthood (Cañete et al., 2015) and even at very
advanced stages of disease in 17-month-old triple-transgenic
mice (Torres-Lista and Giménez-Llort, 2015).

Many studies reported morphological, biophysical and
biochemical changes following HI brain insult, especially in
ipsilateral cerebral cortex, hippocampus, striatum and thalamus,
after arterial occlusion (Towfighi et al., 1991; Huang and
Castillo, 2008 ; and our own precedent work Shrivastava
et al., 2012), but there is scarcity of data to understand
the consequential behavioral changes. Similarly, although
morphological neuroprotective action in the hippocampus was
reported after tactile stimulation (Rodrigues et al., 2004), no
behavioral outcomes were evaluated. Therefore, in the present
study, we also aimed to estimate the translation of the injury
score on function for both risk (HI) and protection (NH)
interventions. We looked for meaningful correlations related to
behavioral variables, showing the functional impact of damage
due to brain injury and its protection by NH. On the one
hand, the analysis of neuropathological correlates shows that
the level of damage induced/restored, measured in terms of
atrophy, neuronal densities or cellularity in the affected areas,
can be functionally correlated with behavioral variables. On
the other hand, the behavioral correlates referred to changes
in the five main behavioral domains of the pyramid of
learning (i.e., physical/motor, sensory, behavioral, emotional
and cognitive). The analysis identified the hippocampus as
the most affected area, which could explain why it was
difficult to completely reverse all the cognitive deficits in
females. Caudate/putamen, thalamus and CC showed the
highest percentages of prevention that may underline the better
behavioral outcome in tasks dependent on these areas.

Concerning the translation of the experimental NH
administered to mice from PND1, it could model an early
tactile and proprioceptive sensory stimulation implemented
on preterm infants. Since the functional sensory response of
preterm children is immature (Fitzgerald, 2005), the clinical
benefits may apply more specifically to older preterm infants
(>30 weeks gestational age) or HI infants post hypothermia
treatment. The neuroprotective effect of early-life stimulation
could also be important during the pregnancy or prenatal
period, as considered by Netto et al. (2018) and Durán-Carabali
et al. (2017). At the clinical level, the standard of care in
cases of moderate to severe HIE is therapeutic hypothermia
which has been demonstrated to increase long-term survival

without disability (Tagin et al., 2012). Despite the efficiency of
hypothermia, it is not enough to prevent all injury or neurological
symptoms. Brain damage in term newborn infants therefore
remains a clinical problem due to there being limited therapeutic
outcomes and since research is constrained by obvious ethical
limitations. The therapeutical approaches investigating how to
prevent or minimize the consequences of the HI insult have
reported efficacy of handling depending on the severity of the
damage (Chou et al., 2001). In our study, we demonstrate for the
first time that, under similar injury conditions, males are the sex
with better responsiveness to this early life intervention, mostly
at the neuropathological level, as shown by the injury scores
and the different number of areas protected. To a lesser extent,
this protective effect on the neuropathological consequences of
HI insult also has a functional impact on the behavioral output.
This was shown by the better performances in some tasks and
the neuropathological correlates that point out distinct neuronal
substrates underlying the sex- and age- related functional
impacts of these risk/protection interventions on sensorimotor,
behavioral and cognitive outcomes from ontogeny to adulthood.

In conclusion, HI brain damage affected motor development
and sensorimotor functions, and induced hyperactivity at
weaning; anxiety-like behaviors and cognitive deficits during
the adulthood in a sex- and age-selective manner. At the
functional level, handling reversed the impaired reflex responses
and allowed improvement in memory performances in the
hippocampal-dependent spatial learning test (MWM), in males.
At an individual level, remarkable neurological protection
elicited by NH correlated with improved functional capacities.
Strong correlations were found between the sensorimotor,
behavioral and cognitive outcomes and the injury scores based
on atrophy, neuronal densities and cellularity in the different
affected areas (hippocampus, caudate/putamen, thalamus,
neocortex and CC). These neuropathological correlates point
at distinct neuronal substrates underlying the functional
capacity to meet task-dependent performance demands and
neuroanatomical targets for recovery. Overall, the present
results provide evidence on a therapeutical potential of early
life interventions based on tactile and proprioceptive sensory
stimulation in the newborns with brain injury. It supports those
in the literature who defend the benefits of perinatal rearing
conditions as being important to be considered as adjuvant to
the current treatments. Moreover, it shows a sex-specificity that
benefits male sex, who were more at risk and reported to be less
responsible to most interventions.
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