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Alcohol use Disorder (AUD) is one of the leading causes of morbidity and mortality
worldwide. The progression of the disorder is associated with the development of
compulsive alcohol use, which in turn contributes to the high relapse rate and poor
longer term functioning reported in most patients, even with treatment. While the
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) defines AUD by a
cluster of symptoms, parsing its heterogeneous phenotype by domains of behavior
such as compulsivity may be a critical step to improve outcomes of this condition.
Still, neurobiological underpinnings of compulsivity need to be fully elucidated in AUD
in order to better design targeted treatment strategies. In this manuscript, we review
and discuss findings supporting common mechanisms between AUD and OCD,
dissecting the construct of compulsivity and focusing specifically on characteristic
disruptions in habit learning and cognitive control in the two disorders. Finally,
neuromodulatory interventions are proposed as a probe to test compulsivity as key
pathophysiologic feature of AUD, and as a potential therapy for the subgroup of
individuals with compulsive alcohol use, i.e., the more resistant stage of the disorder.
This transdiagnostic approach may help to destigmatize the disorder, and suggest
potential treatment targets across different conditions.

Keywords: alcohol use disorder, compulsivity, obsessive compulsive disorder, habit learning, cognitive control,
neuromodulation, transcranial magnetic stimulation

INTRODUCTION

Alcohol use disorder (AUD), a problematic pattern of alcohol use accompanied by clinically
significant impairment or distress (American Psychiatric Association, 2013), is one of the leading
causes of morbidity and mortality worldwide (GBD 2016 Alcohol Collaborators, 2018). Globally,
with 100.4 million estimated cases, AUD was the most prevalent substance use disorder (SUD)
in 2016, with 99.2 million and three quarters of all substance use-attributable disability-adjusted
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life-years (DALYs). In the United States, 12-month and lifetime
AUD prevalence is, respectively, estimated to be up to 14 and
30% of the adult population, with 9.8% of all deaths attributable to
acute or chronic alcohol use (World Health Organization, 2018).

Despite there being effective treatments available, only an
estimated 21.3 and 34.7% of patients with severe (≥6 DSM
criteria) 12-month and lifetime AUD seek treatment in the
United States (Grant et al., 2016). Further, high rates of
relapse and poor longer term functioning are reported in
the minority of patients that get some treatment (Maisto
et al., 2018). This is particularly true for the subgroup of
individuals with severe AUD (Tuithof et al., 2013), that is
also characterized by a longer duration of untreated AUD,
a lower level of spontaneous recovery as well as higher rates of
psychiatric comorbidity (Grant et al., 2016; Saha et al., 2018).
In addition to low rates of treatment utilization, AUD is indeed
a heterogeneous disorder (Jellinek, 1960; Moss et al., 2007) and
current therapeutic approaches are not developed to address this
clinical variation. Hence, the magnitude of the therapeutic effect
of the available AUD interventions is, overall, relatively modest
(Kranzler and Soyka, 2018).

Next to the need to educate the public and policy makers in
order to destigmatize the disorder and increase treatment rates
(Keyes et al., 2010), the gaps in research and clinical care call for
a shared framework to further characterize this heterogeneous
disorder and lead to the development of new therapeutics,
ultimately giving the clinician a biologically based roadmap to
guide assessment and prioritize treatment (National Institute
on Alcohol Abuse and Alcoholism, 2017). In this direction, the
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
has implemented an Alcohol Addiction Research Domain
Criteria (AARDoC) in order to identify specific domains relevant
for alcohol addiction (Litten et al., 2015). Recently, incentive
salience, negative emotionality and executive function have been
proposed as key dimensional domains for the assessment of
SUDs and AUD, which map onto the three stage cycle of the
development of addiction over time (Koob and Le Moal, 1997;
Koob and Volkow, 2016; Kwako et al., 2018). The three stage cycle
(Koob and Le Moal, 1997) represents a model that provides an
understanding of the development of AUD overtime, and may
help organize research in AUD complementing the atemporal
RDoC framework. The three stage cycle is consistent with the
conceptualization of alcohol addiction as an aberrant form of
learning, where alcohol exposure leads in time to alteration in the
neurocircuitry underlying stress response, reward and cognitive
functioning, all of which ultimately leads to compulsive substance
use (Wise, 1987; Di Chiara, 1999; Berke and Hyman, 2000; Everitt
et al., 2001; Lubman et al., 2004). Hence, compulsive drug seeking
has been identified as the central, defining property of alcohol
and substance use disorders (Wise and Koob, 2014; NIAAA;
National Institute of Drug Abuse). The development of repetitive
drug patterns of use, in turn, has been proposed as a main
pathophysiologic factor contributing to the high relapse rates
characteristic of addiction (Heyman, 2013).

While the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) defines AUD by a cluster of symptoms,
parsing its phenotype by domains of behavior, such as

BOX 1 | Definitions.
Compulsivity The experience of the urge to perform an overt or

covert behavior in a stereotyped manner that persists
despite lack of goal orientation resulting in not valuable
or adverse consequences.

Habit (Stimulus-
Response
associations)

Habitual responses that are directly triggered by stimuli
and are defined by insensitivity to their consequences.
The S-R associations that mediate habits have been
reinforced either by past experiences with reward or
by the omission of aversive events.

Goal directed
behavior
(Response-Outcome
associations)

Behavior that is mediated by knowledge of the casual
relationship between the action and its outcomes and
that is performed when the consequences actually
constitute a rewarding goal. The goal-directed system
exerts control over habits in light of new information.

Inhibitory Control It is a cognitive mechanism that includes exerting
control over both goal-directed, reward-seeking
(impulsive) and automatic (compulsive) actions.

Reward The subjective salience value of a stimulus that has
the potential to induce goal directed behavior.

Incentive salience A form of non-cognitive wanting triggered by
reward-related cues and characteristic of the transition
from hedonic to habit like compulsive drug seeking;
it is explained by conditioned reinforcement of
drug-related cues.

Relapse Spontaneous recurrence of a learned behavior
(i.e., compulsive drug use) after a given period
of extinction.

compulsivity, may be a critical step to improve outcomes of this
condition. On the other hand, neurobiological underpinnings
of compulsivity still need to be fully elucidated in addiction
-and AUD in particular- in order to design specific targeted
treatment strategies.

Compulsivity (Box 1) is a construct that encompasses motor,
cognitive, affective and motivational processes. Multiple models
have addressed the central question regarding the transition
from casual to compulsive drug use over the development
of addiction. The traditional hedonic/withdrawal hypothesis of
addiction explained compulsive drug use as earlier pleasure
seeking and later attempts to avoid unpleasant withdrawal
symptoms (Koob and Le Moal, 1997, 2001), but this could not
fully explain the high rates of relapse after long period of drug
abstinence (Robinson and Berridge, 1993, 2000). More recently
this theory has been complemented by models showing how
other phenomena take place in the development of addiction,
such as incentive sensitization (Robinson and Berridge, 2003),
aberrant learning (Robbins and Everitt, 2002), and loss of
cognitive control (Jentsch and Taylor, 1999). At the brain
connectivity level, these phenomena have demonstrated to map
onto limbic-cortico-striatal networks (Ma et al., 2010), with
important overlap with neuroimaging findings in OCD (van den
Heuvel et al., 2016).

Following the characterization of the neural basis of
compulsivity developed in the field of Obsessive Compulsive
Disorder (OCD) research, we discuss the findings supporting
common mechanisms between AUD and OCD, focusing on
specific aspects of the construct, namely habit learning and
cognitive control. Finally, neuromodulatory interventions are

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 April 2019 | Volume 13 | Article 70

https://www.frontiersin.org/journals/behavioral-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-13-00070 May 8, 2019 Time: 15:39 # 3

Burchi et al. Compulsivity in Alcohol Use Disorder

proposed as a probe of this hypothesis and as a potential therapy
for the subgroup of individuals with AUD who demonstrate
compulsive alcohol seeking and use, i.e., the later more
severe stage of AUD. In particular, deep transcranial magnetic
stimulation (dTMS), recently approved by the Food and Drug
Administration to treat compulsivity in OCD, is specifically
discussed as a promising non-invasive intervention to treat
compulsivity in AUD.

Such a transdiagnostic approach aims to destigmatize AUD,
and to help clarify common pathophysiological mechanisms
underpinning compulsive behavior across different disorders
(Fineberg et al., 2016; Gillan et al., 2016). Consistent with a need
for new paths of research in the field of treatments for addictions,
the ultimate aim of this manuscript is to highlight and discuss
the scientific rationale supporting the development of evidence
based treatments for compulsivity in AUD, eventually as a model
for other disorders of addiction.

THE HABIT MODEL OF COMPULSIVITY

Compulsivity has been defined as a behavioral trait in
which actions are persistent and repeated despite adverse
consequences (Robbins et al., 2012) (Box 1). An initial hypothesis
regarding compulsive behavior in OCD -where compulsivity
has traditionally found its paradigmatic expression- purported
that it represents a goal-directed process associated with a
“cognitive bias” or disrupted assignment of value toward
available alternative behaviors which are performed to reduce the
likelihood that a feared consequence will take place (Salkovskis,
1985; Rachman, 1997). Later, OCD was conceptualized as a
disorder of maladaptive habit learning (Graybiel and Rauch,
2000) on the basis of overlap between the frontostriatal circuits
underlying repetitive behavioral habits and OCD (Alexander
et al., 1986). Data from subsequent preclinical and clinical studies
have actually elucidated the neural basis of habit formation in
humans or the transition from goal-directed to habitual behavior
as a shift away from signaling in ventral associative frontostriatal
circuits comprising ventromedial prefrontal cortex (vmPFC),
medial orbitofrontal cortex (mOFC) and caudate, toward that
in dorsal sensorimotor frontostriatal circuits, including posterior
putamen and premotor cortex (Balleine and O’Doherty, 2010;
Gillan and Robbins, 2014). In particular, estimated white matter
strength in the vmPFC seeded from the caudate have been found
to predict flexible goal-directed action, while estimated white
matter tract strength in the premotor cortex seeded from the
posterior putamen predicts vulnerability to habitual behavioral
control in healthy humans (de Wit S. et al., 2012). Patients
with OCD consistently exhibit a cognitive bias toward habit
learning over goal-directed behavior (Gillan et al., 2011, 2014;
Vaghi et al., 2019) associated with relative higher task-related
activity in dorsal vs. ventral striatum and weakened resting state
caudate-ventrolateral prefrontal cortex (vlPFC) and putamen-
dorsolateral prefrontal cortex (dlPFC) connectivity (Banca et al.,
2015; Vaghi et al., 2017). In particular, decreased activity in
caudate-prefrontal circuits accompanied by hyperactivation of
subthalamic nucleus/putaminal regions have been associated to

symptom generation in OCD (Banca et al., 2015). Hyperactivity
of putamen preceded deactivation during avoidance/relief events
indicating a pivotal role of the putamen in regulation of behavior
and habit formation in OCD (Banca et al., 2015). Consistently,
task dependent functional connectivity during goal-directed
planning showed reduced hypoactivation of the right dlPFC
coupled with reduced functional connectivity between this latter
and the putamen (Vaghi et al., 2017). Other findings indicate a
dissociation between actual behavior and subjectively reported
action-outcome knowledge, reinforcing the notion that OCD
may be driven by a disrupted goal-directed system over habitual
response, rather than by dysfunctional beliefs (Vaghi et al., 2019).
This diminished outcome sensitivity has also been associated with
diminished caudate-parietal connectivity (Harrison et al., 2013).

Based on these studies, evidence favors the habit hypothesis
for compulsivity in OCD: this model posits that rather than
goal-directed avoidance behaviors, compulsions are a result of
excessive habit formation (Gillan and Robbins, 2014; Burguière
et al., 2015). Irrational threat beliefs (obsessions) characteristic of
OCD may be a consequence, rather than a cause, of compulsive
behavior. In other words, obsessions may be an attempt to resolve
the discrepancy between patients’ value attribution and their
cognitively inexplicable urge to perform compulsive responses to
determined stimuli.

Notably, deficits in goal-directed control and over–reliance on
habits are a model of compulsivity that is applicable to other
psychiatric disorders where compulsions feature prominently
(Hollander, 1993; Hollander and Wong, 1995; Fontenelle et al.,
2011; Voon et al., 2015) in particular to drug addiction (Robbins
and Everitt, 1999; Gerdeman et al., 2003; Everitt and Robbins,
2005; Hogarth et al., 2013).

HABIT HYPOTHESIS OF
COMPULSIVITY IN AUD

Compulsivity and Habit
Learning in Addiction
Drug addiction has been defined as representing a dysregulation
of motivational circuits caused by development of aberrant
incentive salience and habit formation, accompanied by
compromised executive function over the use of the substance
(Koob and Volkow, 2016). Such trajectory correlates with a
progression from reward-driven to habit-driven drug-seeking
behavior overtime (Koob and Le Moal, 2005; Everitt and
Robbins, 2013).

Borrowing from the habit hypothesis of OCD, the experience
of “wanting” the drug, progressively detached from the
experience of “liking” it (Berridge and Robinson, 2016), may
be understood as post hoc cognitive rationalizations of a goal-
insensitive, stimulus-driven behavior (Gillan and Robbins, 2014).
While the expectancy of reward may be crucial to initiate drug
self-administration in the early stage of the disorder, the drive
toward consumption of the drug triggered by the cue becomes
quite indipendent from the expectancy of pleasure in the late
stages of the disorder. Thanks to conditioned reinforcement,
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over time the “wanting” for the drug becomes triggered by the
incentive motivational properties of drug cues, independently of
a cognitive desire for a declarative goal (Berridge and Robinson,
2016). This shift in phenomenology has been associated with a
cascade of neuroadaptations that engage the dorsal striatal habit
system over the ventral striatal loop of reward and motivation
mediated by phasic dopamine release in the dorsolateral striatum
(see for review of clinical studies Volkow and Fowler, 2000;
Newlin and Strubler, 2007; Dolan and Dayan, 2013; Grant and
Kim, 2014; Koob and Volkow, 2016). In particular, translational
studies have shown how a gradual progression from hedonic
to habitual and compulsive drug use over time (i.e., a gradual
progression from a response that is first dependent and then
independent from evaluation of the relationship between action
and outcomes eventually becomes a response despite adverse
consequences) is associated with (i) habit overlearning and
(ii) parallel reduction in goal-directed behaviors and inhibitory
control that correspond to a shift in recruitment of ventral
to dorsal regions of the striatum (Yin et al., 2004; Belin and
Everitt, 2008; Balleine et al., 2009; Lesscher and Vanderschuren,
2012; Willuhn et al., 2012). Intermittent drug–induced dopamine
(DA) signaling promotes the ability of drug-paired cues to
increase DA levels and recruit striatal-globus pallidal-thalamo-
cortical loops that engage the dorsal striatum. This shift from
a system dedicated to updating predictions of value (ventral)
to a system dedicated to the optimization of reward-related
responses (dorsal) augments progression through the addiction
cycle and helps explain craving and compulsive drug use
(Koob and Volkow, 2016).

Compulsivity and Habit Learning in AUD
A confluence of preclinical and clinical data strongly supports
that the pathogenesis of AUD involves a shift from associative
striatum (caudate) to sensorimotor striatum (posterior putamen)
in response to alcohol reward responding, likely driven
by simultaneous reductions in goal-directed control over
actions and increase in habit associations. Learning about
response-outcome (R-O) associations has been investigated
using instrumental learning paradigms (Balleine and Dickinson,
1998). In instrumental discrimination tasks, which have been
developed to distinguish between goal-directed and habit-based
learning (de Wit et al., 2007), stimuli (or cues) are congruent,
unrelated or incongruent with subsequent outcomes. Whereas
performance (or learning) on congruent and control trials can
be supported by both the goal-directed (S-R-O) and habitual
system (S-O), performance on the incongruent discrimination
(in which each pictures functions as a stimulus and an outcome
for opposing responses) relies solely on the habit system.
The dominance of habitual control over flexible goal-directed
responding has traditionally been assessed using revaluation tests,
by manipulating outcome value and observing consequent effects
on response (Dickinson, 1985). In a typical outcome devaluation
methodology (Adams, 1982), after a training phase, the value
of the reinforcer of action (O) is typically reduced (extinction
phase) affecting internal or external motivational states, and the
experimenter assesses if the behavior (R) appropriately updates,
in light of this change, measuring the strength of the R-O

association. An alcohol addiction model study conducted in rats
showed that instrumental alcohol seeking became insensitive
to devaluation after 4 weeks of training, mirrored by a shift
in control from the dorsomedial striatum to the dorsolateral
striatum (Corbit et al., 2012). Another preclinical study using the
instrumental learning paradigm showed how alcohol reinforced
behavior was less sensitive to devaluation compared to when
behavior was reinforced with food, suggesting that alcohol
consumption may be particularly susceptible to habit formation
(Dickinson et al., 2002). An fMRI clinical study using a cue-
reactivity paradigm showed significantly higher cue-induced
activation of the dorsal striatum in heavy drinkers compared
to social drinkers and higher cue-induced activation of ventral
striatum and prefrontal areas in social drinkers compared to
heavy drinkers (Vollstädt-Klein et al., 2010). These findings
were interpreted as an indirect indication of a shift from
ventral to dorsal striatal involvement in the development of
AUD, associated with the increasing role of habit–like drug
seeking behavior over the course of the disorder. Another
clinical study using neuroimaging and learning tasks showed
how early abstinent patients presented greater habit formation
compared to controls and a progressive shift toward greater
goal-directed behaviors with prolonged abstinence (Voon et al.,
2015). Another study conducted in AUD patients was the first
providing direct behavioral and neurophysiological evidence for
an imbalance between goal-directed and habitual control in
humans with a substance use disorder (Sjoerds et al., 2013).
Subject underwent fMRI during completion of an instrumental
learning task characterized by a discrimination learning phase
and an outcome-devaluation test phase designed to study the
balance between goal-directed and habit learning: patients with
AUD compared to healthy controls showed a strong engagement
of the neural habit pathway, comprising dorsolateral/posterior
parts of the striatum (posterior putamen, caudate tail/body) and
a relatively weak engagement of the goal-directed pathway in the
vmPFC and dorsomedial/anterior parts of the striatum (caudate
head, anterior putamen) during instrumental learning even in the
context of AUD-irrelevant stimuli. Moreover, vmPFC activation
was negatively associated with AUD duration. Another study
investigating the effects of alcohol on devaluation sensitivity
for food reward suggested a general effect of alcohol toward
habit-formation (Hogarth, 2012).

All these studies give direct (Sjoerds et al., 2013) and indirect
(Dickinson et al., 2002; Vollstädt-Klein et al., 2010; Corbit et al.,
2012; Hogarth et al., 2012) demonstration of a shift from ventral
to dorsal striatal involvement in the development of AUD,
associated with an increasing role of habit–like drug seeking
behavior over the course of the disorder. Moreover, alcohol
consumption has demonstrated to be particularly susceptible to
habit formation over other reinforcers (Dickinson et al., 2002)
and it has also shown to exert a general direct effect toward
habit-formation attenuating goal directed control over action
selection (Hogarth, 2012).

Of note, habit circuitry, including the dorsolateral striatum,
is also implicated in punishment resistance (Jonkman et al.,
2012), characteristic feature of compulsive behaviors, namely
behaviors performed in spite of adverse consequences. Indeed,
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it is important to notice that the construct of “habit”
doesn’t completely overlap with the construct of compulsivity,
where habitual alcohol use involves behavior that continues
despite outcome devaluation, whereas compulsive alcohol use
encompasses continued use despite adverse consequences (Hopf
and Lesscher, 2014; Marchant et al., 2018). Studies investigating
neural correlates of compulsive alcohol seeking using rodent
model of aversion-resistant alcohol seeking showed involvement
of mPFC, insula and nucleus accumbens (Seif et al., 2013) and
hyperactivation of these areas have been found in heavy drinkers
as opposed to light drinkers when viewing threat-paired alcohol
cues (Grodin et al., 2018).

Next to extensive preclinical evidence suggesting overlap
in the striatal regions involved in habitual and compulsive
behavior (Everitt and Robbins, 2005; Belin et al., 2009;
Pierce and Vanderschuren, 2010; Jonkman et al., 2012; Seif
et al., 2013), a recent study conducted on rats for the first
time demonstrated the causal importance of the functional
recruitment of the anterior dorsolateral striatum (aDLS), a region
strongly associated with the consolidation and performance
of stimulus-response habits (Yin et al., 2004; Zapata et al.,
2010; Corbit et al., 2012), in the switch from controlled to
compulsive alcohol use (Giuliano et al., 2019). This study
found that individual differences in the reliance of alcohol
seeking habits on aDLS dopamine predict and underlie the
emergence of compulsive alcohol seeking, providing first
evidence that compulsive alcohol seeking stems from an
inability to disengage aDLS control over seeking behavior
when faced with negative outcomes. This result shows that
the maladaptive nature of alcohol seeking in those individuals
that become compulsive lays in the rigidity of those aDLS
dopamine-dependent habits.

Compulsivity and Cognitive
Control in AUD and OCD
From a neurocognitive point of view, AUD is characterized
by an imbalance between overwhelming drive toward alcohol
consumption and inability to inhibit alcohol consumption, i.e.,
a disruption in cognitive control over alcohol use (Baler and
Volkow, 2006; Jentsch and Pennington, 2014; Koob and Volkow,
2016). The RdoC domain of cognitive control is defined as a
modulatory system that supervises all the activities in the service
of goal-directed behavior, when prepotent modes of responding
are not adequate to meet the demands of current context.
Cognitive (or effortful) control encompasses the ability to select
relevant stimuli, inhibit responses influenced by distracting
elements, select appropriate responses, monitor the outcome of
those responses, and adjust behavior as needed in the face of
changing situations.

Despite well documented dysfunctions across multiple
cognitive functions (Stavro et al., 2013), deficits in response
inhibition have been proposed as the most promising marker
of cognitive control impairments measured by behavioral
tasks in AUD (Wilcox et al., 2014). Response inhibition,
a subdomain of cognitive control and defined as the ability
to suppress a pre-potent behavior that is inappropriate or no

longer required, has been typically assessed using a range of
neuropsychological paradigms including those measuring motor
response inhibition (further differentiated into action restraint
and action cancelation) and cognitive inhibition (interference
control) (Bari and Robbins, 2013). It has been suggested that
interference control, action restrain and action cancelation
represent early, intermediate and late processes of response
inhibition (Sebastian et al., 2013). It has also been proposed
that inhibitory control is highest in the action cancelation,
making of the Stop Signal Task (SST) the more sensitive task
to measure inhibitory control, tapping both impulsivity and
compulsivity traits (Smith et al., 2014). In a SST, a “stop”
signal appears after the onset of a “go” signal on a subset of
trials, requiring the participant to interrupt an ongoing motor
response to the go signal that has already been triggered, and
the primary dependent measure is the stop-signal reaction time
(SSRT). Significant deficits in response inhibition have been
observed for all tasks in AUD (Karch et al., 2008; Li et al.,
2009) especially using the SST (Smith et al., 2014). Typically, task
dependent functional connectivity studies have demonstrated
that frontostriatal pathways are critical for response inhibition
that is weakened over the progression of AUD: individuals
with more severe AUD exhibit impaired connectivity between
dorsal striatum and anterior cingulate cortex (ACC), mPFC
and mOFC (Courtney et al., 2013; Lee et al., 2013). Studies
investigating response inhibition have then further demonstrated
the importance of dlPFC-dorsal striatum connectivity for
behavioral regulation in AUD especially in the late stage of the
disorder (Schulte et al., 2012; Courtney et al., 2013; Müller-
Oehring et al., 2013). Moreover, impaired response inhibition
in AUD has been related to more intense cue-induced alcohol
craving (Papachristou et al., 2013). Importantly, impairments in
response inhibition may help differentiate AUD subtypes and
predict clinical outcomes (Nigg et al., 2006; Saunders et al., 2008;
Schuckit et al., 2012).

In the past several years, deficits in response inhibition
have also been described and associated to disrupted functional
activations in frontostriatal circuits in OCD involving pre-
supplementar motor area (pre-SMA), inferior frontal gyrus,
ACC, striatum, thalamus (Maltby et al., 2005; Penadés et al.,
2007; Roth et al., 2007; Woolley et al., 2008; Page et al., 2009;
de Wit S.J. et al., 2012; van Velzen et al., 2014) and proposed
as a neurocognitive endophenotype in OCD (Chamberlain
et al., 2007; Menzies et al., 2008; de Wit S.J. et al., 2012).
Evidence in both OCD and AUD suggests that disruptions of
indirect cortico-striatal-thalamic-cortical (CSTC) pathways may
mediate both compulsive behaviors and failure in response
inhibition (Table 1) (Aron and Poldrack, 2006; Chambers
et al., 2009; Aron, 2011). However, the use of behavioral tasks
to dissect cognitive control has some limitations, hampering
insights into integrated global brain functioning in non−task
related circumstances, which contributes to behavioral variability.
Techniques such as a priori defined seed−based connectivity
help to elucidate how striatal brain areas are integrated into
a broader functional network and how that is related to
the duration and severity characteristics of alcohol addiction
(Schmaal et al., 2013; Müller-Oehring et al., 2015; Galandra
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TABLE 1 | Fronto-striatal functional connectivity and cognitive control in AUD and OCD.

AUD OCD

Resting state functional connectivity studies

• mOFC-dorsal striatum functional connectivity, increases and normalizes in
correlation with the duration of abstinence (Lee et al., 2013).

• Synchrony within the reward network (subgenual ACC, caudate, nucleus
accumbens, and thalamus) and within the executive control network (dlPFC,
ACC, and nucleus accumbens), respectively, decreases and increases with
progression from short to long-term abstinence (Camchong et al., 2013).

• Decreased global brain network efficiency and less anterior striatal segregation
are associated with prolonged alcohol dependence (Sjoerds et al., 2017).

• Functional connectivity between the basal ganglia and the dlPFC and dACC
nodes is significantly reduced compared to control reflecting the amount of
alcohol consumption (Galandra et al., 2019).

Task -dependent functional connectivity studies

• Abnormal connectivity between the dlPFC and striatum predicts impairments
in learning (Park et al., 2010) and response inhibition (Schulte et al., 2012;
Courtney et al., 2013; Müller-Oehring et al., 2013).

• Synchrony between the PCC and cerebellum is decreased at rest compared to
control but increased during a working memory task indicating compensatory
networking to achieve normal performance (Chanraud et al., 2011).

• Functional connectivity is decreased between PCC and middle cingulate but
increased between the midbrain and middle cingulate/MSA and between the
midbrain and putamen during Stroop task compared to controls
(Schulte et al., 2012).

• Functional connectivity between putamen, anterior insula, ACC, and mPFC
during SST is decreased compared to controls (Courtney et al., 2013).

Resting state functional connectivity studies

• Caudate-vlPFC and putamen-dlPFC connectivity is weakened compared to
control (Banca et al., 2015).

• Reductions in dmPFC and striatum Hyperconnectivity Accompany
Successful Treatment (Figee et al., 2013; Dunlop et al., 2016).

• Hypoconnectivity within frontoparietal (peaking into dlPFC) and salience
network (peaking supramarginal gyrus), and between salience, frontoparietal
and default-mode network compared to control (Gürsel et al., 2018).

• General dysconnectivity within default-mode (peaking in dmPFC and ACC)
and frontoparietal network (peaking in the striatum), as well as between
frontoparietal, default-mode, and salience networks compared to control
(Gürsel et al., 2018).

Task dependent functional connectivity

• Functional activations in frontostriatal circuits involving pre-SMA, inferior
frontal gyrus, ACC, striatum, thalamus are altered compared to control
during response inhibition tasks (Maltby et al., 2005; Roth et al., 2007;
Woolley et al., 2008; Page et al., 2009; de Wit S.J. et al., 2012; van Velzen
et al., 2014).

• Functional connectivity between dlPFC and putamen is reduced during goal
directed planning compared to control (Vaghi et al., 2017).

DS, dorsal striatum; dACC, dorsal anterior cingulate cortex; PCC, posterior cingulate cortex; mPFC, medial prefrontal cortex; mOFC, medial orbito frontal cortex; dlPFC,
dorso lateral prefrontal cortex; vlPFC, ventro lateral prefrontal cortex; SST, Stop Signal Task.

et al., 2019). A very recent study coupling resting-state fMRI
with an in-depth neuropsychological assessment of the main
cognitive domains (Galandra et al., 2019), gives support to
the hypotheses that cognitive impairments in AUD (Stavro
et al., 2013; Le Berre et al., 2017) are not explained by specific
susceptibility of frontal regions to alcohol neurotoxic effects,
but rather to dysfunctional connectivity between the cortical
(dlPFC and dACC) and subcortical (basal ganglia) nodes of the
networks underlying cognitive control on goal-directed behavior.
Indeed, while functional connectivity between the basal ganglia
and both the dlPFC and dorsal ACC (dACC) nodes was positively
related to executive performance in the whole sample, the
strength of the very same connections was significantly reduced
in patients reflecting the amount of alcohol consumption.
The significance of this decrease in connectivity has been
investigated by using a graph−theoretical approach, showing that
prolonged alcohol dependence is associated with decreased global
brain network efficiency and less anterior striatal segregation
(Sjoerds et al., 2017). These studies suggest that executive
impairment in AUD patients may reflect altered frontostriatal
connectivity which underpins top-down modulation of behavior
by mediating the switch between automatic and controlled
processing. While reward prediction error signal was found
intact suggesting proper behavioral options value decoding in
the striatum, impaired dlPFC-striatal connectivity has been
associated with abnormal processing of financial gains and losses,
suggesting that dysfunctional intrinsic connectivity might also
underpin defective behavioral learning during task-performance

in AUD (Park et al., 2010). Hence, alterations in frontostriatal
connectivity underlining impaired learning and decision making
may in turn contribute to characteristic poor treatment outcome
in AUD. Relapse in AUD has been associated with pronounced
atrophy in bilateral OFC, right mPFC and right ACC, impaired
connectivity between dorsal striatum and mOFC, and reduced
mPFC activation during goal-directed behavior (Grüsser et al.,
2004; Beck et al., 2012; Lee et al., 2013; Durazzo and Meyerhoff,
2017; Sebold et al., 2017). On the other hand, other studies have
underlined the association between abstinence and normalization
in frontostriatal circuits: mOFC-dorsal striatum functional
connectivity, impaired in alcohol-dependent patients, showed
to increase and normalize in correlation with the duration
of abstinence (Lee et al., 2013), and to be associated with a
progressive shift toward goal-directed behavior over habitual
control (Voon et al., 2015). With progression from short to
long-term abstinence, the synchrony within the reward network
(subgenual ACC, caudate, nucleus accumbens, and thalamus)
and within the executive control network (dlPFC, ACC, and
nucleus accumbens) were found to, respectively, decrease and
increase progressively (Camchong et al., 2013).

Meta-analysis of seed-based resting-state fMRI studies in
OCD found consistent hypoconnectivity within frontoparietal
(peaking into dlPFC) and salience network (peaking
supramarginal gyrus), and between salience, frontoparietal
and default-mode network (Gürsel et al., 2018); consistent
general dysconnectivity was found within default-mode (peaking
in dmPFC and ACC) and frontoparietal network (peaking in the
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FIGURE 1 | Schematic diagram of dACC circuitry implicated in modulation of cognitive control. BA, Brodmann’s area; DLPFC, dosolateral prefrontal cortex; IPL,
inferior parietal lobule; LC, locus coeruleus; SMA, supplementary motor area; VTA, ventral tegmental area.

BOX 2 | Cognitive control and the potentiality of targeting the dACC. Within the RDOC construct of cognitive control and, more specifically the subdomain of
response inhibition/response selection, the neural network of the anterior cingulo-insular or salience network (aCIN) seems to be critically relevant (Downar et al.,
2016). The dACC stands midway along a hierarchy of medial prefrontal regions that guide goal selection, thought selection and action selection based on internal
drives as opposed to external cues. The dACC is active when choosing freely between to different cognitive tasks and during voluntary internally cued modulation of
emotional state (Downar et al., 2016). The anterior cingulate cortex (ACC) interfaces attention, executive function, drive, affect and motor control. Convergent data
from neuroimaging, neuropsychological, genetics, and neurochemical studies have implicated, bilaterally, dysfunction of dorsolateral prefrontal and anterior cingulate
cortical structures, which constitute the cortical arm of the frontostriatal network (caudate and putamen being its subcortical counterpart) driving executive function
(Solanto, 1984; Castellanos, 1997; Zametkin and Liotta, 1998; Giedd et al., 2001; Seidman et al., 2006; Makris et al., 2007), in cognitive dyscontrol. The ACC
(Brodmann’s area 24 or BA 24) is an important regulator of other cortical and subcortical brain regions as well, and its disconnection appears to be consistent with
an executive dysfunction. The ACC is connected with other cortical areas ipsilaterally and controlaterally as well as with subcortical structures. The topographic
organization of these axonal connections is precise within the subcortical white matter and architectonically arranged within the overlaying cortical layers of the ACC
(Figure 1). This mesh of connections converging to and diverging from the neuronal bodies of the ACC constitutes a central networking node within the overall
connectional map of the brain crucial for the interface of drive, emotion, cognition and motricity (Paus, 2001) as well as for the modulation of cognitive control (Cohen
et al., 2000). Short (U-fibers) and medium range association fibers connect BA 24 with adjacent cortical areas. The more complex long association fibers belong to
three discrete fiber bundles, namely the cingulum bundle (CB) (Mufson and Pandya, 1984), the uncinate fascicle (UF) (Petrides and Pandya, 1988) and the extreme
capsule (EmC) (Petrides and Pandya, 1988). Through these three fiber pathways the anterior cingulate cortex is connected in a bidirectional fashion as follows
(Schmahmann and Pandya, 2007). The CB connects BA 24 with rostral posterior cingulate BA 23, paracingulate BA 32 and orbital frontal BA 14, 12, and 11 as well
as prefrontal BA 8 and 6 (Baleydier and Mauguiere, 1980). Via the UF, BA 24 connects with subcallosal BA 25 and basal forebrain regions as well as the amygdala
and the perirhinal cortex. The EmC provides connections with the dysgranular insula and the insular proisocortex. Striatal fibers by virtue of the subcallosal fascicle of
Muratoff connect BA 24 to the caudate’s head and, through the external capsule, with the putamen and claustrum. Thalamic connections are with anterior, the
medial dorsal as well as the midline thalamic nuclei. Other connections are with the parahippocampus, the hippocampus, the zona incerta and the pons as well as
with the locus coeruleus and the ventral tegmental area (Paus, 2001). Motor connections are with the supplementary motor area, the motor cortex and the spinal
cord (He et al., 1995). Chronic failure of the ACC network may have profound implications contributing to deficit of cognitive control. Convergent evidence from fMRI
(Carter et al., 1998, 1999; Botvinick et al., 1999; Cohen et al., 2000) and evoked potential (Gehring and Knight, 2000) experimentation in humans suggest that ACC
is associated with monitoring of conflict and modulation of cognitive control as well as modulation of allocation of attention in real time. As illustrated in Figure 1,
interactions between the dorsolateral prefrontal (DLPFC), inferior parietal lobule (IPL), orbital frontal cortex (FOC), amygdala and brainstem centers such as the locus
coeruleus or the ventral tegmental area, enable the ACC to integrate sensitive information in real time to monitor conflict of competitive cognitive tasks, modulate
cognitive control and produce balanced behavior (Yeterian and Pandya, 1985; Cohen et al., 2000). It appears that alterations in the ACC and its associated
frontostriatal network (primarily the caudate nucleus and putamen being its subcortical counterpart), which are driving executive function, are critical in executive
dysfunction. Therefore, neuromodulatory interventions seem to be an important therapeutic means to modulate ACC function and restore balance in behavior when
cognitive control is lost in such conditions as AUD.

striatum), as well as between frontoparietal, default-mode, and
salience networks (Gürsel et al., 2018).

These findings match perfectly with the structures comprising
the CSTS circuits, namely OFC, ACC, vmPFC, striatum, and
thalamus (Pauls et al., 2014).

While the CSTC loop hypothesis has dominated the OCD
literature over the last decades (Alexander et al., 1986), as the
nature of integration has become apparent for the processing
of information in the striatum, such that information is carried

in “spirals,” rather than isolated “loops” (Milad and Rauch,
2012) more attention has been paid to potential “hubs” in the
neurocircuitry thought to underlie OCD.

The dorsal ACC has been proposed as a connective hub of
cognitive control (Shackman et al., 2011) in a ideal position to
receive sensory input and act on that information via downstream
motor regulation (Figure 1 and Box 2). Proposing cognitive
control as a main domain in OCD pathophysiology, dACC
dysfunction and consequent aberrant cognitive control signal
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specification has been proposed to drive the pursuit of tasks
that do not accord to long-term goal, underlying the core
pathophysiology of OCD (McGovern and Sheth, 2017).

Functional connectivity studies have suggested that cognitive
and behavioral alterations observed in AUD might reflect
functional imbalances within a CTST loop involving the key
nodes of the reward (Park et al., 2010; Camchong et al., 2013;
Müller-Oehring et al., 2013), salience (Sullivan et al., 2013; Zhu
et al., 2017) and executive networks (Weiland et al., 2014; Zhu
et al., 2017; Galandra et al., 2019), namely striatum, dlPFC, and
dACC. Activity of the cingulate cortex is also emerging as a
marker of subsequent alcohol relapse (De Ridder et al., 2011;
Zakiniaeiz et al., 2016).

NEUROMODULATORY STRATEGIES TO
TARGET COMPULSIVITY IN AUD

State of Art in the Treatment of AUD
A variety of therapeutical approaches are currently available for
AUD, such as behavioral treatments, medications and mutual-
support groups (NIAAA treatment Navigator page). While,
due to the anonymous nature of mutual-support groups, it is
difficult to determine their success rates compared with those
led by health professionals, cognitive behavioral therapy (CBT),
motivational enhancement therapy (MET), marital and family
counseling and other brief interventions have demonstrated to
be beneficial in AUD. In addition to behavioral treatments,
there are currently three FDA approved medications for the
post withdrawal maintenance of alcohol abstinence, namely
disulfiram, naltrexone, and acamprosate (Kranzler and Soyka,
2018). Disulfiram works negatively reinforcing aversion toward
alcohol by inhibiting the enzyme acetaldehyde dehydrogenase
and resulting in unpleasant effects when combined with alcohol
(Mutschler et al., 2016). Naltrexone is an opiate antagonist
that is hypothesized to work buffering the endorphin-mediated
rewarding effects of alcohol (Mason et al., 2002). Acamprosate
was thought to reduce craving for alcohol by acting as GABA
agonist and modulator of glutamate NMDA activity, both
disrupted by chronic alcohol use (Mason et al., 2002) and
recent evidence suggests that its anti-relapse effects may act
via calcium (Spanagel et al., 2014). However, given the broad
distribution of neurotransmitter systems in the brain, it is
particularly difficult to have a targeted action on neural circuits
using pharmacotherapeutics.

Although a review of pharmacotherapy is out of the scope of
this paper and mechanisms of action have to be fully elucidated
(Koob and Mason, 2016), the available medications for AUD
mainly try to reduce the positive reinforcing properties of alcohol
or the negative reinforcing aspects of chronic alcohol use by
relieving craving (Heilig et al., 2010).

Research has provided evidence that the propensity to engage
in drug/alcohol-seeking is determined by the expected value
and probability of getting the drug (Hogarth, 2012). Whereas
the overall propensity to engage in a goal-directed choice is
determined by the expected outcome value of the outcome,
in habit learning the capacity of cues to elicit this choice is

determined by the expected probability of getting the outcome.
Hence, in habit learning, devaluing the outcome does not affect
the response. In other words, the actual treatments may have
partial efficacy because they may work on tonic (expected alcohol
value), but not on cue-elicited phasic DA signaling (Hogarth
et al., 2014). In order to improve treatment outcome, new
interventions should be developed to directly target inflexible,
habitual cue-elicited drug-seeking behavior.

Neuromodulation to Treat
Compulsivity in AUD
Following the conceptual framework outlined above, neuro-
modulatory interventions able to selectively target frontostriatal
circuitries may held therapeutic promise for the treatment of
compulsive alcohol seeking in AUD. Promisingly, effective
neuromodulatory interventions for compulsive symptoms
have been associated with normalization in connectivity
and restored behavioral control from the striatum to
prefrontal cortical regions (Mian et al., 2010; Figee et al.,
2013; Dunlop et al., 2016).

Whereas transcranial direct current stimulation (tDCS) needs
more investigation for the treatment of compulsivity given the
lack of sham controlled studies, repetitive Transcranial Magnetic
Stimulation (rTMS) (Box 2) as non-invasive and relatively site
specific, has been the most studied neuromodulation technique
in the treatment of compulsive behavior in both AUD and
OCD (Campbell et al., 2018; Shivakumar et al., 2019). As the
time of writing, there have been 10 studies probing rTMS
as a tool to change alcohol consumption and explore the
associated neurocircuit changes in AUD (Table 2). Different
outcome measures were used to assess the impact of different
stimulation protocols on relapse, wanting of the drug (“craving”),
cognitive control and associated funtional connectivity (Table 2).
Traditional rTMS studies targeting the right dlPFC had some
success at reducing alcohol craving (Mishra et al., 2010, 2015;
Herremans et al., 2015) in accordance with the results obtained
by a sham controlled tDCS study applied to the same area
(Boggio et al., 2008). To date, the majority of interventional
rTMS studies in OCD have been conducted stimulating the
dlPFC as well, with mixed results. On the other hand, the
most recent meta-analysis to assess whether the effectiveness
of rTMS in improving OCD symptoms is moderated by its
application over different cortical targets revealed that rTMS
applied over the SMA yields greater improvements than rTMS
applied over the dlPFC or OFC (Rehn et al., 2018). This
therapeutic effect has been attributed to the normalization
of hyperactive orbito-fronto-striatal circuits induced by low
frequency-rTMS (LF-rTMS) (Mantovani et al., 2010). The SMA
plays a central role in motor planning and response-inhibition
(de Wit S.J. et al., 2012) and has extensive connections to
regions involved in cognitive and emotional processes. Studies
suggest that hyperactivity in this area may be associated with
deficient inhibitory control over repetitive behaviors (Oliveri
et al., 2003), thus making it an attractive target for the inhibitory
effects of LF-rTMS. The efficacy of neurosurgical treatments
for the treatment of resistant OCD patients suggests other
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promising deep targets for treating compulsivity. Stereotactic
lesions in the dACC (cingulotomy) have shown long term
efficay in the treatment of refractory OCD with average full
response of 41% (Sheth et al., 2013; Brown et al., 2016).
Based on good results with stereotactic ablation, Deep Brain
Stimulation (DBS) has been explored and DBS of anterior and
ventral capsule, ventral striatum or subthalamic nucleus (STN)
has shown a global percentage of responders of 60.0% with
long-term efficacy (Bais et al., 2014). Stimulation of STN has
been reported to decrease OFC and mPFC metabolism, as well
as ACC activity, while stimulation of striatal areas has been
associated with decrease in OFC and subgenual ACC activity
(Alonso et al., 2015).

Despite the limited number of cases examining DBS in
patients with AUD, DBS of the nucleus accumbens has shown
long term treatment benefit, reducing alcohol craving for up to
8 years associated with modulation of anterior mid−cingulate
cortex functioning and cognitive control (Kuhn et al., 2011;
Müller et al., 2016). In light of the striking results obtained
with DBS of striatal areas and the evidence of aDLS dopamine
dependent alcohol seeking (Giuliano et al., 2019), the recent
development of new coils designed to target deep cerebral
areas with rTMS, may be particularly interesting, avoiding the
complications and adverse events related to invasive techniques
and possibly gaining some of their therapeutic advantages.
Indeed, there is already evidence that cortical stimulation with
deep TMS (dTMS) may modulate sub-cortical striatal activity in
AUD (Addolorato et al., 2017). While rTMS proved to indirectly
modulate the insula and the ACC by stimulating the dlPFC
(Nahas et al., 2001) or the frontal pole (Hanlon et al., 2017),
H coil design series now promise to target these deeper structures
directly, with greater effectiveness. A recent big randomized study
investigated the efficacy of dTMS in OCD (Carmi et al., 2018):
after provocation of symptoms, 99 treatment resistant OCD
patients were treated with either high frequency (HF) or sham
dTMS over the mPFC and ACC for 6 weeks and 29 sessions.
Despite the lack of neuroimaging, this study conveys relevant
results in terms of response rate (38,1%) and maintenance
(4 weeks follow up) and to date it is the largest TMS controlled
study ever conducted in OCD which led to FDA approval to
market the dTMS system for treatment of OCD.

In addition, the mPFC and ACC have been associated
with initiation of compulsive behavior in OCD (Rauch et al.,
1994; Adler et al., 2000; Viol et al., 2019), they have also

been individuated as core regions activating during alcohol
cue processing (Heinz et al., 2009; Zakiniaeiz et al., 2016;
Grodin et al., 2018; Hanlon et al., 2018) and may be considered
as promising new targets for dTMS in AUD (Ceccanti et al., 2015;
Herremans et al., 2016).

SUMMARY AND PERSPECTIVE

Findings suggest that later stages of AUD may be better
conceptualized as a disorder characterized by compulsive
features, namely overreliance on stimulus-driven habits at the
expense of flexible, goal-directed action, leading to frequent and
persistent substance use despite serious negative consequences
(Belin and Everitt, 2008; Fontenelle et al., 2011). In other
words, although alcohol seeking is initially a goal-directed
behavior consolidated by operant conditioning, in which alcohol
is sought for its rewarding effect, it becomes ultimately a
maladaptive optimized response elicited by alcohol-associated
stimuli, characterized by over-active striatal habit forming
circuitries coupled with lack of sufficient inhibitory control
(Chamberlain et al., 2005; Vanderschuren and Everitt, 2005;
Menzies et al., 2008; Smith et al., 2014). As seen in OCD, there
is a lack of extinction of obsessions (Lovibond et al., 2009),
in AUD there is disruption in extinction learning of ethanol-
seeking behavior with persistency of the behavior overtime
despite adverse consequences (Gass et al., 2017; Grodin et al.,
2018). Development of compulsivity may thus explain part of
the treatment resistance and relapse in AUD (Sinha et al., 2011;
Courtney et al., 2013; Lee et al., 2013). Despite the residual
presence of a reward component in driving the behavior, craving
for alcohol in the late stages of the disorder is comparable to a
compulsion, in phenomenology – in the emergence of urges in
response to alcohol-related cues and the inability to resist them-
and in neurocircuitry.

The field of cognitive neuroscience can provide measures
that are a reflection of the underlying neurobiology, and
may eventually inform treatment selection. Disruption in
inhibitory control has been proposed as endophenotype and
pathophysiologic factor in the development of OCD and AUD
(Chamberlain et al., 2007; Yücel and Lubman, 2007; Menzies
et al., 2008; de Wit S.J. et al., 2012; Jentsch and Pennington,
2014; Leeman et al., 2014; Wilcox et al., 2014; Gillan et al., 2016).
In particular, impaired response inhibition is associated with

BOX 3 | Repetitive transcranial magnetic stimulation as a tool for personalized psychiatry. In rTMS, single TMS pulses are delivered at various frequency (typically
1–20 Hz) in either a fixed or bursting pattern from 600 to 4000 pulses per session. There is general agreement that low frequency (LF) stimulation (e.g., 1 Hz) causes
long term depression of cortical excitability, whereas higher frequency (HF) stimulation (e.g., 10–20 HZ) induces long term potentiation of cortical excitability. These
effects can be achieved through teta burst stimulation (TBS). With continuous TBS (cTBS), three pulse bursts at 50 Hz are applied at a frequency of 5 Hz. In most
protocols, this cycle continues until 600 pulses have been delivered (20 s). For intermittent TBS (iTBS), bursts are applied at the same rate (five groups of three pulse
bursts per second) for 2 s, followed by an 8-s pause. In most protocols this 10-s cycle occurs until 600 pulses have been delivered (190 s). When performed over
the primary motor cortex, 600 pulses of cTBS inhibit cortical excitability, whereas 600 pulses of iTBS amplify cortical excitability (Huang et al., 2005). The advantage
of TBS protocols is that effect sizes comparable to fixed frequency protocols can be achieved significantly faster (1–2 min versus 20–30 min). The spatial resolution
and penetration depth of a TMS pulse depend on the coil. Typical figure-of-eight coil affects approximately 10 cm2 of cortical surface, while H shape coil design
approximately 100 cm2. Most flat coil designs have penetration depths from 1 to 2 cm, whereas the H-coil designs has higer depths of 2–3 cm (Deng et al., 2014).
The introduction of H-coils has offered the opportunity of non-invasively modulate activity in brain targets that previously were accessible only by neurosurgial
procedures. The combined use of neuronavigation and neuroimaging with rTMS, makes of this latter a feasible therapeutic tool for personalized psychiatry.
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severity, duration of illness, impaired goal-directed planning
and reduced frontostriatal connectivity in AUD. These findings
suggest that in AUD response inhibition may be used as a useful
marker of cognitive impairment, disruption in connectivity
between frontal (dlPFC and dACC) and striatal nodes, as well as
a potential treatment target. Recent studies have demonstrated
how brain stimulation techniques may affect response inhibition,
suggesting how non-invasive neuromulation may be particularly
promising in order to develop treatments whose effect in
drinking outcome are mediated by improvement in cognitive
control (Nakamura-Palacios et al., 2012; Nardone et al., 2012).
Future work is still needed to clearly identify the most reliable
and valid markers for the deficits, and the degree to which
deficits or changes in cognitive control moderate or mediate
response to particular treatments in AUD. Recent findings
point to the hypotheses that cognitive impairments in AUD are
related to dysfunctional connectivity between cortical (dlPFC
and dACC) and subcortical nodes (basal ganglia). Thus, studies
aimed to characterize instrinsic resting state connectivity and
hubs in the reward, salience and executive networks in AUD
patients may be particularly useful for the development of new
treatment strategies.

Treatment with rTMS is still in its infancy but is a promising
tool for developing effective and viable circuit-specific treatment
strategies in AUD. The current evidence suggests that targeting
inflexible seeking responses may offer a therapeutic strategy to
promote abstinence and prevent relapse in AUD. The results of
the available studies, in accordance with recent network models
of addiction (Dunlop et al., 2017) seems to point to the potential
of mPFC and dACC (Box 3 and Figure 1) as TMS targets for the
treatment of compulsive alcohol seeking in AUD. The available
findings suggest that those areas may be pivotal in order to
enhance cortico-striatal-thalamic connectivity and capacity for
response selection/inhibition, with the potential to act on the two
core aspects of incentive salience and habit learning (Box 3 and
Figure 1). Future efforts to improve outcome for rTMS in AUD
will likely benefit from rigorous manipulation of the cognitive
state during neuromodulation.

CONCLUSION

Despite effective treatments that are available in AUD, there
remain high rates of relapse and poor long term functioning
even in those patients who get therapy. We describe evidence
supporting the role of compulsivity (persistent use despite
adverse consequences), in the development of AUD resistant

to approved interventions. Following a transdiagnostical
approach and using OCD as comparison, we highlight
features of compulsivity in AUD, showing how phenotypical
similarities between the two disorders involve overlapping
pathophysiological mechanisms. After identifying compulsivity
as a promising and neglected target domain for new treatment
approaches in AUD, we discuss neuromodulatory interventions
in order to improve recovery in AUD.

For disorders, such as AUD, whose development relies on
learning, rTMS gives the unique opportunity to non-invasively
act on target neurocircuits with the best space-time resolution.
The possibility to couple rTMS with specific tasks designed to
activate specific associated circuits allows unique opportunity for
personalized therapy. The current evidence seems to point to the
potential of mPFC and dACC as TMS targets for the treatment
of compulsive alcohol seeking in AUD. Further longitudinal
studies combining neuromodulation with neuroimaging and
neurocognitive measures are needed to shed light on additional
mechanisms underlying rTMS effects in AUD patients, and to
test the hypotheses that targeting compulsivity, the habit system
and inhibitory control, normalizing fronto-striatal function may
convey treatment benefit in AUD.

In conclusion, the conceptualization of AUD within a
dimensional and learning framework opens new opportunities
for research and clinical management:

• It underlines the importance of reducing the
duration of untreated illness in order to prevent
development of compulsivity, associated to resistance to
treatment and relapse.

• It guides the implementation of a stepped care approach,
that considers different diagnostic and treatment strategies
in relation to the stages of AUD, underlying the importance
of assessing and treating compulsivity.

• It supports recovery as a realistic goal, based on the
opportunity of modulating neuroplasticity.

• It supports the implementation of studies aimed
to investigate neuromodulation as a promising
treatment strategy.
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