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This study analyzes the learning styles of subjects based on their electroencephalo-
graphy (EEG) signals. The goal is to identify how the EEG features of a visual learner
differ from those of a non-visual learner. The idea is to measure the students’ EEGs
during the resting states (eyes open and eyes closed conditions) and when performing
learning tasks. For this purpose, 34 healthy subjects are recruited. The subjects have no
background knowledge of the animated learning content. The subjects are shown the
animated learning content in a video format. The experiment consists of two sessions
and each session comprises two parts: (1) Learning task: the subjects are shown the
animated learning content for an 8–10 min duration. (2) Memory retrieval task The EEG
signals are measured during the leaning task and memory retrieval task in two sessions.
The retention time for the first session was 30 min, and 2 months for the second
session. The analysis is performed for the EEG measured during the memory retrieval
tasks. The study characterizes and differentiates the visual learners from the non-visual
learners considering the extracted EEG features, such as the power spectral density
(PSD), power spectral entropy (PSE), and discrete wavelet transform (DWT). The PSD
and DWT features are analyzed. The EEG PSD and DWT features are computed for
the recorded EEG in the alpha and gamma frequency bands over 128 scalp sites. The
alpha and gamma frequency band for frontal, occipital, and parietal regions are analyzed
as these regions are activated during learning. The extracted PSD and DWT features
are then reduced to 8 and 15 optimum features using principal component analysis
(PCA). The optimum features are then used as an input to the k-nearest neighbor
(k-NN) classifier using the Mahalanobis distance metric, with 10-fold cross validation and
support vector machine (SVM) classifier using linear kernel, with 10-fold cross validation.
The classification results showed 97% and 94% accuracies rate for the first session and
96% and 93% accuracies for the second session in the alpha and gamma bands for the
visual learners and non-visual learners, respectively, for k-NN classifier for PSD features
and 68% and 100% accuracies rate for first session and 100% accuracies rate for
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second session for DWT features using k-NN classifier for the second session in the
alpha and gamma band. For PSD features 97% and 96% accuracies rate for the first
session, 100% and 95% accuracies rate for second session using SVM classifier and
79% and 82% accuracy for first session and 56% and 74% accuracy for second session
for DWT features using SVM classifier. The results showed that the PSDs in the alpha
and gamma bands represent distinct and stable EEG signatures for visual learners and
non-visual learners during the retrieval of the learned contents.

Keywords: EEG study, learning styles, visual learner, feature extraction, classification

INTRODUCTION

Human being growing in modern societies are exposed to
certain learning environment. The way an individual processes
information contributes toward an individual’s learning ability
(Kim et al., 2006). Many attributes are important in the learning
scene, such as intelligence, learning environment, learning
abilities (Stern, 2017) and learning style, among which learning
style is the most consistently studied (Koć-Januchta et al., 2017;
Yazici, 2017). Learning style is not a new concept, as it has
been a topic of discussion for years (Koć-Januchta et al., 2017).
Learning style is defined as an individual’s preferred way of
learning (Plass et al., 1998).

Researchers associate learning styles with the patterns of
information processing in the brain, known as cognitive styles.
The benchmarks to differentiate between the learning style
and cognitive style are defined as follows (Mayer and Massa,
2003): The style preferred by individuals for representing and
processing information is defined as a learning style. However,
the methods of representing and processing information by the
brain are classified under cognitive style. Researchers hypothesize
that a relation exists between the learning style and cognitive
style. The outcomes of the existing research clearly shows
that the information processing is linked to the preferred
learning style of an individual (Ahn et al., 2010). Thus, the
existing studies conclude that every individual has their own
preferred learning style.

Learning style is further broken down into learning style
models and learning style modalities (Ahmad and Tasir, 2013).
A theoretical coherence and a common framework for all
learning style models are lacking (Klašnja-Milićević et al.,
2016). However, different studies reported that learning styles
and preferences are constitutionally based on four learning
modalities: visual (seeing), auditory (hearing), kinesthetic
(moving), and tactile (touch) (Klašnja-Milićević et al., 2016).
Learning using technology, for example videos, can make
the learning process interesting and create an enjoyable
experience for the students (Abid et al., 2016). These are the
reasons why most educational models are based on visual and
auditory modalities.

Further, according to statistics, 65% of the population is visual
learners1 (Zopf et al., 2004). Visual learners learn by visual
reinforcements, such as videos contents (see text footnote 1)

1https://www.reference.com/education/advantages-disadvantages-visual-
learning-5ede107612d4e80

(Zopf et al., 2004). Many researchers have explored only the
visual verbal learning style of the visual modality; Felder’s
theory claims that the major leaning style is visual. Felder’s
theory has four dimensions. Each learner is characterized based
on its preference for each of these dimensions. The first
dimension discriminates between an active and a reflective way
of processing information. The second dimension is sensing
versus intuitive learning. The third, visual-verbal dimension
differentiates learners who remember best and therefore prefer to
learn from what they have seen (e.g., pictures, diagrams and flow-
charts), and learners who get more out of textual representations,
regardless of whether they are written or spoken. In the fourth
dimension, the learners are characterized according to their
understanding. Sequential learners learn in small incremental
steps and therefore have a linear learning progress. In contrast,
global learners use a holistic thinking process and learn in large
leaps (Felder and Silverman, 1988).

Learning styles, such as visual learning style, are highly
associated with brain patterns. Therefore, a person with a
visual learning style is observed to have lower cognitive load
when processing visual information. Visual learners are further
categorized into visual/verbal learners: when an individual’s
brain shows lower cognitive load while learning through written
material, such as words, he/she is categorized as a verbal
learner. Some interesting works have been carried out to
investigate the visual verbal learning style of learners with hearing
impairment. In such studies, researchers have primarily explored
the difference between the visual and verbal learners, which are
the two components of the visual learning modality, according
to Felder’s theory (Marschark et al., 2013). Another study is
conducted to investigate the visual attention of the learners when
a lecture is delivered using a power point presentation. This
study also investigates the visual and verbal aspects of the visual
modality (Yang et al., 2013). In addition, another study (Kim
et al., 2006) have reported that the number of visual learners is as
high as 80% when compared to the verbal learners among college
students. This study selected students with a visual learning
style using the Felder–Silverman’s index of learning style (ILS)
subjective measures. The above-mentioned studies are some of
the examples of studies relating to visual learning and other brain
activities using only subjective measures such as learning style
test. The learning style tests involve self-estimation of learning
style, which has bias in it. However, there exists a relationship
between learning and working memory (Hindal et al., 2009).
To do an independent analysis we explore this relationship to
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identify the learning style such as visual learners and non-visual
learners of the participant. Here, in our experiment the control
variable is Raven’s Advanced Progressive Matrices (RAMP) fluid
intelligence test. This analysis is independent of learning tests
purely looking at the brain patterns.

Suggesting learning style without considering brain pattern
can increase the cognitive load. The cognitive load of the learner
increased when information processing become complex for the
learner. Knowing the learning style can optimized the learning
and make it easier for students to understand the content. Also,
it is possible one thinks that they have certain learning style such
as visual, but in reality it’s just a learned behavior because that’s
the only method of learning known to them which might not
be according to their brain patterns, thus it’s important to find
suitable learning style based on brain patterns.

The electroencephalogram (EEG) (Teplan, 2002) is one of the
many tools that can be used for recording brain patterns while
performing mental activities or while resting.

The focus of this study is to differentiate the visual learners
from the non-visual learners using EEG. Here, we will discuss
how the EEG recording is interpreted by the researchers. In
general, the EEG signal is divided into five bands: alpha, beta,
delta, theta, and gamma (Amin et al., 2017). In this study, the
analysis is performed using the alpha and gamma bands. The
analysis of theta and delta band is the part of our future work.
The focus is on alpha and gamma because there exist a strong
association between alpha waves and gamma waves and learning
(Gruber et al., 2002; Grabner et al., 2017).

Alpha waves have a frequency range of 8–12 Hz. Changes in
the alpha frequency are observed during visual learning tasks
as well as during intelligence tasks. Alpha activity increases in
the frontal region and decreases in the right parietal and right
temporal regions during visual learning (Frederick et al., 2016;
Tóth et al., 2017).

Gamma waves have a frequency range of 30–80 Hz (Tseng
et al., 2016). Gamma waves are highly associated with high-level
visual information processing, such as visual learning (Jia and
Kohn, 2011). A decrease in the gamma band is observed in the
frontal location during visual learning. Therefore, many existing
studies are focused on gamma waves (Yao et al., 2017).

The objective of this study is to classify visual learner and non-
visual learner. For classification some meaningful information
is needed to be extracted from EEG recorded signals. Thus,
features such as PSD, PSE, and DWT are extracted to feed into
the classifier. We use: (1) PSD: which is useful when some key
features need to be extracted from EEG data (Hamzah et al.,
2016). The PSD feature is used by researchers (Amin et al., 2014)
for cognitive task analysis such as visual learning. This feature
is obtained for EEG data using the Welch technique and the
Hamming window with 50% overlapping epochs (Amin et al.,
2014). The analysis shows that a person with low intelligence
has a higher value of the lower power of alpha and vice versa
(Harmony et al., 1996; Jaušovec, 2000; Doppelmayr et al., 2002;
Grabner et al., 2004; Thatcher et al., 2005; Micheloyannis et al.,
2006; Huang and Charyton, 2008; Riečanský and Katina, 2010).
(2) DWT features are suitable for non-stationary signals
(Jahankhani et al., 2006). These features are robust enough and

give discriminative information to distinguish the visual learners
from non-visual learners. (3) PSE features has good effect for
the change of non-linear dynamic states, it is suitable for small
dataset which makes it suitable for EEG signals (Zhang et al.,
2008). The autoregressive, adaptive autoregressive (Akhtar et al.,
2012; Ali et al., 2016) are some of the other feature extraction
methods for the non-stationary EEG signals.

The next step toward analyzing the brain waves is feature
selection. There exist many feature selection techniques
(Chandrashekar and Sahin, 2014), but due to the high
dimensional nature of EEG datasets, dimension reduction
technique such as PCA is used in this study for feature selection.

The selected features are then given to the classifier to classify
visual learner and non-visual learner. In classification, a machine-
learning algorithm is trained and tested using a certain amount
of experimental data to develop a model for the new related
data (Amin et al., 2017). The idea is to train the set of data
having observations with a known category membership, using
the features as independent variables to set the target between
different feature spaces. To classify the EEG dataset, the classifier
must be able to handle the following two issues: (1) Curse of
dimensionality: Based on the amount of data that represents
different classes, increases exponentially with the feature vector
dimensionality. This occurs when the training data is small, and
the feature vector is large; in this type of scenario, the classifier did
not give good results. Therefore, it is recommended that training
samples of the class is at least five times the training samples of the
class of dimensionality (Lotte et al., 2007). In the case of the EEG
dataset, the dataset is small compared to the high dimensionality
of the feature vector, which leads to poor classification (Lotte
et al., 2007). (2) The bias-variance trade-off: Bias is defined as
the divergence between the estimated mapping and the possibly
attained mapping. The bias is dependent on the training set. To
classify the data with minimum error, the bias must be low. The
stable classifier has a low variance and a high bias. The simple
classifier has a low bias and a high variance, which renders the
simple classifier more suitable for EEG datasets, as it outperforms
the complex classifiers (Lotte et al., 2007; Córdova et al., 2015).

In this study, we present a method for classifying the visual
learners from non-visual learners based on the EEG signals and
employed the PSD and DWT as a feature extraction, the PCA as a
feature selection technique, and the k-NN and SVM as a machine-
learning algorithm for the classification of two groups, i.e., visual
learners and non-visual learners. We attempt to explore the brain
neuronal behavior of the visual learners as compared to non-
visual learners when the information is presented according to
their preferred learning modality.

The paper is organized as follows: Materials and Methods,
Results, Discussion, Limitations of the Study, and Conclusion.

MATERIALS AND METHODS

This section comprehensively explains the overall process imple-
mented for this study. From the EEG data, the pre-processing,
feature extraction, feature selection and development of the brain
model classifying the visual learners and non-visual learners
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using the k-NN and SVM classifier. The input to our system
is an EEG signal. The next step is feature extraction, followed
by feature selection and classification. Each block of the system
starting from the data set is explained in detail below.

Subjects
Thirty-four healthy university subjects (age: 18–30 years,
23.17 ± 3.04) were recruited for the experiment. All subjects had
normal or “corrected to normal” vision. All subjects were free
from neurological disorders and medications and did not have
hearing impairments. All subjects are male. All subjects signed an
informed consent document prior to the beginning of the trials.
This study was approved by the Ethics Coordination Committee
of the Universiti Teknologi PETRONAS (Amin et al., 2015b). The
experimental procedure is same for all the participants.

Raven’s Advanced Progressive
Matrix (RAPM) Test
Raven’s advanced progressive matrix (RAPM) (Raven, 2000) is
used to measure intellectual ability. It is a non-verbal test that
commonly and directly measures two components of a fluid’s
cognitive ability (Raven, 2000) defined as: (i) “the ability to
draw meaning out of confusion,” and (ii) “the ability to recall
and reproduce information that has been made explicit and
communicated from one to another.” It has 48 series of patterns
that are further divided into two sets (I and II): One for practice
and the other is to assess cognitive ability. Set I have 12 patterns
that are used for practice. However, Set II has 36 patterns that are
used to measure cognitive ability.

The pattern of the test consists of a 3 × 3 cell structure
representing a certain geometrical shape, except the bottom-right
cell, which is empty, as shown in Figure 1. Eight options are
available for the empty cell. For each correct answer the user
gives a score “1” and a “0” for each incorrect answer. Users
are given 10 min to complete Set I and 40 min to complete
Set II (Raven, 2000). We use RAMP memory test as we know,
Memory plays an important part in learning as in the learned
information is stored in memory. Memory is the expression of
what one has learned. Thus, learning and memory are related
(Passolunghi and Costa, 2019).

Tasks
Two main tasks are involved: (1) the learning task, and
(2) memory or information retrieval task. The material use for
learning task was based on biological contents related to human
anatomy. The biological content was taken from commercially
available high standard secondary curriculum (grade 11∼12).
The content has high quality computer animations related to
the complex human anatomy concepts, functions and diseases.
The duration of this animated learning material is 8–10 min.
The subjects had backgrounds in mathematics and engineering
and had no prior knowledge of the learning content. Therefore,
this selected learning content provide new information to the
subjects and is suitable for the assessment of memory skills and
learning. In addition to learning task a memory retrieval task
was prepared. In the memory retrieval task, 20 multiple-choice

FIGURE 1 | Example of RAPM problem (Amin et al., 2015a).

FIGURE 2 | Example of multiple-choice question (Amin et al., 2015b).

questions (MCQs) that include the learned animated contents,
were presented (see Figure 2). Each MCQ has four possible
answers, out of which one is correct. The time to answer each
MCQ is 30 s within a maximum time limit of 10 min. Subjects
were asked to press a numeric key on the keyboard, serially
numbered #1 to #4 corresponding to each possible answer.

Procedure
The subjects did the test in the following order. First RAMP was
done. The subjects were divided into two groups based on their
RAMP score. Which is explained in detail in experimental results
section. The next step was eyes open/eyes close test. The third
step was showing subjects the learning content. After 30-min
break retrieval task was done. The second retrieval task was done
after 2 months. The EEG was recorded during eyes open, eyes
close, learning task and retrieval task. The retrieval task session
done 30 min after learning task session is named as recall session
1 and recall session 2 is the retrieval task done 2 months after
recall session 1.

To ensure that subjects did not have any background
knowledge a pre-test was conducted where the subjects were
asked to solve 10 questions related to learning the animated
content. The exclusion criteria were based on the results of
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the pre-test; if the subject manages to answer more than 10%
of the pre-test questions correctly, he was excluded from the
experiment. Each subject was briefed on the procedure. At the
end of the learning session, a 30-min break was given, after
which the subjects took retrieval task to assess their learning
performance. Each learning task was presented on a 42-inch TV
screen at 1.5 m from the subject. All tasks were implemented with
the E-Prime Professional 2.0 (Psychology Software Tools, Inc.,
Sharpsburg, PA, United States) (Schneider et al., 2002).

Electrophysiological (EEG) Recording
The EEG continuously recorded the subject’s responses via 128
scalp loci using the HydroCel Geodesic Sensor Net (Electrical
Geodesic Inc., Eugene, OR, United States) (shown in Figure 3).
The notch filter is applied during EEG recording, to eliminate the
power-line noise in the recorded EEG. All electrodes referenced a
single vertex electrode, Cz (which is the standard configuration
of the net), from which raw signals were amplified with the
EGI NetAmps 300 amplifier’s band-pass filter (0.1–100 Hz). The
impedance was maintained below 50 k�, and the sampling rate

was 250 Hz. Impedances indicate electrode performance, it’s
better when lower impedance value and poorer when higher
impedance value. The high values of impedance introduce noise
in the EEG signals that is why it is recommended to use low
impedance values. To record good quality noise free EEG, the
electrodes of EEG cap must have impedances within certain
range. The range is defined as follow (0–50 k�) good quality,
(50–100 k�) acceptable range, (100–200 k�) high value. We
record EEG within the range of (0–50 k�) by keeping the
impedances below 50 k�.

Behavioral Data Analysis
The behavioral data (performance of the subjects) is analyzed
to determine the accuracy of the information retrieved by the
subjects after the learning and retrieval tasks using the visual
contents. The subjects are asked 20 questions of 1-min duration.
The total length of time window is 20 min × 60 s = 1,200 s. The
assessment of the learning performance are based on the correct
responses and the reaction time per question for each subject. The
reaction time reflects the information processing speed based on

FIGURE 3 | Placement of electrodes (HydroCel Geodesic Net 128 channels with Cz as a reference).
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intelligence. The learning performance is then measured based
on the percentage of correct responses.

Pre-processing
After the recording of raw EEG data, each subject’s continuous
EEG data was pre-processed with NetStation v4.5.4 (Electrical
Geodesic, Inc., Eugene, OR, United States). A brief description
of the pre-processing is provided here. (a) A band pass IIR
filter was applied (0.5–48 Hz, roll off 12 dB octave) to remove
DC components and high frequency muscular artifacts. (c) The
artifacts such as eye movement and muscle movement are
corrected using the surrogate model approach of the BESA
software (Roberts et al., 2010). Bad channels were discarded from
the segments. The clean EEG is then exported to MATLAB for
further processing.

Feature Extraction Methods
The relevant information extraction from raw signals is a critical
step in the EEG pattern classification, owing to its direct influence
on the classification performance. In this study, the PSE, PSD
and DWT methods were used to extract the EEG features from
frontal, occipital and parietal region for the classification of visual
learners from non-visual learners. The clean EEG signals are
then divided into the alpha (8–13 Hz), beta (13– 28 Hz), theta
(4–8 Hz), and delta (0.5–4 Hz) and gamma band (25–100 Hz)
frequency bands.

The PSD is computed using the FFT with the Welch
method and hamming window to estimate the power spectrum
of the EEG time series (Welch, 1967) with 2-s segments
(2 × 250 = 500 points), 50% overlapping (250 points) and
kept the nfft as 512 points. In addition, the PSE is obtained by
implementing the procedure mentioned in Zhang et al. (2008).

Discrete wavelet transform is another feature that is extracted.
DWT is famous method for EEG non-stationary signals. It’s an
estimation technique where wavelet function is used to represent
the signal as an infinite series of wavelets. Based on mother
wavelet, the signal is a linear combination of wavelet functions
and weighted wavelet coefficients (Akhtar et al., 2012).

The features are extracted from frontal, occipital and parietal
regions of brain. ANOVA is applied using Matlab to see
statistically the variance of features. The P-value for power
spectral density of alpha and gamma is p < 0.05 showing
statistically independence of two groups. That is why we choose
PSD of alpha and PSD of gamma, DWT of alpha and DWT of
gamma for further analysis. The total number of computed PSD
features for two sessions are 34 × 16 = 544 and 31 × 16 = 496.
And the total number of computed features for DWT for two
session are 34× 29 = 986 and 34× 29 = 899.

Feature Selection
The features extracted above show the discriminative
information that is used for further analysis. The feature
design for this EEG study is not a straightforward task. It has
challenges such as a noisy environment, multiple sources, and
overlapping due to multi-tasking in the brain. The EEG signals
have poor signal-to-noise ratios. The curse of dimensionality is
also present. Because of the above-mentioned challenges, feature

selection is important. There are many methods for feature
selection (Chandrashekar and Sahin, 2014). For this study the
features are selected using the PCA (Dong and Qin, 2018) to deal
with the challenge of curse of dimensionality. The PCA can be
obtained by using the following steps:

(1) The first step is data normalization performed by
subtracting the mean values from the columns.

(2) The covariance of the normalized data is
then calculated.

(3) The eigenvector and eigenvalues can be calculated from
the covariance matrix.

(4) A vector is obtained that consists of eigenvectors.
(5) The principal component is obtained by multiplying

the transpose of the selected feature vector with
the original data.

(6) The selected feature vector is obtained by taking
the maximum of the principal component which
corresponds to largest eigen values in the data.

The extracted features are the PSD of size [34× 16] and DWT
of [34 × 29]each. However, using the PCA, the selected feature
vector is of size [34 × 8] and [34 × 15]. PCA is used with 99%
variance. These 8 and 15 features are representing 99% variance
so there is no need to add other features.

Brain Learning Model Using Classifiers
To distinguish the visual learners from the non-visual learners, a
brain-learning model is developed using the k-NN and the SVM.
The k-NN is a widely used technique for classification problems.
In the k-NN, the k value is the value of the nearest neighbor. k is
non-parametric; the rule of the thumb of choosing the k value

is k =
√

N
2 where N is the number of samples (Altman, 1992).

The idea is to distinguish the visual learners from the non-visual
learners and therefore, we set the value of k = 3. The k value
plays an important role as it draws a boundary that segregates
the visual learners from the non-visual learners. For the k-NN,
several options are available for the distance metric. However,
for this model, the Mahalanobis distance metric is used. Since
the EEG dataset is non-linear, the distance metric such as the
Euclidian distance does not give good results as the Euclidean
distance metric is more suitable for linear datasets. However,
the Mahalanobis distance formula is the same as the Euclidian
distance having a covariance parameter, which makes it a more
suitable and practical option for data with non-linearities. The
formula for the Mahalanobis distance is presented in equation.

D =
√

(x− µ)TS−1(x− µ)

Here, x is a set of observations, where µ is the mean of the
observations and S is the covariance matrix.

The SVM classifier is best suitable for binary classifications.
It classifies data by finding the best hyperplane that separates
all data points of one class from other glasses. The best suitable
hyperplane is the one with the largest margin (Witten et al., 2016).
SVM is another classifier used for this study.
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The step taken before the model development is the
randomization of data into two parts, here 10-fold cross
validation is used for training and testing. The training set was
used to train the model; however, testing is performed to evaluate
the overall ability of the dataset’s training part. The above-
mentioned method is the standard practice in machine learning
used by many researchers in their work (Zhang and Zhou, 2007).

RESULTS

The behavioral data is analyzed to measure the performance
of the visual learners and non-visual learners. For learning,
the correct responses and reaction times are computed for
each participant. The reaction time shows the mental speed of
information retrieval and is measured from the point where
the MCQ is displayed until the participant presses a button
for the selection of an answer. The percentage of correct
responses per participant was then used to measure his learning
performance. The total number of trials available per subject
was 34 subjects × 20 MCQ = 680 trials. To assess the learning
ability RAMP score is used. The subjects are divided into two
equal groups using median score (Amin et al., 2015b). Based on
the median score, the subjects who scored equal or above the
median are considered as visual learners and those who scored
less than the median are considered as non-visual learners. To
classify the visual learner and non-visual learner, we analyze
the retrieval task, the first retrieval task is recorded 30 min
after the learning task (recall session 1) and the second retrieval
task is recorded 2 months after the learning (recall session 2).
To classify visual learners from non-visual learners the suitable
features are selected, which can discriminate the two groups.
To measure the statistical significance of the features statistical
analysis is performed. First the features are extracted from frontal,
occipital, and parietal regions of brain. The total number of
computed features for two sessions (recall session 1 and recall
session 2) are 34 × 16 = 544, 31 × 16 = 496 and 34 × 29 = 986,
31× 29 = 899. Then one-way ANOVA with Tukey post hoc test is
performed on extracted features. The results of one-way ANOVA
show P-value for PSD of alpha and PSD of gamma, DWT of
alpha and DWT of gamma (p < 0.05) which shows statistically
independence of two groups. However, the P-value of PSE did
not show statistically significance because of that reason we use
PSD and DWT feature for further analysis. For feature selection,
the PCA is used to best describe the variance in the features
and to reduce their dimensionality. We prefer PCA over LDA,
because PCA perform better in case where number of samples per
class is less. Whereas LDA works better with large dataset having
multiple classes2.

To evaluate the model performance, the accuracy, sensitivity
(true positive rate), and specificity (true negative rate) parameters
are computed, and the receiver operating characteristic (ROC)
curve is obtained. To calculate the accuracy, sensitivity, and
specificity, the confusion matrix is first computed. A confusion

2http://www.vfirst.com/blog/techfirst/dimension-reduction-techniques-pca-vs-
lda-in-machine-learning-part-2/

matrix is used to describe the performance of a classification
model on a set of data with known true values. Figure 4 shows
the box plot indicating the significant pattern between a visual
learner and a non-visual learner for the alpha and gamma bands
of recall session 1 and recall session 2. The distinct mean level can
be observed for the two groups, where the mean of the non-visual
learner is higher than the mean of the visual learner for the alpha
sub-band, which is similarly observed for the gamma band case.

Tables 1A,B show the average of the confusion matrix for
the PSD of alpha and gamma waves obtained from different
iterations, respectively. From Tables 1A,B, two predicted classes
for the visual learner (L) and non-visual learner (NL) with n = 34
can be seen, meaning that 34 subjects were tested. From the
results, we observed that the classifier predicted the Ls 16 times
and the NLs 1 time for the alpha waves. For the gamma waves, the
predicted Ls are 16 and the NLs are 1. However, there are actually
17 Ls and 17 NLs, where TP is a true positive, TN is true negative,
FP is false positive, and FN is false negative. The TPs are the
instances where the predicted visual learners are actually visual
learners. The TNs are the instances where the predicted non-
visual learners are actually non-visual learners. The FPs are when
the visual non-learners are predicted as visual learners. The FNs
are when the visual learners are predicted as non-visual learners.

From the confusion matrix shown in Tables 1A,B, the
accuracy, sensitivity, and specificity are calculated. Mathemati-
cally, the accuracy, sensitivity, and specificity parameters are
shown in equations.

Accuracy =
(

TP + TN
TP + TN + FP + FN

)
× 100%

Sensitivity =
(

TP
TP + FN

)
× 100%

Specificity =
(

TN
TN + FP

)
× 100%

Table 1C shows the specificity, sensitivity, and accuracy
corresponding to visual learners and non-visual learners for the
PSD of alpha and gamma waves.

The ROC is generated by plotting the TP along the y-axis
and the FP rate along the x-axis. Figure 5 shows the ROC
curve of the k-NN classifier for the PSD of alpha and gamma
waves of threshold value (0.5, 1, 1) for the PSD of alpha waves,
and (0.5, 0.75, 0.75) for the PSD of gamma waves, with area
under the curve (AUC) values of 0.97 and 0.94 for the PSD of
alpha and gamma waves, respectively, as shown in Figure 5.
The ROC analysis is useful for many reasons: (1) It evaluates
the discriminatory ability of continuous predictor for correctly
assigning classification of two groups. (2) It gives the optimal cut-
off point selection to eliminate the misclassification of two classes.
(3) It shows the effectiveness of predictor. Tables 2A,B show the
average of the confusion matrix for the PSD of alpha and gamma
waves obtained from different iterations. From Tables 2A,B,
two predicted classes for the L and NL with n = 31, meaning
31 subjects were tested. From the results, we observed that the
classifier predicted the Ls 16 times and the NLs 15 times for
the PSD of alpha waves. For the PSD of gamma waves, the
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FIGURE 4 | Box plot of PSD for (i) alpha (ii) gamma with respect to the visual learner and non-visual learner groups. The focus of our study is the left and right brain
hemispheres during the learning state. (A) Recall session 1 (N = 34). (B) Recall session 2 (N = 31).

TABLE 1 | Confusion matrix and performance matrix of PSD of alpha and gamma band using k-NN classifier (recall session 1).

(C) Performance matrix: specificity, sensitivity, and

accuracy for alpha and gamma waves to distinguish

(A) Confusion matrix of alpha (B) Confusion matrix of gamma visual learners from non-visual learners

n = 34 Predicted (NL) Predicted (L) n = 34 Predicted (NL) Predicted (L) Specificity (%) Sensitivity (%) Accuracy (%)

Actual (NL) TN = 16 FP = 1 Actual (NL) TN = 16 FP = 1 Alpha waves 94% 94% 97%

Actual (L) FN = 1 TP = 16 Actual (L) FN = 1 TP = 16 Gamma waves 94% 94% 94%

predicted Ls are 15 and the NLs are 16. However, there are
actually 15 Ls and 16 NLs.

From the confusion matrix given in Tables 2A,B, the accuracy,
sensitivity, and specificity are calculated. Table 2C shows the
specificity, sensitivity, and accuracy corresponding to the Ls and
NLs for the PSD of alpha and gamma waves.

The ROC is generated by plotting TP rate along the y-axis
and the FP rate along the x-axis. Figure 5B shows the ROC
curve of the k-NN classifier for the PSD of alpha and gamma
waves of threshold value (0, 0.50, 1) for the PSD of alpha waves,
and (0.5, 0.75, 0.75) for the PSD of gamma waves, with the
AUC of 0.96 and 0.93 for the PSD of alpha and gamma waves,
respectively. Tables 3A,B show the average of the confusion
matrix for the DWT of alpha and gamma waves obtained from
different iterations. From Tables 3A,B, two predicted classes for
the L and NL with n = 34, meaning 34 subjects were tested. From
the results, we observed that the classifier predicted the Ls 17
times and the NLs 17 times for the DWT of alpha waves. For the
DWT of gamma waves, the predicted Ls are 17 and the NLs are 17.
However, there are actually 17 Ls and 17 NLs.

From the confusion matrix given in Tables 3A,B, the accuracy,
sensitivity, and specificity are calculated. Table 3C shows the
specificity, sensitivity, and accuracy corresponding to the Ls and
NLs for the DWT of alpha and gamma waves.

Figure 5C shows the ROC curve of the k-NN classifier for the
DWT of alpha and gamma waves of threshold value (0, 1, 1) for
the alpha waves, and (0, 1, 1) for the gamma waves, with the AUC
of 1 and 1 for the alpha and gamma waves, respectively.

Tables 4A,B show the average of the confusion matrix for the
DWT alpha and gamma waves obtained from different iterations.
From Tables 4A,B, two predicted classes for the L and NL with

n = 31, meaning 31 subjects were tested. From the results, we
observed that the classifier predicted the Ls 12 times and the NLs
13 times for the alpha waves.

For the DWT gamma waves, the predicted Ls are 12 and
the NLs are 13. However, there are actually 15 Ls and 16 NLs.
From the confusion matrix given in Tables 4A,B, the accuracy,
sensitivity, and specificity are calculated. Table 4C shows the
specificity, sensitivity, and accuracy corresponding to the Ls and
NLs for the DWT of alpha and gamma waves.

Figure 5D shows the ROC curve of the k-NN classifier for
the DWT alpha and gamma waves of threshold value (0, 0.78, 1)
for the alpha waves, and (0, 0.78, 1) for the gamma waves,
with the AUC of 0.76 and 0.76 for the alpha and gamma
waves, respectively.

Tables 5A,B show the average of the confusion matrix for
the PSD of alpha and gamma waves obtained from different
iterations. From Tables 5A,B, two predicted classes for the L
and NL with n = 34, meaning 34 subjects were tested. From the
results, we observed that the classifier predicted the Ls 16 times
and the NLs 16 times for the alpha waves. For the gamma waves,
the predicted Ls are 16 and the NLs are 16. However, there are
actually 17 Ls and 17 NLs.

Table 5C shows the specificity, sensitivity, and accuracy
corresponding to the Ls and NLs for the PSD of alpha
and gamma waves.

Figure 6A shows the ROC curve of the SVM classifier for the
PSD alpha and Gamma waves with the AUC of 0.97 and 0.96 of
PSD features for recall session 1.

Tables 6A,B show the average of the confusion matrix for
the PSD of alpha and gamma waves obtained from different
iterations. From Tables 6A,B, two predicted classes for the L
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FIGURE 5 | (A) ROC for classification for k-NN classifier for PSD of alpha waves and gamma waves with AUC of 0.97 and 0.94 (recall session 1). (B) ROC for
classification for k-NN classifier for PSD of alpha waves and gamma waves with AUC of 0.96 and 0.93 (recall session 2). (C) ROC for classification for k-NN classifier
for DWT of alpha waves and gamma waves with AUC of 1 and 1 for DWT for recall session 1. (D) ROC for classification for k-NN classifier for DWT of alpha waves
and gamma waves with AUC of 0.76 and 0.76 for DWT transform for recall session 2.

TABLE 2 | Confusion matrix and performance matrix of PSD of alpha and gamma band using k-NN classifier (recall session 2).

(C) Performance matrix: specificity, sensitivity, and

accuracy for alpha and gamma waves to distinguish

(A) Confusion matrix of alpha (B) Confusion matrix of gamma visual learners from non-visual learners

n = 31 Predicted (NL) Predicted (L) n = 31 Predicted (NL) Predicted (L) Specificity (%) Sensitivity (%) Accuracy (%)

Actual (NL) TN = 14 FP = 2 Actual (NL) TN = 15 FP = 1 Alpha waves 87% 93% 96%

Actual (L) FN = 1 TP = 14 Actual (L) FN = 1 TP = 14 Gamma waves 93% 93% 93%

and NL with n = 31, meaning 31 subjects were tested. From the
results, we observed that the classifier predicted the Ls 15 times
and the NLs 16 times for the alpha waves. For the gamma waves,
the predicted Ls are 14 and the NLs are 15. However, there are
actually 15 Ls and 16 NLs.

From the confusion matrix given in Tables 6A,B,
the accuracy, sensitivity, and specificity are calculated.
Table 6C shows the specificity, sensitivity, and accuracy
corresponding to the Ls and NLs for the PSD of alpha
and gamma waves.
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TABLE 3 | Confusion matrix and performance matrix of DWT of alpha and gamma band using k-NN classifier (recall session 1).

(C) Performance matrix: specificity, sensitivity, and

accuracy for alpha and gamma waves to distinguish

(A) Confusion matrix of alpha (B) Confusion matrix of gamma visual learners from non-visual learners

n = 34 Predicted (NL) Predicted (L) n = 34 Predicted (NL) Predicted (L) Specificity (%) Sensitivity (%) Accuracy (%)

Actual (NL) TN = 17 FP = 0 Actual (NL) TN = 17 FP = 0 Alpha waves 100% 100% 100%

Actual (L) FN = 0 TP = 17 Actual (L) FN = 0 TP = 17 Gamma waves 100% 100% 100%

TABLE 4 | Confusion matrix and performance matrix of DWT of alpha and gamma band using k-NN classifier (recall session 2).

(C) Performance matrix: specificity, sensitivity, and

accuracy for alpha and gamma waves to distinguish

(A) Confusion matrix of alpha (B) Confusion matrix of gamma visual learners from non-visual learners

n = 31 Predicted (NL) Predicted (L) n = 31 Predicted (NL) Predicted (L) Specificity (%) Sensitivity (%) Accuracy (%)

Actual (NL) TN = 13 FP = 3 Actual (NL) TN = 13 FP = 3 Alpha waves 81% 80% 74%

Actual (L) FN = 3 TP = 12 Actual (L) FN = 3 TP = 12 Gamma waves 81% 80% 74%

TABLE 5 | Confusion matrix and performance matrix of PSD of alpha and gamma band using SVM classifier (recall session 1).

(C) Performance matrix: specificity, sensitivity, and

accuracy for alpha and gamma waves to distinguish

(A) Confusion matrix of alpha (B) Confusion matrix of gamma visual learners from non-visual learners

n = 34 Predicted (NL) Predicted (L) n = 34 Predicted (NL) Predicted (L) Specificity (%) Sensitivity (%) Accuracy (%)

Actual (NL) TN = 16 FP = 1 Actual (NL) TN = 16 FP = 1 Alpha waves 94% 94% 97%

Actual (L) FN = 1 TP = 16 Actual (L) FN = 1 TP = 16 Gamma waves 94% 94% 96%

Figure 6B shows the ROC curve of the SVM classifier for the
PSD of alpha and Gamma waves with the AUC of 1 and 0.97 of
PSD features for recall session 2.

Tables 7A,B show the average of the confusion matrix for
the DWT of alpha and gamma waves obtained from different
iterations. From Tables 7A,B, two predicted classes for the L
and NL with n = 34, meaning 34 subjects were tested. From the
results, we observed that the classifier predicted the Ls 13 times
and the NLs 13 times for the alpha waves. For the gamma waves,
the predicted Ls are 14 and the NLs are 14. However, there are
actually 17 Ls and 17 NLs.

From the confusion matrix given in Tables 7A,B, the accuracy,
sensitivity, and specificity are calculated. Table 7C shows the
specificity, sensitivity, and accuracy corresponding to the Ls and
NLs for the DWT of alpha and gamma waves.

Figure 6C shows the ROC curve of the SVM classifier for the
DWT of alpha and gamma waves with the AUC of 0.79 and 0.82
of DWT features for recall session 1.

Tables 8A,B show the average of the confusion matrix for
the DWT of alpha and gamma waves obtained from different
iterations. From Tables 8A,B, two predicted classes for the L
and NL with n = 31, meaning 31 subjects were tested. From the
results, we observed that the classifier predicted the Ls 9 times
and the NLs 10 times for the alpha waves. For the gamma waves,

the predicted Ls are 12 and the NLs are 11. However, there are
actually 15 Ls and 16 NLs.

From the confusion matrix given in Tables 8A,B, the accuracy,
sensitivity, and specificity are calculated. Table 8C shows the
specificity, sensitivity, and accuracy corresponding to the Ls and
NLs for the DWT of alpha and gamma waves.

Figure 6D shows the ROC curve of the SVM classifier for the
DWT of alpha and gamma waves with the AUC of 0.56 and 0.74
of DWT features for recall session 2.

Figure 5 gives the ROC of k-NN classifier for PSD and
DWT of alpha and gamma waves of recall session 1 and recall
session 2. From Figure 5A, we observe that the PSD of alpha
for recall session 1 has an AUC of 0.97, which is high. For
recall session 2, the AUC slightly decreases at 0.96 but still
remains high. For the PSD of gamma, the AUC is 0.94 for both
sessions. This shows this model has a good class separation
capacity. The model is robust since the AUC remains high
for recall session 2 although it is conducted 2 months after
recall session 1.

For DWT features of recall session 1 and recall session 2 the
AUC is 1 and 0.76, respectively, for both DWT of alpha and
gamma waves. This shows that DWT has great capabilities of class
separation but does not show robustness since the AUC drops
from 1 to 0.76 for recall session 2.
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FIGURE 6 | (A) ROC for classification for SVM classifier for PSD of alpha waves and gamma waves with AUC of 0.97 and 0.96 for PSD for recall session 1. (B) ROC
for classification for SVM classifier for PSD of alpha and gamma waves with AUC of 1 and 0.97 for PSD for recall session 2. (C) ROC for classification for SVM
classifier for alpha waves and gamma waves with AUC of 0.79 and 0.82 for DWT for recall session 1. (D) ROC for classification for SVM classifier for DWT of alpha
and gamma waves with AUC of 0.56 and 0.74 for DWT for recall session 2.

TABLE 6 | Confusion matrix and performance matrix of PSD of alpha and gamma band using SVM classifier (recall session 2).

(C) Performance matrix: specificity, sensitivity, and

accuracy for alpha and gamma waves to distinguish

(A) Confusion matrix of alpha (B) Confusion matrix of gamma visual learners from non-visual learners

n = 31 Predicted (NL) Predicted (L) n = 31 Predicted (NL) Predicted (L) Specificity (%) Sensitivity (%) Accuracy (%)

Actual (NL) TN = 16 FP = 0 Actual (NL) TN = 15 FP = 1 Alpha waves 100% 100% 100%

Actual (L) FN = 0 TP = 15 Actual (L) FN = 1 TP = 14 Gamma waves 93% 94% 95%

Similarly, Figure 6 shows the SVM classifier for PSD and
DWT of alpha and gamma waves of recall session 1 and recall
session 2. Here the PSD of alpha and gamma has the AUC of
0.97 and 0.96 for recall session 1 and AUC of 1 and 0.97 for recall
session 2. This shows about more the robustness of PSD is class
separation since the AUC values remain high for both sessions,
although the classifier has been changed.

For DWT of alpha and gamma the value of AUC is 0.79 and
0.82 for recall session 1 and 0.56 and 0.74 for recall session 2.
Here, also the AUC is slightly high in case of recall session 1.
Compared to PSD, the AUC values for DWT are much lower and
also the decrease between recall session 1 and recall session 2 is
more considerable. That show that DWT has less class separation
capabilities and is less robust.
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TABLE 7 | Confusion matrix and performance matrix of DWT of alpha and gamma band using SVM classifier (recall session 1).

(C) Performance matrix: specificity, sensitivity, and

accuracy for alpha and gamma waves to distinguish

(A) Confusion matrix of alpha (B) Confusion matrix of gamma visual learners from non-visual learners

n = 34 Predicted (NL) Predicted (L) n = 34 Predicted (NL) Predicted (L) Specificity (%) Sensitivity (%) Accuracy (%)

Actual (NL) TN = 13 FP = 4 Actual (NL) TN = 14 FP = 3 Alpha waves 76% 76% 79%

Actual (L) FN = 4 TP = 13 Actual (L) FN = 3 TP = 14 Gamma waves 82% 82% 82%

TABLE 8 | Confusion matrix and performance matrix of DWT of alpha and gamma band using SVM classifier (recall session 2).

(C) Performance matrix: specificity, sensitivity, and

accuracy for alpha and gamma waves to distinguish

(A) Confusion matrix of alpha (B) Confusion matrix of gamma visual learners from non-visual learners

n = 31 Predicted (NL) Predicted (L) n = 31 Predicted (NL) Predicted (L) Specificity (%) Sensitivity (%) Accuracy (%)

Actual (NL) TN = 10 FP = 6 Actual (NL) TN = 12 FP = 4 Alpha waves 62% 60% 56%

Actual (L) FN = 6 TP = 9 Actual (L) FN = 4 TP = 11 Gamma waves 75% 73% 74%

FIGURE 7 | The topographical map of a visual learner and non-visual learner. Brain wave activation was found very high in left posterior temporal and left frontal
region in visual non-learner. However comparable activation, but lower in visual learner scenario.

The results show that PSD feature can be more
reliably used for distinguishing visual learners from
visual non-learner.

DISCUSSION

In this study, the learning styles are studied by analyzing
the EEG signals, and the machine-learning classifier is used

for the classification of visual learners from non-visual
learners (Figure 7).

According to the authors’ knowledge, none have distinguished
a visual learner from a non-visual learner using video contents
as stimuli along with EEG signals. Human has exceptional
learning abilities, which allows individuals at learning stage
to adapt to different learning environment. However, there is
a difference in learning abilities of individual which become
obvious when they progress in life. There are different models
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and learning theories that explain how individual learns (Stern,
2017). Many researchers have reported findings based on learning
theories to identify the learning style of the learners. The
Felder and Silverman theory is one of the learning theories
that is used by most studies that explore the learning style
of the learners (Klašnja-Milićević et al., 2017). In Marschark
et al. (2013) and Kim et al. (2015), the researchers explored
static media, such as pictures and words, to categorize the
visual learners and the verbal learners. In these studies, they
accurately classified a visual learner from a verbal learner based
on the decreased value of theta, and the increased value of
beta in the case of a visual learner, and vice versa for a
verbal learner. Their drawback is that the analysis is based
on static media, which does not include all the aspects of
visual modality. However, in our study, videos content (dynamic
media) is used to include all the aspects of visual modality
along with studying the brain responses via EEG recordings and
thus eliminating the drawback of the above-mentioned studies
(Kim et al., 2015).

Recent studies based on Kolb’s model, another learning theory
based on the learner’s internal cognitive processes, used an online
test for the subjective measure, and EEG with only the eyes closed
condition (Ali et al., 2016). Kolb’s model with the EEG eyes
closed condition does not fully represent the relationship with a
visual learner because the online questioner asks the students to
select their suitable learning style according to their viewpoint,
which is the main limitation of Kolb’s theory (Kelly, 1997). Kolb’s
test is based solely on the way learners rate themselves. It does
not rate the learning style preferences through standards or
behaviors. The reported findings were based on the resting state
of the EEG recordings, which does not explain the whole picture
of the neuronal responses during learning and/or during the
retrieval of learned information. The present study recorded the
EEG during the resting states, learning tasks, and information
retrieval tasks. Thus, in this study, the decision of being a
visual learner or non-learner is based on the neuronal responses
recorded during the information retrieval tasks combined with
the machine-learning algorithm, rather than using a subjective
questionnaire, such as one reported in the resting state EEG
(Ali et al., 2016).

As mentioned above, the existing studies do not used videos
as a stimulus to classify the visual learning style, especially
in engineering disciplines. Identifying a learner as a visual
learner using videos is an important component of the visual
modality. Previous results are based on only one component
of the Felder theory, which is visual-verbal, as reported in
Felder and Silverman (1988). All these previous works neglect
the important aspect of the visual learning modality, such
as videos (dynamic media), and focus only on pictures and
words (static media).

Considering these limitations, we have attempted to present
a classification-based model to identify visual learners using
video (dynamic media) contents for learning; videos are more
reliable and include all the aspects of visual learning modalities
and is a more realistic way of presenting information in a
relatable manner. Here, the EEG recordings are recorded while
performing the learning and memory tasks. We have computed

the PSD and DWT for the alpha and gamma frequencies of the
EEG, recorded during the learning tasks and retrieval tasks and
discriminated the subjects between groups, i.e., visual learners
and non-learners. Since, we are distinguishing visual learner
and non-visual learner. A separate analysis of alpha and gamma
waves is required. That’s why we did not use all the frequency
band together. But we saw the effect of alpha-gamma together.
The results show that combining alpha-gamma did not increase
the accuracy of our classification model. According to Arnaldo
et al. (2018), variations are observed in the alpha and gamma
bands during cognitive tasks, such as the visualization of learning
tasks. The results of our study identified a methodology to
classify visual learners from non-visual learners. This study
confirmed that the learning styles of individuals influence the
neuronal electrical potentials generated during the learning
and retrieval of learned information. Based on our results, we
conclude that subjects who are visual learners learned better
using videos (dynamic media), which is easier to understand and
relatable. Thus, the further development of learning modalities
can be considered as future work. In addition, for further
studies, the authors believe that the brain neuronal signals will
facilitate the understanding of the impact of changes in the
learning modalities.

Limitations of the Study
The study has few limitations. The small sample size is
not enough to predict the learning style of the students.
However, future studies can be conducted to predict learning
style of the students. In addition, this study investigates
the learning style of university students only. Finally, the
learning material used in this study was related to human
anatomy and physiology contents; thus, learning style cannot
be generalized to link with learning ability of all types of
academic learning contents or memory recall ability. Also,
EEG is the only modality we use to record the brain signals.
Although EEG is considered one of the favorable methods
it has few caveats. It has excellent temporal resolution but
poor spatial resolution. Volume conduction is also one of
the limitations.

CONCLUSION

In this work, we have proposed a brain-learning model
for identifying visual learners and non-visual learners
using EEG signals. The neural activity of the subjects is
observed in all regions of the brain. Three different features
are extracted and tested to find the stabilized features for
the task in hand. To distinguish the visual learners from
the non-visual learners, the PSD and DWT features are
extracted over 16 scalp sites such as frontal, occipital,
and parietal regions which play active role during visual
learning, and fewer features were selected using PCA to
train and test the classifier. The k-NN classifier with the
Mahalanobis distance and SVM are used to classify the
visual learners and non-visual learners. The classification
accuracies were recorded as 97% and 94% for the PSD alpha
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and gamma bands for the recall session 1, and 96% and
93% for the recall session 2, for the visual learners and non-
visual learners, respectively. For DWT features using k-NN
classifier 68% and 100% accuracy rate for recall session 1 and
100% accuracies rate for the recall session 2 for the alpha
and gamma band is recorded. For PSD alpha and gamma
band 97% and 96% accuracies rate for the recall session 1,
100% and 95% accuracies rate for recall session 2 using SVM
classifier are reported. Similarly 79% and 82% accuracy for
recall session 1 and 56% and 74% accuracy for recall session
2 for DWT features using SVM classifier are reported. From
above results, we concluded that PSD for SVM shows the best
results for this study.

The EEG alpha and gamma bands showed good
agreement with the learning process. The analyses of these
frequency bands indicate the clear difference between the
visual learners and non-visual learners. Therefore, our
proposed brain-learning model will be helpful in academic
applications, such as to help university students to identify
visual learners and non-visual learners. This work can be
extended by conducting further experiments to explore
other learning modalities, such as audio and kinesthetic,
using EEG signals.
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