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Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines

by van den Brink, R. L., Nieuwenhuis, S., and Donner, T. H. (2018). J. Neurosci. 38:7476–7491.
doi: 10.1523/JNEUROSCI.0514-18.2018

Brain states like sleep and vigilance, as well as fluctuating levels of arousal and attention, are
characterized by diverse patterns of brain activity. These global dynamics are strongly driven by
the activity of catecholaminergic neuromodulatory systems (Sara and Bouret, 2012; Reimer et al.,
2014; van den Brink et al., 2016). Specifically, norepinephrine (NE) levels have been shown to be
coupled to brain states (Eschenko et al., 2011; McGinley et al., 2015). The cortical influence of NE
comes from neurons originating in the locus coeruleus (LC) which has widespread projections
to the forebrain and has been assumed to have a uniform impact on brain activity. However,
neuromodulatory effects vary in part because of the heterogeneous cortical distribution of NE
synaptic receptors (Zilles and Amunts, 2009) which suggests that cortical modulation of NE is more
complex than previously thought (Totah et al., 2018).

Using fMRI and pharmacological intervention, van den Brink et al. (2018) sought to determine
whether NE modulation on brainwide interactions occurred in a spatially distributed manner
depending on receptor genes. For this, they analyze resting-state fMRI functional connectivity
(FC) in healthy subjects under both placebo condition and a pharmacological increase of NE
levels by a single dose of atomoxetine (ATX), an inhibitor of the NE transporter. They use a
previously proposed approach (Donner et al., 2013) to decompose the FC matrices into spatial
modes of brain organization that capture the heterogeneous atomoxetine-induced effects over
intrinsic brain variations.

To compare the spatial modes with well-known brain characteristics, the authors correlate these
spatial modes with canonical resting-state FC networks (Smith et al., 2009). Interestingly, the ATX
spatial mode correlates with the right frontoparietal network (FPN) while the placebo spatial mode
correlates with the left FPN and the default-mode network, which has important roles in cognition.
This is of special interest, considering that these networks are obtained from the resting-state,
which suggests that slow spontaneous fluctuations are modulated by NE even in the absence of
task. Indeed, the authors interpret that ATX might induce a shift toward a goal-oriented stimulus
processing brain state. Considering the computational evidence that resting-state fluctuations may
arise from slow fluctuation of ionic concentrations (Krishnan et al., 2018), van den Brink et al.
(2018) results experimentally supports the understanding of catecholaminergic modulation as a
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spatially heterogeneous gain function of biophysical dynamics
(Shine et al., 2018).

If the above were true, a strong coupling between the spatial
modes and the localization of NE receptors would be expected.
Indeed, using the receptor’s transcriptional maps from the
Allen Brain Institute (Hawrylycz et al., 2015), the authors show
that the heterogeneous spatial modes are partially explained
by the spatial heterogeneity of NE receptors. Specifically, the
distribution of the spatial modes significantly correlates with
the localization of β NE receptors and with α1 NE receptors,
but not with α2 NE receptors or NMDA receptors. This is
of special interest because α2 shows higher affinity to NE
than α1 receptors (Berridge and Spencer, 2016). Both of
these receptors are known to be cognitively important but
in different ways. α2 activation has been linked to enhanced
working memory capacity, while α1 is related to high arousal
situations and impaired working memory while promoting
attention flexibility (Berridge and Spencer, 2016). This is in
line with the adaptive gain theory proposed by Aston-Jones
and Cohen (2005), which links LC-NE activity with cognitive
performance. Interestingly, as the authors note, there is a
significant expression of NE receptors in subcortical areas,
including α2 NE autoreceptors in the LC, which should be taken
into account to describe these complex phenomena. However,
and perhaps more importantly, recent evidence has shown that
ATX has opposite effects in network integration in resting state
compared to cognitive tasks, which supports a state-dependent
modulation of brain connectivity by catecholamines
(Shine et al., 2019).

Humans interact with the dynamic nature of the world
with a high temporal resolution. Placing van den Brink et al.
(2018) findings into the perspective of spontaneous fluctuations
in cognition, it appears as highly relevant to characterize the
dynamic shaping of brain activity by neuromodulators on a finer
temporal scale using electrophysiology (e.g., McGinley et al.,
2015). In this line, Pfeffer et al. (2018) found that a single dose
of ATX shapes an aperiodic measure of the field potential during
perception of ambiguous visual stimuli. This is consistent with
evidence that proposes aperiodic measures such as the level
of background neural activity (Voytek and Knight, 2015) as
physiological markers of network dynamics. Interestingly, the
aperiodic activity has been shown to highly correlate with spiking
activity (Manning et al., 2009), and is a good electrophysiological
correlate of the BOLD signal (Wen and Liu, 2016), emerging

as a candidate to link micro and macro scale in the study of
neuromodulation of brain activity. Thus, it is tempting to test if
the spatial modes revealed by fMRI are spatially coincident with
electrophysiological field potential patterns, such as aperiodic
broadband, as previous studies have done (Ossandón et al., 2011).

The results presented by van den Brink et al. (2018) extend
our understanding of the fine-grained spatial architecture
of brain activity and its reshaping by ATX. Although
pharmacological interventions studies contribute to elucidate
the catecholaminergic effects on cortical states, they fail
to describe its naturally dynamic fluctuations. Given the
well-established role of the LC in driving cortical states and
pupil diameter (Aston-Jones and Cohen, 2005; Yüzgeç et al.,
2018), pupillometry appears as an excellent candidate to relate
endogenous time-varying NE levels with brain states (Reimer
et al., 2014; Wainstein et al., 2017).

van den Brink et al. (2018) contribute to the challenge
of linking macro scale brain organization with low-level
characteristics of neurotransmitter receptors. Extending these
important results using higher temporal resolution methods, as
intracranial EEG, and adding in parallel pupillometry would
give a broader understanding of how neuromodulators spatially
interact with brain state fluctuations and cognition. This
could potentiate future research to understand the multiscale
functional dynamics underlying several neuromodulator-related
psychiatric disorders as well as to pave the path to design targeted
therapeutic strategies.
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